Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change
Abstract
:Simple Summary
Abstract
1. Introduction
2. Emergence and Distribution of Fall Armyworm
3. Effects of Temperature on Phenology
3.1. Life Cycle of Fall Armyworm
3.2. Effects of Temperature on the Host Plants Selection
3.3. Effects of Temperature on Flight Performance
4. Effect of Temperature on the Biological Agents as Representation
5. Temperature Tolerance and Regulating Genes
6. Management Strategies in the Background of Global Warming
6.1. Monitoring and Early Warning
6.2. Suitable Cropping System
6.3. Use of Biological Control
7. Conclusions
- Paying close attention to global climatic change, developing international cooperation and improving capacities of forecasting and surveillance, making efforts for controlling the FAW globally;
- Multiple factors including limits of natural enemies and host plants need to be considered when assessing the effects of temperature on the FAW’s dynamics, putting together a wider context. Additionally, abiotic factors such as precipitation might alter relative humidity and is likely to affect important physiological functions, e.g., reproduction, which indirectly affects the direct effect of temperature on the FAW;
- The occurrence of the FAW around the world will be normal and long-term prevention and control strategies should be adopted in annual breeding areas. Information about long-term FAW population-level variation to global climatic change is scarce, so this context should be further strengthened.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Broufas, G.D.; Pappas, M.L.; Koveos, D.S. Effect of Relative Humidity on Longevity, Ovarian Maturation, and Egg Production in the Olive Fruit Fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2009, 1, 70–75. [Google Scholar] [CrossRef]
- Arora, R.; Dhawan, A. Integrated Pest Management; Scientific Publisher: Rajasthan, India, 2013. [Google Scholar]
- Forster, J.; Hirst, A.G.; Woodward, A.G. Growth and development rates have different thermal responses. Am. Nat. 2011, 178, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.Y. General Entomology; China Agriculture Press: Beijing, China, 1996; Volume 78–82, pp. 352–362. [Google Scholar]
- Stinner, R.E.; Butler, G.D.; Bacheler, J.S.; Tutle, C. Simulation of temperature dependent development in population dynamics models. Can. Entomol. 1975, 107, 1167–1174. [Google Scholar] [CrossRef]
- Logan, J.A.; Wollkind, D.J.; Hoyt, S.C.; Tanigoshi, L.K. An analytic model for description of temperature dependent rate phenomena in Arthropods. Environ. Entomol. 1976, 5, 1133–1140. [Google Scholar] [CrossRef]
- Sharpe, P.J.H.; Demichele, D.W. Reaction kinetics of poikilotherm development. J. Theor. Biol. 1977, 64, 649–670. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Furlong, M.J. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bioclimatic based modelling approach. Insect Sci. 2005, 12, 45–56. [Google Scholar] [CrossRef]
- Fonseca-Medrano, M.; Specht, A.; Macena, F.; Otanasio, P.N.D. The population dynamics of three polyphagous owlet moths (Lepidoptera: Noctuidae) and the influence of meteorological factors and ENSO on them. Rev. Bras. Entomol. 2019, 63, 308–315. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Hunt, T. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–301. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2018, 35, 1–9. [Google Scholar] [CrossRef]
- Dai, R.X.; Xu, W.P. Potential forecast of maize yield increase in China. Agr. Outlook 2022, 18, 41–49. [Google Scholar]
- National Agro-Tech Extension and Service Center. Prediction of the occurrence trend of Spodoptera frugiperda in spring. Agrochemicals 2022, 61, 373. [Google Scholar]
- Feeny, P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter mothcaterpillars. Ecology 1970, 51, 565–581. [Google Scholar] [CrossRef]
- MacLean, S.F. Life cycles and the distribution of psyllids (Homoptera) in arctic and subarctic Alaska. Oikos 1983, 40, 445–451. [Google Scholar] [CrossRef]
- Luginbill, P. The fall armyworm. USDA Tech. Bull. 1928, 34, 92. [Google Scholar]
- Smith, J.E.; Abbott, J. The Natural History of the Rarer Lepidopterous Insects of Georgia Including Their Systematic Characters, the Particulars of Their Several Metamorphoses, and the Plants on Which They Feed; Collected from the Observation of Mr. John Abbot, Many years Resident in That Country; The Lepidopterists’ News: London, UK, 1797. [Google Scholar]
- Glover, T. Insects Frequenting the Cotton-Plant; U. S. Commissioner of Patents for the Year 1855. Agriculture; Cornelius Wendell, Printer: Washington, DC, USA, 1856; pp. 64–115. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm (J. E. Smith) (Lepidoptera: Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhao, J.Z.; He, K.L.; Zhang, F.; Wang, Z.Y. Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China. Plant Prot. 2018, 44, 1–10. [Google Scholar]
- Sharanabasappa; Kalleshwaraswamy, C.M.; Asokan, R.; Swamy, H.M.M.; Maruthi, M.S.; Pavithra, H.B.; Hegbe, K.; Navi, S.; Prabhu, S.T.; Goergen, G.E. First report of the fall armyworm (J. E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Farmer, B. Fall Armyworm Marches on Aspest That Devastated African Crops Spreads in Asia. The Telegraph. 2019. Available online: https://www.telegraph.co.uk/global-health/climate-and-people/fall-armyworm-marches-pest-devastated-african-crops-spreads/ (accessed on 25 September 2022).
