Transformation Capability Optimization and Product Application Potential of Proteatia brevitarsis (Coleoptera: Cetoniidae) Larvae on Cotton Stalks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Experimental Methods
2.3.1. Preliminary Selection of the Optimal Combination of Decomposition Inoculant, Fermentation Duration, and Cattle Manure Ratio
2.3.2. Validation of the Optimal Technical Parameters for CS as Feed and Fertilizer
2.3.3. Determination of Related Nutritional Indicators for CS Transformation Products as Feed and Fertilizer
2.4. Data Processing
3. Results
3.1. Preliminary Selection of the Optimal Combination of Decomposition Inoculant, Fermentation Duration, and Cattle Manure Ratio
3.1.1. Effect of Fermentation Duration on Transformation Capability to CS Using P. brevitarsis Larvae
3.1.2. Influence of Three Factors on the Fermentation Temperature of Materials
3.1.3. Differences in the Transformation Capability of the P. brevitarsis Larvae on CS Considering Three Factors
3.1.4. Test of Inter-Subjects Effects under Three Factors
3.1.5. Intuitive Analysis and Tukey Test under Three Factors
3.2. Validation of the Optimal Technical Parameters for the Transformation of CS Using P. brevitarsis Larvae
3.3. Determination of Relevant Nutritional Indicators of Raw Materials, Fermentation Materials, and Products
3.3.1. Determination of Nutritional Indicators of Raw Materials, Fermented Materials, and Insect Bodies as Feed
3.3.2. Determination of Nutritional Indicators for Raw Materials, Fermentation Materials, and Larvae Dung-Sand as Organic Fertilizer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China National Bureau of Statistics. Announcement of the National Bureau of Statistics on Cotton Production in 2020. 2020. Available online: http://www.stats.gov.cn/tjsj/zxfb/202012/t20201218_1810113.html (accessed on 18 December 2020).
- Yuyun, B. Study on Straw Resources Evaluation and Utilization in China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2010. [Google Scholar]
- Yingquan, C.; Haiping, Y.; Xianhua, W.; Shihong, Z.; Hanping, C. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresour. Technol. 2012, 107, 411–418. [Google Scholar]
- Zhipu, W.; Like, X.; Kai, L.; Jian, W.; Henan, Z.; Qiang, S.; Xinqian, S. Co-pyrolysis of sewage sludge and cotton stalks. Waste Manag. 2019, 89, 430–438. [Google Scholar] [CrossRef]
- Qingyue, W.; Nuerjiamali, T. Polyurethane foams and bio-polyols from liquefied cotton stalk agricultural waste. Sustainability 2020, 12, 4214. [Google Scholar] [CrossRef]
- Qi, W.; Sheng, X.; Moyong, Z.; Maonan, Y.; Huijun, L.; Zhixing, L. Operating procedures for high-yield cultivation of Ganoderma lucidum using cotton stalks. Cotton Sci. 2017, 39, 27–28. [Google Scholar]
- Guoqing, Z.; Qiujiang, L.; Changjiang, Z.; Fengming, L.; Jirong, Z. Study on the nutritional value of cotton stalks and their effects on the digestion and metabolism of nutrients, growth and mutton safety of sheep. J. Anim. Nutr. 2018, 30, 3247–3257. [Google Scholar]
- Xiaofang, Z.; Rui, G.; Junyu, Z. Research progress on feed utilization of cotton straws in ruminants. China Grass-Feed. Livest. 2020, 203, 24–27. [Google Scholar]
- Pengpeng, Z.; Shou-zhen, X.; Guojuan, Z.; Xiaozhen, P.; Jin, W.; Wangfeng, Z. Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China. J. Integr. Agric. 2019, 18, 1103–1119. [Google Scholar] [CrossRef]
- Jing, W.; Bing, C.; Jiliang, W.; Yongtao, L.; Min, W.; Yong, S.; Huanyong, H.; Fangyong, W. Effects of different mechanized methods of straw returning to the field on growth, yield and quality of cotton. Agric. Res. Arid Areas 2021, 39, 18–24, 56. [Google Scholar]
- Wright, A.L.; Hons, F.M.; Lemon, R.G.; Mark, L.; McFarland, M.L.; Nichols, R.L. Stratification of nutrients in soil for different tillage regimes and cotton rotations. Soil Tillage Res. 2007, 96, 19–27. [Google Scholar] [CrossRef]
- ChunL, H. Temporal and Spatial Variation of Soil Nutrients of Long-Term Monocultural Cotton Field and Sustainable Utilization in Xinjiang. Ph.D. Thesis, Shihezi University, Shihezi, China, 2010. [Google Scholar]
- Tesio, F.; Vidotto, F.; Ferrero, A. Allelopathic persistence of Helianthus tuberosus L. residues in the soil. Sci. Hortic. 2012, 135, 98–105. [Google Scholar] [CrossRef]
- Endeshaw, S.T.; Lodolini, E.M.; Neri, D. Effects of olive shoot residues on shoot and root growth of potted olive plant lets. Sci. Hortic. 2015, 182, 31–40. [Google Scholar] [CrossRef]
- Yanbin, L.; Qin, Z. Effects of naturally and microbially decomposed cotton stalks on cotton seedling growth. Arch. Agron. Soil Sci. 2016, 62, 1264–1270. [Google Scholar] [CrossRef]
- Subramanian, S.; Sivarajan, M.; Saravanapriya, S. Chemical changes during vermicomposting of sago industry solid wastes. J. Hazard. Mater. 2010, 179, 318–322. [Google Scholar] [CrossRef]
- Arnold, V.H.; Joost, V.I.; Harmke, K.; Esther, M.; Afton, H.; Giulia, M.; Paul, V. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Cickova, H.; Newton, G.L.; Lacy, R.C.; Kozanek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- YuSheng, L. Scientific basis and technology system of macro agriculture circle economy. Renew. Resour. Circ. Econ. 2015, 8, 7–12. [Google Scholar]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Kilic, E. Environmental friendly insects is Tenebrio molitor (Coleoptera Tenebrionidae). Adv. Ecol. Res. 2018, 1–13. Available online: https://www.researchgate.net/publication/323655871 (accessed on 25 March 2018).
