Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite–Host Interactions in Trypanosoma brucei
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome and Database
2.2. Protein Function Annotation
2.3. Identification of TbrMam Proteins
2.4. Proteins Related to Pathogenicity
- (1)
- RNA-binding protein (RBP): Trypanosome is deficient in specific promoters of protein-coding genes and is highly reliant on RBPs to control its RNA fate [21]. RBPs are critical to post-transcriptional gene regulation. Therefore, characterization of RBP is a key premise for elucidating their pathogenic functions;
- (2)
- Variant surface glycoprotein (VSG): VSGs are major surface antigens recognized by the host immune system during trypanosome infection [22]. The modulation of trypanosomes can prevent long-lasting immunity in the host;
- (3)
- Phosphatidylinositol 3 Kinase (PI3K): PI3K is a heterodimeric complex composed of a regulatory subunit and a catalytic subunit. PI3K is a lipid kinase that regulates cellular processes such as proliferation, differentiation and survival in the trypanosome. A previous report suggested that this protein is essential for autophagosome formation of trypanosome [23].
2.5. miRNA Identification
2.6. Homolog Distribution of Identified miRNAs
2.7. Network Analysis
2.8. Potential Drug Search
3. Results
3.1. Homolog Distribution of Proteins
3.2. Functional Enrichment of TbrMam Proteins
3.3. Genomic Specificity of TbrMam Genes
3.4. Proteins Related to Pathogenicity
3.5. miRNA Identification
3.6. Homolog Distribution of Identified miRNAs
3.7. Network Analysis
3.8. Drug Target Search
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogerson, E.; Pelletier, J.; Acosta-Serrano, A.; Rose, C.; Taylor, S.; Guimond, S.; Lima, M.; Skidmore, M.; Yates, E. Variations in the Peritrophic Matrix Composition of Heparan Sulphate from the Tsetse Fly, Glossina morsitans morsitans. Pathogens 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Trypanosomiasis, Human African (Sleeping Sickness). 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness).
- Naguleswaran, A.; Doiron, N.; Roditi, I. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. BMC Genom. 2018, 19, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.K.; Bringaud, F.; Nolan, D.P.; Figueiredo, L.M. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Research 2017, 6, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fall, F.; Mamede, L.; Schioppa, L.; Ledoux, A.; De Tullio, P.; Michels, P.; Frédérich, M.; Quetin-Leclercq, J. Trypanosoma brucei: Metabolomics for analysis of cellular metabolism and drug discovery. Metabolomics 2022, 18, 1–18. [Google Scholar] [CrossRef]
- Jackson, A.P.; Sanders, M.; Berry, A.; McQuillan, J.; Aslett, M.A.; Quail, M.A.; Chukualim, B.; Capewell, P.; MacLeod, A.; Melville, S.E.; et al. The Genome Sequence of Trypanosoma brucei gambiense, Causative Agent of Chronic Human African Trypanosomiasis. PLoS Negl. Trop. Dis. 2010, 4, e658. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.; Ramasamy, G.; Vasconcelos, E.J.; Jensen, B.C.; Myler, P.J. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping. Mol. Biochem. Parasitol. 2015, 202, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glockzin, K.; Meek, T.D.; Katzfuss, A. Characterization of adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei brucei: Only one of the two isoforms is kinetically active. PLoS Negl. Trop. Dis. 2022, 16, e0009926. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wu, Y. Improved annotation of Lutzomyia longipalpis genome using bioinformatics analysis. PeerJ 2019, 7, e7862. [Google Scholar] [CrossRef] [Green Version]