- Jiang, Y.Y.; Liu, J.; Xie, M.C.; Li, Y.H.; Yang, J.J.; Zhang, M.L.; Qiu, K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Prot. 2019, 45, 10–19. [Google Scholar]
- Wu, Q.L.; Jiang, Y.Y.; Wu, K.M. Analysis of migration routes of the fall armyworm Spodoptera frugiperda (J. E. Smith) from Myanmar to China. Plant Prot. 2019, 45, 1–6+18. [Google Scholar]
- Yan, W.J.; Yang, S.; Wang, Y.Q.; Zheng, Q.; Zhang, Z.X.; Xu, H.H. Comparison of the effectiveness of chemical and biological agents for the emergency control of Spodoptera frugiperda in the field. J. Appl. Entomol. 2019, 56, 788–792. [Google Scholar]
- Zhang, L.; Liu, B.; Jiang, Y.Y.; Liu, J.; Wu, K.M.; Xiao, Y.T. Molecular characterization analysis of fall armyworm populations in China. Plant Prot. 2019, 45, 20–27. [Google Scholar]
- Jing, D.P.; Guo, J.F.; Jiang, Y.Y.; Zhao, J.Z.; Sethi, A.; He, K.L.; Wang, Z.Y. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci. 2020, 27, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, Q.; Zhang, Y.H.; Liu, J.; Yin, X.T.; Tang, Q.B.; Li, J.; Yuan, Y.; Li, X.R.; Zhu, X. Cold hardiness of laboratory populations of Spodoptera frugiperda. Plant Prot. 2019, 45, 43–49. [Google Scholar]
- Xie, M.H.; Zhong, Y.Z.; Chen, H.L.; Lin, L.L.; Zhang, G.L.; Xu, L.N.; Wang, Z.Y.; Zhang, J.P.; Zhang, F.; Su, W.H. Otential overwintering ability of fall armyworm (J. E. Smith) in Anhui province. Plant Prot. 2020, 46, 236–241. [Google Scholar]
- Zhang, D.D.; Zhao, S.Y.; Wu, Q.L.; Yan, L.Y.; Wu, K.M. Cold hardiness of the invasive fall armyworm, in China. J. Integr. Agr. 2020, 19, 2–9. [Google Scholar]
- Jiang, Y.Y.; Liu, J.; Wu, Q.L.; Ci, R.Z.G.; Zeng, J. Investigation on winter breeding and overwintering areas of Spodoptera frugiperda in China. Plant Protect. 2021, 47, 212–217. [Google Scholar]
- Westbrook, J.K.; Nagoshi, R.N.; Meagher, R.L.; Fleischer, S.J.; Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 2016, 60, 255–267. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Mclnerny, G.; O’Hara, K.; Harper, R.; Salido, L.; Emmott, S.; Joppa, L.N. Scientists and software-surveying the species distribution modeling community. Divers. Distrib. 2015, 21, 258–267. [Google Scholar] [CrossRef]
- Zacarias, D.A. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenario. Clim. Chang. 2020, 161, 555–566. [Google Scholar] [CrossRef]
- Ramasamy, M.; Das, B.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2021, 95, 841–854. [Google Scholar] [CrossRef]
- Lin, W.; Xu, M.F.; Quan, Y.B.; Liao, L.; Gao, L. Potential geographic distribution of Spodoptera frugiperda in China based on MaxEnt model. Plant Quar. 2019, 33, 69–73. [Google Scholar]
- Qin, Y.J.; Lan, S.; Zhao, Z.H.; Sun, H.Y.; Zhu, X.M.; Yang, P.Y.; Li, Z.H. Potential geographical distribution of the fall armyworm in China. Plant Protect. 2019, 45, 43–47+60. [Google Scholar]
- Wang, R.L.; Jiang, C.X.; Guo, X.; Chen, D.D.; You, C.; Zhang, Y.; Wang, M.T.; Li, Q. Potential distribution of (J. E. Smith) in China and the major factors influencing distribution. Glob. Ecol. Conserv. 2020, 21, e00865. [Google Scholar] [CrossRef]
- Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Zhang, H.T.; Luo, D.; Mu, X.D.; Xu, M.; Wei, H.; Luo, J.R.; Zhang, J.E.; Hu, Y.C. Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models. Chin. J. Appl. Ecol. 2016, 27, 1277–1284. [Google Scholar]
- Urbani, F.; D’Alessandro, P.; Biondi, M. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bull. Insectol. 2017, 70, 189–200. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Garcia, A.G.; Ferreira, C.P.; Godoy, W.A.C.; Meagher, R.L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest Sci. 2019, 92, 429–441. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Huesing, J.E.; Eddy, R.; Peschke, V.M. Fall Armyworm in Africa: A Guide for Integrated Pest Management; CAB International: Wallingford, UK, 2018. [Google Scholar]