- Naseer, H.; Shahid, A. Efficacy of the vermicomposts of different organic wastes as “Clean” fertilizers: State-of-the-art. Sustainability 2018, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- Soobhany, N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. J. Clean. Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- Kawasaki, K.; Kawasaki, T.; Hirayasu, H.; Matsumoto, Y.; Fujitani, Y. Evaluation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae (Hermetia illucens). Sustainability 2020, 12, 4920. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Mente, E.; Karapanagiotidis, I.T.; Vlontzos, G.; Athanassiou, C.G. Insect-based feed ingredients for aquaculture: A case study for their acceptance in Greece. Insects 2021, 12, 586. [Google Scholar] [CrossRef]
- Xinyue, W.; Yanhong, C.; Shaolang, H.; Kun, Z.; Shangshu, H.; Binqiang, W.; Qianru, H. Study on earthworm transformation technology based on the fertilizer utilization of kudzu slag. J. Agric. Resour. Environ. 2022, 39, 201–208. [Google Scholar]
- Arnold, V.H.; Dennis, G.A.; Oonincx, B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Mertenat, A.; Diener, S.; Zurbrugg, C. Black soldier fly biowaste treatment-assessment of global warming potential. Waste Manag. 2019, 84, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Borkent, S.; Hodge, S. Glasshouse evaluation of the black soldier fly waste product HexaFrass™ as an organic fertilizer. Insects 2021, 12, 977. [Google Scholar] [CrossRef]
- Xiaoyan, T.; Fuping, S.; Jie, Z.; Rongmei, L.; Xingpeng, Z.; Jiangyan, D.; Changlong, S. Diversity of gut bacteria in larval Protaetia brevitarsis (Coleoptera: Scarabaedia) fed on corn stalk. Acta Entomol. Sin. 2017, 60, 632–641. [Google Scholar]
- Guangjie, Z. Studies on the Transformation Techniques of Organic Waste Using Protaetia brevitarsis (Coleoptera: Cetoniidae). Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2019. [Google Scholar]
- Wenzhen, M. Chinese Economic Entomology (Coleoptera, Cetoniidea); China Science and Technology Press: Beijing, China, 1995; Volume 46, pp. 94–95. [Google Scholar]
- Baozhong, J.; Shuwen, L.; Kai, Z. Entomological Basis and Common Species Identification; Science Press: Beijing, China, 2011; pp. 251–252. [Google Scholar]
- Tao, L.; Deying, M.; Song, Q.; Yong, W. A study on hosts and the occurrence regularity of Protaetia brevitarsis Lewis in west suburb of Urumqi. Xinjiang Agric. Sci. 2010, 47, 320–324. [Google Scholar]
- Cheng, Y.; Yusheng, L.; Xiaoyan, X.; Li, Z. The study on the effect of Protaetia brevitaris Lewis larvae transformation the corn straw. J. Environ. Entomol. 2015, 37, 122–127. [Google Scholar]
- Yusheng, L.; Dapeng, Z. Study on the model of microcirculation farm and ranch on the corn straw transformed by larval of Protaetia brevitarsis Lewis. J. Anhui Agric. Sci. 2015, 43, 85–87. [Google Scholar]
- Guangjie, Z.; Qian, W.; Yusheng, L.; Zeng’an, L. Study on the transformation capability of four materials in different fermentation cycles fed by Protaetia brevitarsis (Coleoptera: Cetoniidae) larvae. J. Shandong Agric. Univ. 2019, 50, 764–767. [Google Scholar]
- Liu, Y.; Guangjie, Z.; Tao, X.; Lianjun, Z.; Song, Q.; Deying, M.; Yusheng, L. Study on the conversion capacity different agricultural organic wastes by the larvae of the Protaetia brevitarsis Lewis. Xinjiang Agric. Sci. 2019, 183, 42–46. [Google Scholar]
- Yong, G. Investigation on Agricultural Organic Waste Resources and Exploration on Conversion Mode of Agricultural Organic Waste Resources by Environment-Friendly Insects in Yuncheng County. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2020. [Google Scholar]
- Tao, X.; Guangjie, Z.; Liu, Y.; Song, Q.; Deying, M.; Yusheng, L. Technology for breeding Protaetia brevitarsis Lewis indoors and outdoors. Chin. J. Appl. Entomol. 2021, 58, 1000–1006. [Google Scholar]