- Pkna, B.; Jd, A.; Srm, A.; Mg, C.; Nma, C.; Msa, C.; Vk, D.; Vr, A. Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South Afr. J. Bot. 2021, 141, 219–226. [Google Scholar]
- Acuna, S.M.; Floeter-Winter, L.M.; Muxel, S.M. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, M.; Zeng, X.; Wan, A.T.-Y.; Tsui, S.K.-W. In silico analysis of proteins and microRNAs related to human African trypanosomiasis in tsetse fly. Comput. Biol. Chem. 2020, 88, 107347. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.I.; Chowdhury, M.S.R.; Das, M.; Akter, S.; Roy, S.; Sharma, B.; Akhand, R.N.; Hasan, M.; Uddin, M.B.; Ahmed, S.S.U. In silico identification and functional characterization of conserved miRNAs in the genome of Cryptosporidium parvum. Bioinform. Biol. Insights 2021, 15, 1117. [Google Scholar] [CrossRef] [PubMed]
- UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tsui, K.-W.S. Functional Annotation of Proteins Encoded by the Minimal Bacterial Genome Based on Secondary Structure Element Alignment. J. Proteome Res. 2018, 17, 2511–2520. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.M.; Yao, R.A. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, N.; Zhang, K.; Zheng, L.; Zhang, D.; Sang, X.; Feng, Y.; Chen, R.; Yang, N.; Wang, X.; et al. Landscapes of Protein Posttranslational Modifications of African Trypanosoma Parasites. iScience 2020, 23, 101074. [Google Scholar] [CrossRef]
- Erben, E.; Leiss, K.; Liu, B.; Gil, D.I.; Helbig, C.; Clayton, C. Insights into the functions and RNA binding of Trypanosoma brucei ZC3H22, RBP9 and DRBD7. Parasitology 2021, 148, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.S.; Jackson, A.P.; Figueiredo, L.M. Evolution of the variant surface glycoprotein family in African trypanosomes. Trends Parasitol. 2021, 38, 23–36. [Google Scholar] [CrossRef]
- Schoijet, A.C.; Sternlieb, T.; Alonso, G.D. The Phosphatidylinositol 3-kinase Class III Complex Containing TcVps15 and TcVps34 Participates in Autophagy in Trypanosoma cruzi. J. Eukaryot. Microbiol. 2017, 64, 308–321. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L.; Wang, X.; Jin, H. RNA-based therapeutics: An overview and prospectus. Cell Death Dis. 2022, 13, 644. [Google Scholar] [CrossRef] [PubMed]
- Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 2022, 38, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Wilks, C.; Antonescu, V.; Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 2019, 35, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, A.R.; Bernhart, S.H.; Lorenz, R. The ViennaRNA Web Services. RNA Bioinform. 2015, 1269, 307–326. [Google Scholar]
- Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE 2018, 13, e0206239. [Google Scholar] [CrossRef]
- Huang, H.Y.; Lin, Y.C.D.; Cui, S.D.; Huang, Y.X.; Tang, Y.; Xu, J.T.; Bao, J.Y.; Li, Y.L.; Wen, J.; Zuo, H.L.; et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022, 50, D222–D230. [Google Scholar] [CrossRef]
- Franz, M.; Lopes, C.T.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape. js: A graph theory library for visualisation and analysis. Bioinformatics 2016, 32, 309–311. [Google Scholar]
- World Health Organization. Sleeping Sickness Elimination Progresses in 2021 Despite COVID-19. 2022. Available online: https://www.who.int/news/item/30-05-2022-sleeping-sickness-elimination-progresses-in-2021-despite-covid-19 (accessed on 16 October 2022).