- Capinera, L.J. Fall armyworm, S. frugiperda (J. E. Smith) (Insecta: Lepidoptera: Noctuidae); Featured Creatures from the Entomology and Nematology Department, University of Florida. Publication No. EENY-98; UF/IFAS Extension: Gainesville, FL, USA, 1999. [Google Scholar]
- Simmons, A.M. Effects of constant and fluctuating temperatures and humidities on the survival of pupae (Lepidoptera: Noctuidae). Fla. Entomol. 1993, 76, 333–340. [Google Scholar] [CrossRef]
- Walton, W.R.; Luginbill, P. The Fall Armyworm or “Grass Worm”, and Its Control; U.S. Dept. of Agriculture, Farmers’ Bulletins: Washington, DC, USA, 1916; Volume 752, p. 16. [Google Scholar]
- Ashok, K.V.; Balasubramani, J.S.; Kennedy, V.; Geethalakshmi, P.; Jeyakumar, N.; Sathiah. Effect of elevated temperature on the population dynamics of fall armyworm. J. Environ. Biol. 2021, 42, 1098–1105. [Google Scholar] [CrossRef]
- Lu, Z.H.; He, S.Q.; Yan, N.S.; Zhao, W.J.; Yao, W.F.; Chen, Y.P.; Yang, T.; Jiang, Y.Y.; Gui, F.R. Effects of temperatures on the development and reproduction of fall armyworm (Spodoptera frugiperda Smith). Plant Protect. 2019, 45, 27–31+53. [Google Scholar]
- Plessis, H.D.; Schlemmer, M.L.; Berg, J.V.D. The Effect of Temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Yin, Y.Q.; Zhao, X.Q.; Li, X.Y.; Wang, Y.; Liu, Y.; Chen, F.S.; Sheng, A.D. The growth and development characteristics of Spodoptera frugiperda under different temperature conditions. Environ. Entomol. 2020, 42, 52–59. [Google Scholar]
- Kebede, M. Outbreak, distribution and management of fall armyworm, J.E. Smith in Africa: The status and prospects. Acad. Agric. J. 2018, 3, 551–568. [Google Scholar]
- Sparks, A.N. A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- Wang, L.; Chen, K.W.; Zhong, G.H.; Xian, J.D.; Lu, Y.Y. Progress for occurrence and management and the strategy of the fall armyworm Spodoptera frugiperda (Smith). J. Environ. Entomol. 2019, 41, 479–487. [Google Scholar]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Dell, D.; Sparks, T.H.; Dennis, R.L.H. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 2005, 102, 161–167. [Google Scholar] [CrossRef]
- Forrest, J.R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Sibly, R.M.; Atkinson, D. How rearing temperature affects optimal adult size in ectotherms. Funct. Ecol. 1994, 8, 486–493. [Google Scholar] [CrossRef]
- Díaz-lvarez, E.A.; Martínez-Zavaleta, J.P.; López-Santiz, E.E.; Barrera, E.D.L.; Larsen, J.; Del-Val, E. Climate change can trigger fall armyworm outbreaks: A developmentals response experiment with two Mexican maize landraces. Int. J. Pest Manag. 2021. [Google Scholar] [CrossRef]
- Vickery, R.A. Studies on the fall army worm in the Gulf coast district of Texas. USDA Tech. Bull. 1929, 138, 10–64. [Google Scholar]
- Isenhour, D.J.; Wiseman, B.R.; Widstrom, N.W. Fall Armyworm (Lepidoptera: Noctuidae) Feeding Responses on Corn Foliage and Foliage/Artificial Diet Medium Mixtures at Different Temperatures. J. Econ. Entomol. 1985, 78, 328–332. [Google Scholar] [CrossRef]
- Foster, R.E.; Cherry, R.H. Survival of fall Armyworm, Spodoptera frugiperda, (Lepidoptera: Noctuidae) exposed to cold temperatures. Fla. Entomol. 1987, 70, 419–422. [Google Scholar] [CrossRef]
- Xie, D.J.; Zhang, L.; Cheng, Y.X.; Jiang, Y.Y.; Liu, J.; Jiang, X.F. Effects of temperature on flight capacity of the fall armyworm, Spodoptera frugiperda. Plant Protect. 2019, 45, 13–17. [Google Scholar]
- Zhang, H.M.; Wang, Y.; Yin, Y.Q.; Li, X.Y.; Chen, F.S.; Shen, A.D. Effects of shorts-term high temperature in egg and pupal stages on the growth and development of fall armyworm Spodoptera frugiperda. J. Plant Protect. 2020, 47, 831–838. [Google Scholar]
- Jeffs, C.T.; Leather, S.R. Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobionavenae. Entomol. Exp. Appl. 2014, 150, 240–249. [Google Scholar] [CrossRef]
- Chiu; Kuo, J.J.; Kuo, M.H. Stage-dependent effects of experimental heat waves on an insect herbivore. Ecol. Entomol. 2015, 40, 175–181. [Google Scholar] [CrossRef]