- Qian, Z. Study on the Biology of Protaetia brevitarsis (Lewis) Feeding on Oyster Mushroom Bran. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2015. [Google Scholar]
- Chenke, S. Study on the Recycling Mode of “Wheat Straw-Stropharia rugosoannulata-Protaetia brevitarsis”. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2018. [Google Scholar]
- Seul-Bi, L.; Jong-Won, K.; Sung-Mun, B.; Yeon-Hyeon, H.; Heung-Su, L.; Byeong-Jeong, L.; Kwang-Pyo, H.; Chung-Gyoo, P. Evaluation of spent mushroom substrates as food for white spotted flower chafer, Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae). Korean J. Appl. Entomol. 2018, 57, 97–104. [Google Scholar]
- Panpan, W.; Yimei, L.; Deqiang, L.; Lili, G.; Chunqin, L.; Jie, Z.; Changlong, S.; Rongmei, L. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. Waste Manag. 2020, 114, 234–239. [Google Scholar] [CrossRef]
- Cheng, Y.; Yusheng, L.; Xiaoyan, X.; Jianwei, Z. Analysis and evaluation of resource components of Protaetia brevitarsis (Lewis) larvae. J. Shandong Agric. Univ. 2014, 45, 166–170. [Google Scholar]
- Guangjie, Z.; Qian, W.; Yusheng, L. Biology under artificial condition and utilization potential of Protaetia brevitarsis (Coleoptera: Cetoniidae). J. Environ. Entomol. 2020, 42, 24–33. [Google Scholar]
- Seonmin, L.; Yun-Sang, C.; Kyung, J.; Tae-Kyung, K.; Hae-In, Y.; Samooel, J. Quality characteristics and protein digestibility of Protaetia brevitarsis larvae. J. Anim. Sci. 2020, 62, 741–752. [Google Scholar] [CrossRef]
- Youn-Kyung, H.; Sam-Woong, K.; Dong-Heon, S.; Hyun-Wook, K.; Il-Suk, K. Nutritional Composition of White-Spotted Flower Chafer (Protaetia brevitarsis) Larvae Produced from Commercial Insect Farms in Korea. Food Sci. Anim. Resour. 2021, 41, 416–427. [Google Scholar] [CrossRef]
- Yimei, L.; Tong, F.; Lili, G.; Yu, S.; Haiyan, C.; Fushun, L.; Chunqin, L.; Fuping, S.; Jie, Z.; Changlong, S. Protaetia brevitarsis larvae can efficiently convert herbaceous and ligneous plant residues to humic acids. Waste Manag. 2019, 83, 79–82. [Google Scholar] [CrossRef]
- Huina, X.; Peiwen, G.; Baohai, D.; Lili, G.; Kui, W.; Kun, H.; Jie, Z.; Tianpei, H.; Changlong, S. Characterization of microorganisms from Protaetia brevitarsis larva frass. Microorganisms 2022, 10, 311. [Google Scholar] [CrossRef]
- Fushun, L.; Xiaojie, F.; Guocheng, X.; Yu, W.; Qinglei, W. The effects of Protaetia brevitarsis larva manure application on the growth of cherry radish. Hubei Agric. Sci. 2018, 57, 44–46, 50. [Google Scholar]
- Deqiang, L.; Qinglei, W.; Yu, W.; Changlong, S.; Yue, Z.; Chunqin, L. Effect of Protaetia brevitarsis Lewis larvae dung on development of pepper seedling stage under low temperature. North. Hortic. 2019, 8, 63–66. [Google Scholar]
- Xiang, W.; Congyong, H.; Ruijie, C.; Xiaoyan, X.; Jinlong, W.; Xiaobo, W. Influence of frass organic manure on tomato growth and quality. North. Hortic. 2019, 426, 66–70. [Google Scholar]
- Kyong-Hee, J.; Jong-Won, K.; Seul-Bi, L.; Da-Hyun, J.; Byung-Man, Y.; Sung-Mun, B.; Young-Ho, C.; Young Han, L.; Dong-Cheol, S. Effects of Protaetia brevitarsis larvae manure application on lettuce growth and soil chemical properties. Korean J. Soil. Sci. Fert. 2022, 55, 80–85. [Google Scholar] [CrossRef]
- Hua, J.; Shu, S.; Baiyan, Y.; Wanshan, Y.; Tiefeng, J. Effects of the grub extract on apoptosis of MCF-7 human breast cancer cell line. Chin. J. Pathophysiol. 2008, 24, 93–96. [Google Scholar]
- Ahn, E.M.; Myung, N.Y.; Jung, H.A.; Kim, S.J. The ameliorative effect of Protaetia brevitarsis larvae in HFD-induced obese mice. Food Sci. Biotechnol. 2019, 28, 1177–1186. [Google Scholar] [CrossRef]