- Butenko, A.; Kostygov, A.Y.; Sadlova, J.; Kleschenko, Y.; Becvar, T.; Podesvova, L.; Macedo, D.H.; Zihala, D.; Lukes, J.; Bates, P.A.; et al. Comparative genomics of Leishmania (Mundinia). BMC Genom. 2019, 20, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Hu, F. Investigation of gene evolution in vertebrate genome reveals novel insights into spine study. Gene 2018, 679, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Caljon, G.; Mabille, D.; Stijlemans, B.; De Trez, C.; Mazzone, M.; Tacchini-Cottier, F.; Malissen, M.; Van Ginderachter, J.A.; Magez, S.; De Baetselier, P. Neutrophils enhance early Trypanosoma brucei infection onset. Sci. Rep. 2018, 8, 11203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauffert, D.; Silveira, M.F.d.; Mesenburg, M.A.; Manta, A.B.; Dutra, A.d.S.; Bicca, G.L.d.O.; Villela, M.M. Prevalence of Trypanosoma cruzi/HIV coinfection in southern Brazil. Brazilian J. Infect. Dis. 2017, 21, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, E.A.d.; Ramos Júnior, A.N.; Correia, D.; Shikanai-Yasuda, M.A. Co-infection Trypanosoma cruzi/HIV: Systematic review (1980–2010). Rev. Soc. Bras. Med. Trop. 2011, 44, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Dolcini, G.L.; Solana, M.E.; Andreani, G.; Celentano, A.M.; Parodi, L.M.; Donato, A.M.; Elissondo, N.; Gonzalez Cappa, S.M.; Giavedoni, L.D. Trypanosoma cruzi (Chagas’ disease agent) reduces HIV-1 replication in human placenta. Retrovirology 2008, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Sangenito, L.S.; Menna-Barreto, R.F.; Oliveira, A.C.; d’Avila-Levy, C.M.; Branquinha, M.H.; Santos, A.L. Primary evidence of the mechanisms of action of HIV aspartyl peptidase inhibitors on Trypanosoma cruzi trypomastigote forms. Int. J. Antimicrob. Agents 2018, 52, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Garrison, P.; Khan, U.; Cipriano, M.; Bush, P.J.; McDonald, J.; Sur, A.; Myler, P.J.; Smith, T.K.; Hajduk, S.L.; Bangs, J.D. Turnover of Variant Surface Glycoprotein in Trypanosoma brucei Is a Bimodal Process. mBio 2021, 12, e0172521. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, B.A.; Holetz, F.B.; Alves, L.R.; Goldenberg, S. RNA binding proteins and gene expression regulation in Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2020, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmenier, F.M.; Lasheen, D.S.; Abouzid, K.A.M. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur. J. Med. Chem. 2019, 183, 111718. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliminejad, K.; Khorshid, H.R.K.; Fard, S.S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- World Health Organization. Neglected Tropical Diseases. 2022. Available online: https://www.who.int/health-topics/neglected-tropical-diseases (accessed on 16 October 2022).
- Khayer, N.; Mirzaie, M.; Marashi, S.-A.; Jalessi, M. Rps27a might act as a controller of microglia activation in triggering neurodegenerative diseases. PLoS ONE 2020, 15, e0239219. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Q.; Liu, T.; Chang, G.; Sun, Z.; Gao, Z.; Wang, F.; Zhou, H.; Liu, R.; Zheng, M. Host interaction analysis of PA-N155 and PA-N182 in chicken cells reveals an essential role of UBA52 for replication of H5N1 avian influenza virus. Front. Microbiol. 2018, 9, 936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pariona-Llanos, R.; Pavani, R.S.; Reis, M.; Noel, V.; Silber, A.M.; Armelin, H.A.; Cano, M.I.N.; Elias, M.C. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi. PLoS ONE 2015, 10, e0120896. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.; Oganesian, A.; Azab, M.; Griffiths, E.A. Role of cedazuridine/decitabine in the management of myelodysplastic syndrome and chronic myelomonocytic leukemia. Future Oncol. 2021, 17, 2077–2087. [Google Scholar] [CrossRef]