- Bürgi, L.P.; Mills, N.J. Ecologically relevant measures of the physiological tolerance of light brown apple moth, Epiphyas postvittana, to high temperature extremes. J. Insect Physiol. 2012, 58, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.G.; Li, Z.H.; Wan, F.H. Effects of brief exposure to high temperature on survival and reproductive adaptation of Bemisia tabaci Q-biotype. Chin. Bull. Entomol. 2010, 47, 1141–1144. [Google Scholar]
- Xiang, Y.Y.; Dai, R.T. Effects of brief exposure to high temperature on the survival and reproduction of Oryzaephilus surinamensis (Linnaeus) during the storage period of Lonicera japonica Thunb. Chin. J. Appl. Entomol. 2016, 53, 802–808. [Google Scholar]
- Milano, P.; Filho, E.B.; Parra, J.R.P.; Cônsoli, F.L. Temperature effects on the mating frequency of Anticarsia gemmatalis Hüebner and (J. E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol. 2008, 37, 528–535. [Google Scholar] [CrossRef]
- Simmons, A.M.; Marti, O.G. Mating by the Fall Armyworm (Lepidoptera: Noctuidae): Frequency, Duration, and Effect of Temperature. Environ. Entomol. 1992, 21, 371–375. [Google Scholar] [CrossRef]
- Pitre, H.N.; Hogg, D.B. Development of the fall armyworm on cotton, soybean and corn. J. Ga. Entomol. Soc. 1982, 18, 182–187. [Google Scholar]
- Ali, A.; Luttrell, R.G.; Schneider, J.C. Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1990, 83, 725–733. [Google Scholar] [CrossRef]
- Pashley, D.P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Ann. Entomol. Soc. Am. 1986, 79, 898–904. [Google Scholar] [CrossRef]
- Dumas, P.; Legeai, F.; Lemaitre, C.; Scaon, E.; Orsucci, M.; Labadie, K.; Gimenez, S.; Clamens., A.; Henri., H.; Vavre, F. (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species? Genetica 2015, 143, 305–316. [Google Scholar] [CrossRef]
- Busato, G.R.; Grützmacher, A.D.; Garcia, M.S.; Giolo, F.P.; Zotti, M.J.; Bandeira, J.D.M. Exigências térmicas estimative do número de gerações dos biótipos “milho” e “arroz” de Spodoptera frugiperda. Pesqui. Agropecu. Bras. 2005, 40, 329–335. [Google Scholar] [CrossRef]
- Canas-Hoyos, N.; Márquez, E.J.; Saldamando-Benjumea, C.I. Heritability of wing size and shape of the rice and corn strains of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol. 2016, 45, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.P.; Martin, J.A. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1987, 80, 731–733. [Google Scholar] [CrossRef]
- Schofl, G.; Heckel, D.G.; Groot, A.T. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. J. Evolution. Biol. 2010, 22, 1447–1459. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Esteban, S.; Rojas, J.C.; Sánchez-Guillén, D.; Cruz-López, L.; Malo, E.A. Geographic variation in pheromone component ratio and antennal responses, but not in attraction, to sex pheromones among fall armyworm populations infesting corn in Mexico. J. Pest Sci. 2018, 91, 973–983. [Google Scholar] [CrossRef]
- Wu, Q.L.; Jiang, Y.Y.; Hu, G.; Wu, K.M. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China. Plant Protect. 2019, 45, 1–9. [Google Scholar]
- Li, X.J.; Wu, M.F.; Ma, J.; Gao, B.Y.; Wu, Q.L.; Chen, A.D.; Liu, J.; Jiang, Y.Y.; Zhai, B.P.; Early, R.; et al. Prediction of migratory routes of the invasion fall armyworm in eastern China using a trajectory analytical approach. Pest Manag. Sci. 2020, 76, 454–463. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.P.; Wu, M.F.; Gao, B.Y.; Liu, J.; Lee, G.S.; Otuka, A.; Hu, G. High risk of the fall armyworm invading Japan and the Korran Peninsula via overseas migration. J. Appl. Entomol. 2019, 143, 911–920. [Google Scholar] [CrossRef]
- Rankin, M.A.; Burchsted, J.C.A. The cost of migration in insects. Ann. Rev. Entomol. 1992, 37, 533–559. [Google Scholar] [CrossRef]
- Westbrook, J.K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 2007, 48, 99–106. [Google Scholar] [CrossRef]
- Gao, Y.B.; Sun, Y.J.; Zhang, Q.; Sun, W.; Zhou, J.C. The spring migration behavior of the oriental armyworm, Mythimna separata, in northeastern China. J. Appl. Entomol. 2014, 51, 906–913. [Google Scholar]