- Mingxu, X.; Guofu, G.; Shouyun, Y.; Jie, S.; Chongxing, Z.; Chunhua, X.; Yi, L.; Keyun, Z. Isolation and purification of antibacterial materials from Protaetia brevitarsis (Coleoptera) Larva. Life Sci. Res. 2008, 12, 53–56. [Google Scholar]
- Hwa-Jin, S.; Chul, K. Antioxidant activity of aqueous methanol extracts of Protaetia brevitarsis Lewis (Coleoptera: Scarabaedia) at different growth stages. Nat. Prod. Res. 2012, 26, 510–517. [Google Scholar] [CrossRef]
- Eunjung, L.; Jin-Kyoung, K.; Soyoung, S.; Ki-Woong, J.; Juneyoung, L.; Dong-Gun, L.; Jae-Sam, H.; Yangmee, K. Enantiomeric 9-mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti-inflammatory activities. J. Pept. Sci. 2011, 17, 675–682. [Google Scholar] [CrossRef]
- Minglu, Q. Study on Extraction, Separation, Purification and Anti-Inflammatory Property of Protaetia brevitarsis Lewis Larvae Protein. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2020. [Google Scholar]
- Nikkhah, A.; Van Haute, S.; Jovanovic, V.; Jung, H.; Dewulf, J.; Cirkovic Velickovic, T.; Ghnimi, S. Life cycle assessment of edible insects (Protaetia brevitarsis Seulensis larvae) as a future protein and fat source. Sci. Rep. 2021, 11, 14030. [Google Scholar] [CrossRef]
- Zhongjie, L.; Miaomiao, M.; Shasha, L.; Deng, B. The transcriptome analysis of Protaetia brevitarsis Lewis larvae. PLoS ONE 2019, 14, e0214001. [Google Scholar] [CrossRef] [Green Version]
- Kui, W.; Pengpeng, L.; Yongyang, G.; Chunqin, L.; Qinglei, W.; Jiao, Y.; Jie, Z.; Lili, G.; Changlong, S. De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis). GigaScience 2019, 8, giz019. [Google Scholar] [CrossRef] [Green Version]
- Xiangzhen, L.; Brune, A. Digestion of microbial biomass, structural polysaccharides, and protein by the humivorous larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol. Biochem. 2005, 37, 107–116. [Google Scholar] [CrossRef]
- Manning, P.; Slade, E.M.; Beynon, S.A.; Lewis, O.T. Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric. Ecosyst. Environ. 2016, 218, 87–94. [Google Scholar] [CrossRef]
- Hardersen, S.; Zapponi, L. Wood degradation and the role of saproxylic insects for lignoforms. Appl. Soil Ecol. 2018, 123, 334–338. [Google Scholar] [CrossRef]
- Wu, L.; Qing, L.; Yuanyuan, W.; Longyu, Z.; Yanlin, Z.; Ziniu, Y.; Huanchun, C.; Jibin, Z. Efficient bioconversion of organic wastes to value-added chemicals by soaking, black soldier fly (Hermetia illucens L.) and anaerobic fermentation. J. Environ. Manag. 2018, 227, 267–276. [Google Scholar] [CrossRef]
- Lijie, Y.; Xiangfang, Z.; Shiyan, Q. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Anim. Nutr. 2021, 7, 905–916. [Google Scholar] [CrossRef]
- Xiang, Z.; Ju-Pei, S.; Chang-Long, S.; Sheng-Sheng, J.; Hong, J.D.; Li-Mei, Z.; Ji-Zheng, H. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Sci. Total Environ. 2022, 807, 150781. [Google Scholar] [CrossRef]
- Anshu, S.; Satyawati, S. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 2002, 85, 107–111. [Google Scholar]
- Shweta, K.R.; Singh, B.L.; Deepshikha, V. Integrating microbial composting and vermicomposting for effective utilization of by-products of sugar cane–processing industries. Bioremediat. J. 2010, 14, 158–167. [Google Scholar] [CrossRef]
- Moran-Salazar, R.G.; Marino-Marmolejo, E.N.; Rodriguez-Campos, J.; Davila-Vazquez, G.; Contreras-Ramos, S.M. Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida. Environ. Technol. 2016, 37, 1220–1231. [Google Scholar] [CrossRef]
- Kashif-ur, R.; Rashid, U.R.; Abdul, A.S.; Minmin, C.; Longyu, Z.; Xiaopeng, X.; Asif, U.R.; Abdul, R.; Jeffery, K.T.; Ziniu, Y.; et al. Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. J. Environ. Manag. 2019, 237, 75–83. [Google Scholar] [CrossRef]