- Chai, J.-Y.; Jung, B.-K.; Hong, S.-J. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: An update. Korean J. Parasitol. 2021, 59, 189. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, M.; Singha, U.K.; Duncan, M.; Chaudhuri, M. Down regulation of Tim50 in Trypanosoma brucei increases tolerance to oxidative stress. Mol. Biochem. Parasitol. 2015, 199, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesías, A.C.; Garg, N.J.; Zago, M.P. Redox balance keepers and possible cell functions managed by redox homeostasis in Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2019, 9, 435. [Google Scholar] [CrossRef]
- Gholizade, M.; Fayazi, J.; Rahimnahal, S. Prediction of MicroRNAs bind to Toll-like Receptors Pathway in Chicken based on Bioinformatics Method. Res. Mol. Med. 2019, 7, 33–42. [Google Scholar] [CrossRef]
- Herrmann, F.C.; Lenz, M.; Jose, J.; Kaiser, M.; Brun, R.; Schmidt, T.J. In silico identification and in vitro activity of novel natural inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphate-dehydrogenase. Molecules 2015, 20, 16154–16169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cáceres, A.J.; Michels, P.A.; Hannaert, V. Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol. Biochem. Parasitol. 2010, 169, 50–54. [Google Scholar] [CrossRef]
Enrichment Term | Category | Description | Count | Percent (%) | p-Value |
---|---|---|---|---|---|
R-HSA-2262752 | Reactome Gene Sets | Cellular responses to stress | 37 | 26.06 | 1.29 × 10−26 |
WP534 | WikiPathways | Glycolysis and gluconeogenesis | 9 | 6.34 | 6.61 × 10−13 |
R-HSA-1852241 | Reactome Gene Sets | Organelle biogenesis and maintenance | 16 | 11.27 | 8.71 × 10−13 |
R-HSA-6798695 | Reactome Gene Sets | Neutrophil degranulation | 18 | 12.68 | 1.48 × 10−11 |
GO:0006886 | GO Biological Processes | intracellular protein transport | 20 | 14.08 | 5.62 × 10−11 |
R-HSA-2132295 | Reactome Gene Sets | MHC class II antigen presentation | 10 | 7.04 | 3.63 × 10−10 |
GO:0010035 | GO Biological Processes | response to inorganic substance | 17 | 11.97 | 4.57 × 10−10 |
GO:0000278 | GO Biological Processes | mitotic cell cycle | 18 | 12.68 | 5.89 × 10−10 |
GO:0006091 | GO Biological Processes | generation of precursor metabolites | 15 | 10.56 | 6.31 × 10−10 |
GO:0045454 | GO Biological Processes | cell redox homeostasis | 6 | 4.23 | 3.24 × 10−8 |
GO:0006107 | GO Biological Processes | oxaloacetate metabolic process | 4 | 2.82 | 5.75 × 10−8 |
WP3888 | WikiPathways | VEGFA-VEGFR2 signaling pathway | 13 | 9.15 | 1.74 × 10−7 |
T. brucei Protein | Identity (%) | BLAST e-Value | Protein Classification | Current Annotation |
---|---|---|---|---|
XP_844715.1 | 99.75 | 0 | Invariant surface glycoprotein | hypothetical protein Tb927.5.410 |
XP_844716.1 | 99.73 | 0 | Invariant surface glycoprotein | hypothetical protein Tb927.5.420 |
XP_951504.1 | 99.68 | 0 | Invariant surface glycoprotein | hypothetical protein Tb927.2.1600 |
XP_823168.1 | 99.6 | 0 | Invariant surface glycoprotein | hypothetical protein Tb10.6k15.0940 |
XP_844736.1 | 99.52 | 0 | Invariant surface glycoprotein | hypothetical protein Tb927.5.620 |
XP_844705.1 | 82.44 | 0 | Invariant surface glycoprotein | hypothetical protein Tb927.5.310 |
XP_846014.1 | 72.34 | 0 | Phosphatidylinositol 3-kinase | hypothetical protein, conserved |
XP_844230.1 | 61.46 | 0 | Phosphatidylinositol 3-kinase | hypothetical protein, conserved |
XP_844782.1 | 100 | 2.0 × 10−174 | RNA-binding protein | hypothetical protein, conserved |