- Riley, J.R.; Cheng, X.N.; Zhang, X.X.; Reynolds, D.R.; Xu, G.M.; Smith, A.D.; Cheng, J.Y.; Bao, A.D.; Zhai, B.P. The long-distance migration of Nilaparvata lugens (Stål) (Delphacidae) in China: Radar observations of mass return flight in the autumn. Ecol. Entomol. 1991, 16, 471–489. [Google Scholar] [CrossRef]
- Keosentse, O.; Mutamiswa, R.; Du Plessis, H.; Nyamukondiwa, C. Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: Implications for overwintering. Austral Entomol. 2021, 60, 400–410. [Google Scholar] [CrossRef]
- Early, R.; Gonzalez, M.P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal pest, the fall armyworm. NeoBiota 2018, 40, 25–50. [Google Scholar] [CrossRef]
- Ge, S.S.; He, L.M.; He, W.; Yan, R.; Wyckhuys, K.A.G.; Wu, K.M. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agr. 2021, 20, 707–714. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Huang, L.; Xu, C.F.; Li, J.H.; Wang, F.Y.; Cheng, W.; Gao, B.Y.; Chapman, J.W.; Hu, G. Flight capability and the low temperature threshold of a Chinese field population of the fall armyworm. Insects 2022, 13, 422. [Google Scholar] [CrossRef]
- Yang, P.Y.; Zhu, X.M.; Guo, J.F.; Wang, Z.Y. Strategy and advice for managing the fall armyworm in China. Plant Protect. 2019, 45, 1–6. [Google Scholar]
- Chen, W.B.; Li, Y.Y.; Wang, M.Q.; Liu, C.X.; Mao, J.J.; Chen, H.Y.; Zhang, L.S. Natural enemy insect resources of the fall armyworm Spodoptera frugiperda, their application status, and existing problems and suggestions. Chin. J. Biol. Control 2019, 34, 658–673. [Google Scholar]
- Chen, W.B.; Li, Y.Y.; Wang, M.Q.; Liu, C.X.; Mao, J.J.; Chen, H.Y.; Zhang, L.S. Entomopathogen resources of the fall armyworm Spodoptera frugiperda, and their application status. Plant Protect. 2019, 45, 1–9+19. [Google Scholar]
- Parra, J.R.P.; Zucchi, R.A.; Neto, S.S. Biological control of pests through egg parasitoids of the genus Trichogramma and/or Trichogrammatoidea. Memórias Inst. Oswaldo Cruz 1987, 82, 153–160. [Google Scholar] [CrossRef]
- Wengrat, A.P.; Coelho Junior, A.; Parra, J.R.P.; Takahashi, T.A.; Foerster, L.A.; Corrêa, A.S.; Polaszek, A.; Johnson, N.F.; Costa, V.A.; Zucchi, R.A. Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil. Sci. Rep. 2021, 11, 14110. [Google Scholar] [CrossRef] [PubMed]
- Colmenarez, Y.C.; Babendreier, D.; Wurst, F.R.F.; Vásquez-Freytez, C.L.; Bueno, A.D.F. The use of Telenomus remus (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of Spodoptera spp. potential, challenges and major benefits. CABI Agric. Biosci. 2022, 3, 5. [Google Scholar] [CrossRef]
- Bueno, R.C.O.F.; Carneiro, T.R.; Pratissoli, D.; Bueno, A.F.; Fernandes, O.A. Biology and thermal requirements of Telenomus remus reared on fall armyworm Spodoptera frugiperda eggs. St. Maria 2008, 38, 1–6. [Google Scholar] [CrossRef]
- Bueno, R.C.O.F.; Bueno, A.F.; Parra, J.R.P.; Vieira, S.; Oliveira, L.J. Biological characteristics and parasitism capacity of Trichogramma pretiosum Riley (Hymenoptera, Trichogrammatidae) on eggs of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae). Rev. Bras. Entomol. 2010, 54, 322–327. [Google Scholar] [CrossRef]
- Pomari, A.F.; Bueno, A.D.F.; Bueno, R.C.O.D.F.; Junior, A.D.O.M. Biological Characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2012, 105, 73–81. [Google Scholar] [CrossRef]
- Grande, M.L.M.; Queiroz, A.P.; Gonçalves, J.; Hayashida, R.; Ventura, U.M.; Bueno, A.F. Impact of environmental variables on parasitism and emergence of Trichogramma pretiosum, Telenomus remus and Telenomus podisi. Neotrop. Entomol. 2021, 50, 605–614. [Google Scholar] [CrossRef]
- Schwartz, A.; Gerling, D. Adult biology of Telenomus remus (Hymenoptera: Scelionidae) under laboratory conditions. Entomophaga 1974, 19, 482–492. [Google Scholar] [CrossRef]
- Van Welzen, C.R.L.; Waage, J.K. Adaptive responses to local mate competition by parasitoid, Telenomus remus. Behav. Ecol. Sociobiol. 1987, 21, 359–363. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Peng, Z.Q.; Lu, Y.Y.; Xian, J.D. Functional response of Eocanthecona furcellate (Wolff) on Spodoptera frugiperda (Smith) larvae at different temperatures. J. Environ. Entomol. 2022, 44, 273–280. [Google Scholar]