- Kui, W.; Peiwen, G.; Lili, G.; Chunqin, L.; Jie, Z.; Changlong, S. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: Refining on a tightly designed microbial fermentation production line. Microbiome 2022, 10, 90. [Google Scholar] [CrossRef]
- Baohai, D.; Huina, X.; Lili, G.; Weihang, L.; Jie, Z.; Wensheng, X.; Rongmei, L.; Changlong, S. Microflora for improving the Auricularia auricula spent mushroom substrate for Protaetia brevitarsis production. iScience 2022, 25, 105307. [Google Scholar] [CrossRef]
- Fuqing, G. Research on the Effect of Different C/N Ratios on Fermentation of Organic Fertilizer. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2014. [Google Scholar]
- Takahashi, N.; Mochizuki, S.; Masuda, K.; Shimada, I.; Osada, M.; Fukunaga, H. Influence of temperature, water content and C/N ratio on the aerobic fermentation rate of woody biomass. Kagaku Kogaku Ronbunshu 2017, 43, 231–237. [Google Scholar] [CrossRef]
- Carotenuto, C.; Guarino, G.D.; Amelia, L.I.; Morrone, B.; Minale, M. The peculiar role of C/N and initial pH in anaerobic digestion of lactating and non-lactating water buffalo manure. Waste Manag. 2020, 103, 12–21. [Google Scholar] [CrossRef]
- Tao, X. Technical Research on Protaetia brevitarsis Lewis Bioconversion of Cattle Farm Waste in Indoor and Outdoor. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2020. [Google Scholar]
- Yusheng, L. Insect Production Science; Higher Education Press: Beijing, China, 2012; pp. 178–180. [Google Scholar]
- Xiaofang, Z.; Liuyang, W.; Chunqin, L.; Yongqiang, L.; Xiangdong, M.; Zhongyue, W.; Tao, Z. Identification and field verification of an aggregation pheromone from the white-spotted flower chafer, Protaetia brevitarsis Lewis (Coleoptera: Scarabaeidae). Sci. Rep. 2021, 11, 22362. [Google Scholar] [CrossRef]
- Doube, B.M. Ecosystem services provided by dung beetles in Australia. Basic Appl. Ecol. 2018, 26, 35–49. [Google Scholar] [CrossRef]
- Gossner, M.M.; Lachat, T.; Brunet, J.; Isacsson, G.; Bouget, C.; Brustel, H.; Brandl, R.; Weisser, W.W.; Muller, J. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 2013, 27, 605–614. [Google Scholar] [CrossRef]
- Pardillo, N. Production efficiency of organic fertilizer from different composting methods. Asia Pac. J. Multidiscip. Res. 2018, 6, 45–51. [Google Scholar]
- Yingkai, L.; Jiali, L.; Xiyue, S.; Yali, W.; Xiaolei, Y.; Wen, G.; Yinsheng, L. Effect of adding cow dung and garden waste on sewage sludge vermicomposting process. Chin. J. Environ. Eng. 2020, 14, 197–208. [Google Scholar]
- Lordelo, M.M.; Calhoun, M.C.; Dale, N.M.; Dowd, M.K.; Davis, A.J. Relative toxicity of gossypol enantiomers in laying and broiler breeder hens. Poult. Sci. 2007, 86, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Yunfeng, L.; Xiuqi, W.; Qingyu, Z.; Zhang Junmin, Z. Research situation on gossypol safety limit in feed and gossypol residues in livestock product. Chin. Agric. Sci. Bull. 2010, 26, 1–5. [Google Scholar]
- Rehemujiang, H.; Yimamu, A.; Wang, Y.L. Effect of dietary cotton stalk on nitrogen and free gossypol metabolism in sheep. Asian-Australas J. Anim. Sci. 2019, 32, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenju, Z.; Zirong, X.; Shunhong, Z.; Jianyi, S.; Xia, Y. Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal. Anim. Feed Sci. Technol. 2007, 135, 176–186. [Google Scholar] [CrossRef]
- Vellaichamy, M.; Sharmila, B.M.; Kuppusamy, P. Isolation and identification of potential Gossypol degrading fungal strains from cotton growing soil. Int. J. Microbiol. 2017, 21, 1–6. [Google Scholar] [CrossRef]
- Xiuye, Q.; Quanxi, X.; Jiamin, Y.; Qian, Z.; Zhiyan, Z.; Haiyan, X.; Wei, G. Screening of free gossypol strain in high efficient degrading cottonseed meal and optimization of compound fermentation. J. Chin. Cereals Oils Assoc. 2019, 34, 99–106. [Google Scholar]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 5, 563–583. [Google Scholar] [CrossRef]