XP_844136.1 | 100 | 0 | RNA-binding protein | hypothetical protein, conserved |
XP_845741.1 | 100 | 3.0 × 10−113 | RNA-binding protein | hypothetical protein, conserved |
XP_828127.1 | 100 | 0 | RNA-binding protein | hypothetical protein, conserved |
XP_823405.1 | 100 | 3.0 × 10−163 | RNA-binding protein | hypothetical protein, conserved |
XP_843699.1 | 100 | 0 | RNA-binding protein | hypothetical protein, conserved |
XP_844884.1 | 100 | 0 | RNA-binding protein | hypothetical protein, conserved |
XP_845763.1 | 100 | 4.0 × 10−130 | RNA-binding protein | hypothetical protein, conserved |
XP_827049.1 | 100 | 3.0 × 10−100 | RNA-binding protein | uncharacterized protein Tb09.160.5020 |
XP_827838.1 | 100 | 0 | RNA-binding protein | uncharacterized protein Tb10.05.0260 |
XP_829716.1 | 100 | 0 | RNA-binding protein | uncharacterized protein Tb11.01.8310 |
XP_828145.1 | 100 | 1.0 × 10−145 | RNA-binding protein | uncharacterized protein Tb11.03.0550 |
XP_827481.1 | 99.64 | 0 | RNA-binding protein | hypothetical protein, conserved |
XP_843794.1 | 99.54 | 2.0 × 10−161 | RNA-binding protein | hypothetical protein, conserved |
XP_823414.1 | 81.98 | 2.0 × 10−66 | RNA-binding protein | uncharacterized protein Tb10.389.1650 |
XP_829659.1 | 73.57 | 0 | RNA-binding protein | uncharacterized protein Tb11.01.7680 |
XP_823415.1 | 71.19 | 2.0 × 10−55 | RNA-binding protein | uncharacterized protein Tb10.389.1640 |
XP_844504.1 | 67.58 | 2.0 × 10−161 | RNA-binding protein | hypothetical protein, conserved |
XP_827841.1 | 100 | 0 | RNA-binding protein 27 | uncharacterized protein Tb10.05.0020 |
XP_827855.1 | 100 | 0 | RNA-binding protein 29 | uncharacterized protein Tb10.61.3200 |
XP_828416.1 | 100 | 0 | RNA-binding protein 34 | hypothetical protein, conserved |
XP_828660.1 | 99.79 | 0 | RNA-binding protein 38 | uncharacterized protein Tb11.02.3610 |
XP_845561.1 | 100 | 0 | RNA-binding protein 42 | hypothetical protein, conserved |
XP_829150.1 | 63.05 | 0 | RNA-binding protein NOB1 | hypothetical protein, conserved |
No. | TBR miRNA | miRNA Sequence | Length | EST Accession | Mismatch |
---|---|---|---|---|---|
1 | tbr-miR-466i-5p | TGTGTGTGTGTGTGTGTGTG | 20 | W04105.1 | 0 |
2 | tbr-miR-1277-5p | TATATATATATATGTACGTAT | 21 | AI215308.1 | 1 |
3 | tbr-miR-1599 | GGAGGGAGGAAAAAAAAAAA | 20 | W06624.1 | 1 |
4 | tbr-miR-2444 | TTTGTGTTGTTTTTTGTTTT | 20 | AI510924.1 | 1 |
5 | tbr-miR-2491-3p | CAACAACAGCAGCAGCAA | 18 | AA114338.1 | 1 |
6 | tbr-miR-3613 | TGTTGTACTTTTTTTTTTGT | 20 | AI510925.1 | 1 |
7 | tbr-miR-3960 | GGCGGCGGCGGAGGCGGGGG | 20 | BE040956.1 | 1 |
8 | tbr-miR-4171-5p | TGACTCTCTTAAGGAAGCCA | 20 | AJ234107.1 | 1 |
9 | tbr-miR-466f-3p | CATACACACACACATACACAC | 21 | AA689173.1 | 1 |
10 | tbr-miR-467g | TATACATACACACACATATAT | 21 | AI707381.1 | 1 |
11 | tbr-miR-551-3p | GCGACCCATACTTGGTTTCA | 20 | BU792216.1 | 1 |
12 | tbr-miR-551b-3p | GCGACCCATACTTGGTTTCA | 20 | BU792216.1 | 1 |
13 | tbr-miR-626 | AGCTGTCTGAAAATGTCTT | 19 | AA736241.1 | 1 |
14 | tbr-miR-752-3p | AGTCAGCATTGGTGGTTT | 18 | AA843025.1 | 1 |
15 | tbr-miR-8406-3p | TTTTCTTAAGATTTATTTTG | 20 | W40052.1 | 1 |
16 | tbr-miR-8485 | CACACACACACACACACGTAT | 21 | W04025.1 | 1 |
17 | tbr-miR-10400-5p | CGGCGGCGGCGGCTCTGGGCG | 21 | CO724197.1 | 2 |
18 | tbr-miR-1306-3p | ACGTTGGCTCTGGTGGTG | 18 | DR752331.1 | 2 |
19 | tbr-miR-3155b | CCAGGCTCTGCAGTGGGA | 18 | AI374163.1 | 2 |
20 | tbr-miR-3613-5p | TGTTGTACTTTTTTTTTTGTTC | 22 | AI510925.1 | 2 |
21 | tbr-miR-4308 | TCCCTGGAGTTTCTTCTT | 18 | W84094.1 | 2 |
22 | tbr-miR-4418 | CACTGCAGGACTCAGCAG | 18 | T26203.1 | 2 |
23 | tbr-miR-4472 | GGTGGGGGGTGTTGTTTT | 18 | AI215262.1 | 2 |