- Zhao, X.Q.; Liu, Y.; Shi, W.P.; Li, X.Y.; Wang, Y.; Yin, Y.Q.; Zhang, H.M.; Chen, F.S.; Zhang, H.Y.; Liu, X.G.; et al. Predatory effect of Orius sauteri on Spodoptera frugiperda larvae. Plant Protect. 2019, 45, 79–83. [Google Scholar]
- FAO. Integrated Management of the Fall Armyworm on Maize; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Siebert, M.W.; Babock1, J.M.; Nolting, S.; Santos, A.C.; Adamczyk, J.J., Jr.; Neese, P.A.; King, J.E.; Jenkins, J.N.; Mccarty, J.; Lorenz, G.M. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 2008, 91, 555–565. [Google Scholar]
- Oliveira, R.S.D.; Oliveiraneto, O.B.; Moura, H.F.N.; Macedo, L.L.P.D.; Arraes, F.B.M.; Lucena, W.A.; Lourenco-Tessutti, I.T.; Barbosa, A.A.D.D.; Silva, M.C.M.D.; Grossi-de-Sa, M.F. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm and cotton boll weevil (Anthonomus grandis). Front. Plant Sci. 2016, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.Y.; Zhang, Y.P.; Xue, Z.H.; Wang, Y.H.; Huang, S.H.; Lv, L.H. Isolation and identification of a Beauveria bassiana isolate and its pathogenicity to Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Environ. Entomol. 2020, 42, 593–601. [Google Scholar]
- Li, J.; Yang, L.; Zhao, Y.M.; He, Y.N.; He, M.; Wu, Z.L.; Dai, Y.H. Screening test of 8 fungicides against Spodoptera frugiperda in maize in Hongta District of Yuxi City. Buoetin Agric. Sci. Technol. 2021, 8, 79–80. [Google Scholar]
- Yang, Z.R.; Chai, K.R.; Mei, G.Z.; Dai, J.T. Field trial of Metarhizium anisopliae CQMa421 mixed with other fungicides against fall armyworm. Hubei Plant Protect. 2021, 3, 17–19. [Google Scholar]
- Yu, Y.H.; Long, X.Z.; Zeng, X.R.; Wei, D.W.; Zeng, T. Biological characteristics of a strain of Metarhizium that is highly pathogenic to Dorysthenes granulosus. Chin. J. Appl. Entomol. 2014, 51, 73–79. [Google Scholar]
- Shi, W.P.; Li, A.M.; Shi, Y.J.; Shen, J. Effects on entomopathogens on host behavior. Acta Microbiol. Sin. 2018, 58, 1049–1063. [Google Scholar]
- Hou, Y.; Xia, Y.F.; Xu, J.Q.; Liu, F.F.; Lin, X.M.; Du, S.F. Identification and biological characteristics of a Metarhizium strain and its virulence again oriental migratory locust. Chin. J. Biol. Contr. 2015, 31, 333–339. [Google Scholar]
- Huang, P.; Yao, J.A.; Yu, D.Y. Biological characteristics of Metarhizium anisopliae FM-03 and its infection against Planococcus citri. Chin. J. Biol. Control 2018, 34, 858–865. [Google Scholar]
- Aizawa, K. The Nature of Infections Caused by Nuclear-Polyhedrosis Viruses; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Remillet, M.; Silvain, J.F. Noctuidonema guyanense n. g., n. sp. (Nematoda: Aphelenchoidi-dae) ectoparasite de noctuelles du genre Spodoptera (Lepidoptera: Noctuidae). Rev. Nematol. 1988, 11, 21–24. [Google Scholar]
- Simmons, A.M.; Rogers, C.E. Temperature and humidity effects on Noctuidonema (Nematoda: Aphelenchoididae), an ectoparasite of adult (Lepidoptera: Noctuidae), and transfer success during host mating. Ann. Entomol. Soc. Am. 1990, 6, 1084–1087. [Google Scholar] [CrossRef]
- Randall, M.G.M. The dynamics of an insect population throughout its altitudinal distribution: Coleophora alticolella (Lepidoptera) in northern England. J. Anim. Ecol. 1982, 51, 993–1016. [Google Scholar] [CrossRef]
- Kang, L.; Chen, B.; Wei, J.N.; Liu, T.X. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Ann. Rev. Entomol. 2009, 54, 127–145. [Google Scholar] [CrossRef]
- Martin, T.L.; Huey, R.B. Why “suboptimal” is optimal: Jensen’ sinequality and ectotherm thermal preferences. Am. Nat. 2008, 171, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.Q.; Lv, L.; Wan, P.; Xu, D.; Luo, H.G.; Li, W.J.; Zhang, S. Preliminary study on the overwintering of Spodoptera frugiperda in Hubei province. Plant Protect. 2022, 48, 116–120+139. [Google Scholar]