- Choi, S.U.; Choi, I.H.; Chung, T.H. Investigation of breast meat traits of broilers fed different amounts of Hermetia illucens and Protaetia brevitarsis seulensis powder. Entomol. Res. 2021, 51, 343–348. [Google Scholar] [CrossRef]
- Deokyeol, J.; Namgyong, M.; Yeongbu, K.; Soo-Rin, K.; Ohseok, K. The effects of feed materials on the nutrient composition of Protaetia brevitarsis larvae. Entomol. Res. 2019, 50, 23–27. [Google Scholar] [CrossRef]
- Quan, W.; Zhen, W.; Mukesh, K.A.; Yahui, J.; Ronghua, L.; Xiuna, R.; Junchao, Z.; Feng, S.; Meijing, W.; Zengqiang, Z. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour. Technol. 2016, 220, 297e304. [Google Scholar] [CrossRef]
- Malinska, K.; Golanska, M.; Caceres, R.; Rorat, A.; Weisser, P.; Slezak, E. Biochar amendment for integrated composting and vermicomposting of sewage sludge the effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour. Technol. 2017, 225, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Rong, L.; Hongjun, L.; Beibei, W.; Chenmin, Z.; Qirong, S. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer. Environ. Technol. 2014, 35, 1658–1667. [Google Scholar] [CrossRef]
- Yajuan, C.; Ji, L.; Yaofeng, Y. Dynamic change of key indicators and denitrifying bacteria in chicken manure sawdust aerobic composting process. J. Chin. Agric. Univ. 2016, 21, 67–75. [Google Scholar]
- Xiuhong, W.; Xiangyuan, S.; Jitao, Z.; Yuxia, W.; Xinxin, L.; Jing, Z.; Hongye, Z. Analysis of maturity, heavy metal residues and microbial flora of chicken manure aerobic compost. Shanxi Agric. Sci. 2021, 49, 1094–1099. [Google Scholar]
Decomposition Inoculants | Brand and Production Company | Main Functional Bacteria | Effective Number of Viable Bacteria (100 million/g) | Recommended Dosage (kg/t) |
LK | Organic material decomposing inoculant, stalks type, Zhongnong Lvkang Biotechnology Co., Ltd., Beijing, China | Bacillus, Trichoderma, and yeast | 8 | 0.5 |
LL | Organic fertilizer decomposing inoculant, Shandong Lvlong Biotechnology Co., Ltd., Zhucheng, China | Bacillus subtilis, Bacillus licheniformis, yeast, and Trichoderma viride | 200 | 10 |
NFK * | Organic material decomposing inoculant, Henan NongFukang Biotechnology Co., Ltd., Zhengzhou, China | Mainly Bacillus licheniformis, Candida utilis, Bacillus subtilis, Lactobacillus, and Enterococcus-like bacteria | 0.1 | 30 |
RW | RW decomposing inoculant, stalks type, Hebi Renyuan Biological Co., Ltd., Hebi, China | Bacteria (Bacillus subtilis, Bacillus licheniformis, and Bacillus jelly), filamentous fungi, and yeast | 100 | 10 |
VT | VT-1000, stalks type, Beijing VOTO Biotechnology Co., Ltd., Beijing, China | Bacillus, actinomycetes, lactic acid bacteria, and molds | 200 | 1 |
Level | Factor | ||
---|---|---|---|
Decomposing Inoculants (A) | Cattle Manure Ratio (B/%) | Fermentation Duration (C/d) | |
1 | LK | 10 | 10 |
2 | LL | 20 | 15 |
3 | NFK | 30 | 20 |
4 | RW | 40 | 25 |
5 | VT | 50 | 30 |
Fermentation Duration (d) | Feed Intake (g) | Larvae Weight Gain (g) | Dung-Sand Weight (g) | Feed Utilization Rate (%) | Dung-Sand Conversion Rate (%) | Mortality (%) |
---|---|---|---|---|---|---|
0 | 48.50 ± 1.18a | 1.89 ± 0.09a | 19.16 ± 0.28d | 54.78 ± 1.33b | 41.17 ± 1.27d | 5.00 ± 2.89a |
10 | 37.68 ± 1.13c | 1.81 ± 0.10a | 28.32 ± 0.30c | 44.11 ± 1.32c | 79.17 ± 2.65ab | 2.50 ± 2.50a |
15 | 36.33 ± 0.44c | 1.82 ± 0.10a | 30.91 ± 0.31b | 45.14 ± 0.55c | 89.57 ± 0.63a | 0.00 ± 0.00a |
20 | 49.11 ± 0.64a | 2.04 ± 0.13a | 36.98 ± 0.60a | 62.83 ± 0.81a | 78.54 ± 0.48ab | 2.50 ± 2.50a |
25 | 49.24 ± 0.46a | 2.18 ± 0.10a | 35.24 ± 0.61a | 64.66 ± 0.60a | 74.86 ± 0.85c | 0.00 ± 0.00a |