24 | tbr-miR-4711-3p | CGTGTCTTCTGGCTTGAT | 18 | AA003459.1 | 2 |
25 | tbr-miR-574-5p | TGAGTGTGTGTGTGTGAGTGTGT | 23 | N99275.1 | 2 |
26 | tbr-miR-6126 | GTGAAGGCCCGGCGGAGA | 18 | W06685.1 | 2 |
TBR miRNA | Mammal | Non-Mammal | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
hsa | mmu | bta | cpo | ssc | gga | sma | sme | tch | dme | cli | cin | |
miR-10400-5p | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-1277-5p | YES | - | - | YES | - | - | - | - | YES | - | - | - |
miR-1306-3p | YES | YES | - | - | YES | YES | - | - | YES | - | YES | - |
miR-1599 | - | - | - | - | - | YES | - | - | - | - | - | - |
miR-2444 | - | - | YES | - | - | - | - | - | - | - | - | - |
miR-2491-3p | - | - | - | - | - | - | - | - | - | YES | - | - |
miR-3155b | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-3613 | - | - | - | - | YES | - | - | - | - | - | - | - |
miR-3613-5p | YES | - | - | YES | - | - | - | - | - | - | - | - |
miR-3960 | YES | YES | - | - | - | - | - | - | - | - | - | - |
miR-4171-5p | - | - | - | - | - | - | - | - | - | - | - | YES |
miR-4308 | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-4418 | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-4472 | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-466f-3p | - | YES | - | - | - | - | - | - | - | - | - | - |
miR-466i-5p | - | YES | - | - | - | - | - | - | - | - | - | - |
miR-467g | - | YES | - | - | - | - | - | - | - | - | - | - |
miR-4711-3p | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-551-3p | - | - | - | YES | - | YES | - | - | - | - | - | - |
miR-551b-3p | YES | YES | - | - | - | - | - | - | - | - | YES | - |
miR-574-5p | YES | YES | - | YES | YES | - | - | - | - | - | - | - |
miR-6126 | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-626 | YES | - | - | - | - | - | - | - | - | - | - | - |
miR-752-3p | - | - | - | - | - | - | - | YES | - | - | - | - |
miR-8406-3p | - | - | - | - | - | - | YES | - | - | - | - | - |
miR-8485 | YES | - | - | - | - | - | - | - | - | - | - | - |
No. | T. Brucei Accession | T. Brucei Protein | Predicted Drug | Accession | Chemical Formula |
---|---|---|---|---|---|
1 | XP_827176.1 | Adenylate kinase | Decitabine | DB01262 | C8H12N4O4 |
2 | XP_822929.1 | Glyceraldehyde 3-phosphate dehydrogenase | D-glyceraldehyde 3-phosphate | DB02263 | C3H7O6P |
3 | XP_951525.1 | Small GTP-binding protein RAB6 | Guanosine-5′-Diphosphate | DB04315 | C10H15N5O11P2 |
4 | XP_846100.1 | Cyclophilin-type peptidyl-prolyl isomerase | 1,4-Dithiothreitol | DB04447 | C4H10O2S2 |
5 | XP_829056.1 | Polyubiquitin | N-Formylmethionine | DB04464 | C6H11NO3S |
6 | XP_001218940.1 | Alpha tubulin | Mebendazole | DB00643 | C16H13N3O3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Shi, M.; Zhang, X.; Yao, D. Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite–Host Interactions in Trypanosoma brucei. Insects 2022, 13, 968. https://doi.org/10.3390/insects13110968
Yang Z, Shi M, Zhang X, Yao D. Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite–Host Interactions in Trypanosoma brucei. Insects. 2022; 13(11):968. https://doi.org/10.3390/insects13110968
Chicago/Turabian StyleYang, Zhiyuan, Mai Shi, Xiaoli Zhang, and Danyu Yao. 2022. "Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite–Host Interactions in Trypanosoma brucei" Insects 13, no. 11: 968. https://doi.org/10.3390/insects13110968
APA StyleYang, Z., Shi, M., Zhang, X., & Yao, D. (2022). Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite–Host Interactions in Trypanosoma brucei. Insects, 13(11), 968. https://doi.org/10.3390/insects13110968