- Zhang, T.Q.; Zhang, L.; Cheng, Y.X.; Jiang, X.F. Study on the cold resistance of the fall armyworm, Spodoptera frugiperda. Plant Protect. 2021, 47, 176–181. [Google Scholar]
- Pair, S.D.; Raulston, J.R.; Westbrook, J.K.; Wolf, W.W.; Adams, S.D. Fall armyworm (Lepidoptera: Noctuidae) outbreak originating in the lower Rio-Grande Valley, 1989. Fla. Entomol. 1991, 74, 200–213. [Google Scholar] [CrossRef]
- Jing, X.H.; Kang, L. Overview and evaluation of research methodology for insect cold hardiness. Entomol. Knowl. 2004, 41, 7–10. [Google Scholar]
- Nedved, O. Chill tolerance in the tropical beetle Stenotarsus rotundus. Cryo Lett. 2000, 21, 25–30. [Google Scholar]
- Turnock, W.J.; Fields, P.G. Winter climates and cold hardiness in terrestrial insects. Eur. J. Entomol. 2005, 102, 561–576. [Google Scholar] [CrossRef]
- Yao, M.S.; Meng, J.Y.; Yang, C.L.; Zhang, C.Y. cDNA cloning and expression profiling of the heat shock prote in Hsc70 gene and its response to different environmental stresses in fall armyworm Spodoptera frugiperda. J. Plant Protect. 2020, 47, 797–806. [Google Scholar]
- Zhou, L.; Meng, J.Y.; Yang, C.L.; Li, J.; Hu, C.X.; Zhang, C.Y. Cloning of heat shock protein gene SfHsp90 and its expression under high and low temperature and UV-A stresses in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol. Sini. 2020, 63, 533–544. [Google Scholar]
- Samanta, S.; Barman, M.; Chakraborty, S.; Banerjee, A.; Tarafdar, J. Involvement of small heat shock proteins (sHsps) in developmental stages of fall armyworm, and its expression pattern under abiotic stress condition. Heliyon 2021, 7, e06906. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.J.; Zhang, T.; Li, C.; Zhi, J.R. Molecular cloning and temporal-spatial expression profiling of trehalose-6-phosphate synthase gene in Spodoptera frugiperda (Lepidoptera: Noctuidae) and iits response to temperature stress. Acta Entomol. Sini. 2021, 64, 1417–1426. [Google Scholar]
- Shang, D.; Yang, M.F.; Yu, X.F.; Chen, Y.C.; Tian, T.A. Spatiotemporal expression of CYP4G15 and CYP4L4 and their response to high and low temperature stress in Spodoptera frugiperda. Chin. J. App. Entomol. 2021, 58, 664–671. [Google Scholar]
- Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 1962, 18, 571573. [Google Scholar] [CrossRef]
- Parsell, D.A.; Lindquist, S. The function of heat-shock proteinsin stress tolerance: Degradation and reactivation of damaged proteins. Ann. Rev. Genet. 1993, 27, 437–496. [Google Scholar] [CrossRef]
- Zhao, L.; Jones, W.A. Expression of heat shock protein genes in insect stress responses. Invertebr. Surviv. J. 2012, 9, 93–101. [Google Scholar]
- Yang, C.L.; Meng, J.Y.; Zhou, L.; Yao, M.S.; Zhang, C.Y. Identification of five small heat shock protein genes in and expression analysis in response to different environmental stressors. Cell Stress Chaperon. 2021, 26, 527–539. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Ann. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Wei, G.S.; Zhang, Q.W.; Zhou, M.Z.; Wu, W.G. Characteristic response of the compound eyes of Helicoverpa armigera to light. Acta Entomol. Sin. 2002, 45, 323–328. [Google Scholar]
- Sisay, B.; Tefera, T.; Wakgari, M.; Ayalew, G.; Mendesil, E. The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, in Maize. Insects 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.C. Global Warming and Climate Change: Impact on Arthropod Biodiversity, Pest Management, and Food Security. In Proceedings of the National Symposium on Perspectives and Challenges of Integrated Pest Management for Sustainable Agriculture, Solan, India, 19–21 November 2010; pp. 19–21. [Google Scholar]
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Adunola, M.P.; Fayeun, L.S.; Fadara, A.B. Impact of climate change on armyworm infestation on maize in Nigeria: A review. J. Plant Breed. Crop Sci. 2021, 13, 158–167. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J. E. Smith), in maize in East Africa. Crop Protect. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Furlong, M.J.; Zalucki, M.P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 2017, 20, 39–44. [Google Scholar] [CrossRef]