30 | 41.58 ± 0.50b | 1.92 ± 0.04a | 32.30 ± 0.75b | 55.03 ± 0.67b | 81.45 ± 1.41b | 2.50 ± 2.50a |
Factor and Level | Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|
1 d | 5 d | 10 d | 15 d | 20 d | 25 d | 30 d | |
Decomposing inoculants (A) | |||||||
LK | 41.80 ± 2.51a | 55.58 ± 3.78a | 48.50 ± 1.74a | 48.88 ± 1.31a | 47.72 ± 0.52a | 47.88 ± 1.35a | 43.30 ± 2.04a |
LL | 41.04 ± 2.07a | 53.18 ± 2.75a | 48.20 ± 1.69a | 46.08 ± 1.64a | 47.86 ± 1.39a | 49.40 ± 1.79a | 43.60 ± 0.46a |
NFK | 42.98 ± 2.74a | 52.68 ± 3.94a | 48.16 ± 1.92a | 48.94 ± 2.44a | 48.94 ± 1.85a | 49.24 ± 1.81a | 44.66 ± 1.32a |
RW | 41.06 ± 1.89a | 50.24 ± 3.63a | 48.96 ± 2.32a | 46.46 ± 0.92a | 46.64 ± 2.11a | 47.26 ± 1.75a | 42.58 ± 1.40a |
VT | 40.76 ± 1.22a | 54.82 ± 1.35a | 49.78 ± 2.43a | 48.78 ± 1.03a | 46.86 ± 1.34a | 48.52 ± 1.67a | 42.14 ± 2.86a |
Cattle manure ratio (B/%) | |||||||
10 | 43.80 ± 2.13a | 58.34 ± 1.74a | 53.22 ± 1.70a | 50.36 ± 1.06a | 51.10 ± 1.35a | 50.30 ± 1.96a | 38.78 ± 2.00b |
20 | 40.86 ± 2.98a | 55.64 ± 2.89a | 49.50 ± 1.18ab | 47.76 ± 1.24a | 48.20 ± 0.22ab | 50.96 ± 1.48a | 45.20 ± 0.98a |
30 | 42.88 ± 1.18a | 50.70 ± 2.77a | 46.42 ± 1.71ab | 47.66 ± 1.13a | 47.24 ± 1.39ab | 46.76 ± 1.70a | 43.48 ± 1.71ab |
40 | 41.42 ± 1.80a | 53.98 ± 3.87a | 48.36 ± 1.95ab | 44.92 ± 2.30a | 45.08 ± 1.41b | 46.20 ± 1.07a | 42.98 ± 1.05ab |
50 | 38.68 ± 1.43a | 47.84 ± 2.38a | 46.10 ± 1.43b | 48.44 ± 1.14a | 46.40 ± 1.35ab | 48.08 ± 0.68a | 45.84 ± 0.78a |
Fermentation duration (C/d) | |||||||
10 | 39.68 ± 1.69a | 51.14 ± 2.01a | 49.40 ± 2.21a | 46.30 ± 1.53a | 47.78 ± 0.35a | 48.22 ± 1.61ab | 43.74 ± 0.97a |
15 | 42.36 ± 2.23a | 52.26 ± 2.65a | 47.00 ± 1.60a | 47.98 ± 1.00a | 47.62 ± 0.70a | 45.14 ± 0.42b | 40.72 ± 1.47a |
20 | 41.74 ± 2.06a | 59.20 ± 1.40a | 48.92 ± 2.27a | 48.10 ± 2.36a | 48.64 ± 2.51a | 48.28 ± 2.01ab | 43.60 ± 1.77a |
25 | 40.48 ± 2.14a | 50.60 ± 3.50a | 48.88 ± 2.25a | 47.70 ± 1.61a | 46.88 ± 1.79a | 49.12 ± 0.75ab | 42.60 ± 2.58a |
30 | 43.38 ± 2.27a | 53.30 ± 4.41a | 49.40 ± 1.63a | 49.06 ± 1.35a | 47.10 ± 1.46a | 51.54 ± 1.53a | 45.62 ± 1.08a |
CK | 48.50 | 57.60 | 52.90 | 45.60 | 40.10 | 21.90 | 17.30 |
Ambient temperature | 16.50 | 15.50 | 20.50 | 18.50 | 12.00 | 9.50 | 6.50 |
Factor and Level | Feed Intake (g) | Larvae Weight Gain (g) | Dung-Sand Weight (g) | Feed Utilization Rate (%) | Dung-Sand Conversion Rate (%) | Mortality (%) |
---|---|---|---|---|---|---|
Decomposing inoculants (A) | ||||||
LK | 52.48 ± 2.16ab | 1.833 ± 0.043ab | 38.35 ± 1.95a | 72.99 ± 3.02a | 75.46 ± 1.37a | 0.50 ± 0.50a |
LL | 54.32 ± 1.33ab | 1.928 ± 0.051ab | 40.34 ± 1.56a | 75.14 ± 2.57a | 76.78 ± 1.89a | 1.00 ± 0.69a |
NFK | 54.33 ± 1.22ab | 1.886 ± 0.048ab | 40.99 ± 0.99a | 76.81 ± 1.78a | 78.19 ± 0.81a | 1.00 ± 0.69a |
RW | 48.66 ± 1.69b | 1.753 ± 0.054b | 36.88 ± 1.57a | 69.85 ± 3.08a | 78.32 ± 1.07a | 1.50 ± 1.09a |
VT | 55.53 ± 1.18a | 1.949 ± 0.051a | 40.81 ± 1.20a | 78.10 ± 1.81a | 76.06 ± 1.37a | 1.50 ± 0.82a |
Cattle manure ratio (B/%) | ||||||
10 | 49.76 ± 1.50bc | 1.799 ± 0.060a | 33.58 ± 1.03c | 64.66 ± 2.39c | 70.33 ± 1.37c | 2.50 ± 1.23a |
20 | 47.43 ± 1.96c | 1.846 ± 0.058a | 34.43 ± 1.49c | 65.60 ± 2.43c | 75.53 ± 0.87b | 1.00 ± 0.69a |
30 | 53.89 ± 1.52ab | 1.895 ± 0.042a | 39.68 ± 0.95b | 77.80 ± 1.86b | 76.64 ± 1.15b | 1.00 ± 0.69a |
40 | 55.25 ± 0.61a | 1.905 ± 0.047a | 43.22 ± 0.79ab | 79.19 ± 0.63ab | 80.97 ± 0.90a | 0.50 ± 0.50a |
50 | 58.99 ± 0.71a | 1.904 ± 0.046a | 46.45 ± 0.71a | 85.64 ± 0.94a | 81.35 ± 0.63a | 0.50 ± 0.50a |
Fermentation duration (C/d) | ||||||
10 | 46.34 ± 2.15c | 1.863 ± 0.068a | 34.60 ± 1.71b | 65.45 ± 3.73b | 77.62 ± 0.62a | 1.00 ± 1.00a |
15 | 51.54 ± 1.15b | 1.906 ± 0.040a | 36.77 ± 1.50b | 72.68 ± 2.13ab | 73.68 ± 1.68a | 1.00 ± 0.69a |