- Hance, T.; van Baaren, J.; Vernon, P.; Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 2007, 52, 107–126. [Google Scholar] [CrossRef]
- Juliano, R.F.A.; David, A.; Andow, B.; Renato, J.H.A.; Rodrigo, J.S.A.; Pablo, F.A.; Antonio, C.D.S.C.; Celso, O.A. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil—ScienceDirect. Crop Protect. 2014, 64, 150–158. [Google Scholar]
- Ying, N.; Qureshi, J.A.; Ni, X.; Head, G.P.; Huang, F. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States. J. Invert. Pathol. 2016, 138, 66–72. [Google Scholar]
- Lee, M.K.; Walters, F.S.; Hart, H.; Palekar, N.; Chen, J.S. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab-Endotoxin. Appl. Environ. Microbiol. 2003, 69, 4648–4657. [Google Scholar] [CrossRef]
- Gouffon, C.; Van Vliet, A.; Van Rie, J.; Jansens, S.; Jurat-Fuentes, J.L. Binding Sites for Bacillus thuringiensis Cry2Ae Toxin on Heliothine Brush Border Membrane Vesicles Are Not Shared with Cry1A, Cry1F, or Vip3A Toxin. Appl. Environ. Microbiol. 2011, 77, 3182–3188. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.S.; Zhang, W.; Peng, Y.; Zhao, F.; Chang, X.Q.; Xing, K.; Zhu, L.; Ma, G.; Yang, H.P.; Rudolf, V.H.W. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 2021, 12, 5351. [Google Scholar] [CrossRef] [PubMed]
- Phiri, F. Sambia’s Armyworm Outbreaks: Is Climate Change to Blame; International Press Service: Rome, Italy, 2017. [Google Scholar]
Stage | Temperature (°C) | Period (d) | References |
---|---|---|---|
Egg hatch | 21~27 | 2~4 | [50] |
Egg hatch | 32~36 | 1~3 | [51] |
Larva | 24~27 | 14~17 | [53] |
Pupa | 18~32 | 7.82~30.70 | [53] |
Adult | 17~27 | 14~15 | [52] |
Overall development | 20~35 | 23.0~48.3 | [54] |
Overall development | 17~37 | 22.57~58.73 | [52] |
Overall development | 28 | 30 | [55] |
Species | Temperature (°C) | State of FAW | References |
---|---|---|---|
S. frugiperda | 32~36 | Developmental period was shortened with increasing temperature | [51] |
S. frugiperda | 17~32 | Developmental period was shortened with increasing temperature | [52] |
S. frugiperda | 18~32 | Developmental period was shortened with increasing temperature | [53] |
S. frugiperda | 20~35 | Developmental period was shortened with increasing temperature | [54] |
S. frugiperda | 23~31 | Developmental period was shortened with increasing temperature | [62] |
S. frugiperda | Below 5 | Lethal effect at extreme low temperature | [65] |
S. frugiperda | Below 10 | Lethal effect at extreme low temperature | [30] |
S. frugiperda | Below 20 Exceed 36 | Flight capability was reduced | [66] |
S. frugiperda | Above 38 | Growth was inhibited | [67] |
Sitobion avenae (Fabricius) | 31 | Reproduction was decreased | [68] |
Mysus persicae (Sulzer) | 37 | Developmental rate was decreased | [69] |
Epiphyas postvittana (Walker) | Above 40.4 | Lethal effect at extremely high temperature | [70] |
Bemisia tabaci (Gennadias) | 44 | Growth was inhibited | [71] |
Oryzaephilus surinamensis (Linne) | 36~48 | Developmental rate and fecundity were decreased | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.-R.; Wang, Z.-Y.; Feng, S.-Q.; Zhao, Z.-H.; Li, Z.-H. Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. Insects 2022, 13, 981. https://doi.org/10.3390/insects13110981
Yan X-R, Wang Z-Y, Feng S-Q, Zhao Z-H, Li Z-H. Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. Insects. 2022; 13(11):981. https://doi.org/10.3390/insects13110981
Chicago/Turabian StyleYan, Xiao-Rui, Zhen-Ying Wang, Shi-Qian Feng, Zi-Hua Zhao, and Zhi-Hong Li. 2022. "Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change" Insects 13, no. 11: 981. https://doi.org/10.3390/insects13110981
APA StyleYan, X. -R., Wang, Z. -Y., Feng, S. -Q., Zhao, Z. -H., & Li, Z. -H. (2022). Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. Insects, 13(11), 981. https://doi.org/10.3390/insects13110981