20 | 51.69 ± 1.20b | 1.821 ± 0.040a | 39.00 ± 1.23ab | 74.47 ± 2.18a | 78.16 ± 1.48a | 2.00 ± 0.92a |
25 | 57.05 ± 0.81a | 1.843 ± 0.047a | 43.46 ± 0.98a | 80.28 ± 1.28a | 78.58 ± 0.74a | 0.50 ± 0.50a |
30 | 58.70 ± 0.75a | 1.917 ± 0.056a | 43.53 ± 0.91a | 80.01 ± 1.12a | 76.78 ± 1.63a | 1.00 ± 0.69a |
Source | Dependent Variable | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|---|
Corrected Model | Feed intake | 4186.996 a | 12 | 348.916 | 29.758 | 0.000 |
Larval weight gain | 0.806 b | 12 | 0.067 | 1.353 | 0.204 | |
Dung-sand weight | 3987.502 c | 12 | 332.292 | 57.961 | 0.000 | |
Feed utilization rate | 1.049 d | 12 | 0.087 | 31.856 | 0.000 | |
Dung-sand conversion rate | 0.206 e | 12 | 0.017 | 9.815 | 0.000 | |
Mortality | 0.009 f | 12 | 0.001 | 0.614 | 0.825 | |
Decomposition inoculant (A) | Feed intake | 581.020 | 4 | 145.255 | 12.388 | 0.000 |
Dung-sand weight | 256.548 | 4 | 64.137 | 11.187 | 0.000 | |
Feed utilization rate | 0.085 | 4 | 0.021 | 7.760 | 0.000 | |
Dung-sand conversion rate | 0.013 | 4 | 0.003 | 1.848 | 0.127 | |
Cattle manure ratio (B) | Feed intake | 1940.292 | 4 | 485.073 | 41.371 | 0.000 |
Dung-sand weight | 1272.551 | 4 | 318.138 | 55.492 | 0.000 | |
Feed utilization rate | 0.298 | 4 | 0.074 | 27.140 | 0.000 | |
Dung-sand conversion rate | 0.031 | 4 | 0.008 | 4.368 | 0.003 | |
Fermentation duration(C) | Feed intake | 1665.684 | 4 | 416.421 | 35.516 | 0.000 |
Dung-sand weight | 2458.403 | 4 | 614.601 | 107.204 | 0.000 | |
Feed utilization rate | 0.666 | 4 | 0.166 | 60.666 | 0.000 | |
Dung-sand conversion rate | 0.163 | 4 | 0.041 | 23.230 | 0.000 | |
Error | Feed intake | 1020.076 | 87 | 11.725 | ||
Larval dry weight | 4.318 | 87 | 0.050 | |||
Dung-sand weight | 498.772 | 87 | 5.733 | |||
Feed utilization rate | 0.239 | 87 | 0.003 | |||
Dung-sand conversion rate | 0.153 | 87 | 0.002 | |||
Mortality | 0.109 | 87 | 0.001 | |||
Corrected total | Feed intake | 5207.072 | 99 | |||
Larval dry weight | 5.124 | 99 | ||||
Dung-sand weight | 4486.274 | 99 | ||||
Feed utilization rate | 1.288 | 99 | ||||
Dung-sand conversion rate | 0.359 | 99 | ||||
Mortality | 0.118 | 99 |
Treatments | Feed Intake (g) | Larvae Weight Gain (g) | Dung-Sand Weight (g) | Feed Utilization Rate (%) | Dung-Sand Conversion Rate (%) | Mortality (%) |
---|---|---|---|---|---|---|
CK | 51.92 ± 0.37 | 2.030 ± 0.102 | 40.48 ± 0.39 | 64.90 ± 0.46 | 81.13 ± 0.38 | 2.50 ± 2.50 * |
A5B4C4 | 64.06 ± 0.52 * | 2.338 ± 0.049 | 52.19 ± 0.60 * | 80.07 ± 0.65 * | 84.55 ± 0.53 * | 0.00 ± 0.00 |
Material Types | WC (%) | CP (%) | Crude Fat (%) | Crude Fiber (%) | Crude Ash (%) | Water-Soluble Chloride (%) | FG (mg/kg) | GE (KJ/g) |
---|---|---|---|---|---|---|---|---|
CS | 8.6 | 7.18 | 0.6 | 43.3 | 5.1 | 0.40 | 96 | 16.57 |
Cattle manure | 79.2 | 14.16 | 0.6 | 27.4 | 17.6 | 1.20 | 114 | 14.74 |
Fermented CS | 69.7 | 10.19 | 0.3 | 43.2 | 9.6 | 0.75 | 47 | 17.1 |
A5B4C4 feed | 71.2 | 13.18 | 0.3 | 34.7 | 15.9 | 1.60 | 59 | 15.32 |
Dry larvae | 72.0 | 52.49 | 11.7 | 6.1 | 15.6 | 1.00 | - | 19.2 |
Material Types | WC (%) | OM (%) | HAs (%) | TN (%) | TP (%) | TK (%) | TNPK (%) | pH | Water- Soluble Chloride (%) | GI (%) |
---|---|---|---|---|---|---|---|---|---|---|
CS | 8.6 | 67.0 | 1.06 | 1.29 | 0.99 | 2.35 | 4.63 | 6.6 | 0.40 | 47.09 |
Manure | 79.2 | 58.9 | 1.59 | 2.3 | 1.29 | 2.18 | 5.77 | 8.9 | 1.20 | 66.87 |
Fermented CS | 69.7 | 65.9 | 2.31 | 2.23 | 0.42 | 3.84 | 6.49 | 9.3 | 0.75 | 102.88 |
A5B4C4 feed | 71.2 | 59.5 | 1.82 | 2.54 | 1.16 | 4.13 | 7.83 | 9.5 | 1.60 | 98.73 |
CS-based larvae dung-sand | 65.6 | 61.3 | 1.38 | 2.68 | 0.87 | 4.55 | 8.1 | 9.4 | 0.95 | 77.35 |
A5B4C4d feed-based larvae dung-sand | 68.7 | 54.8 | 0.81 | 2.93 | 1.67 | 4.44 | 9.04 | 9.2 | 1.60 | 75.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Xu, Y.; Zhang, S.; Xu, A.; Meng, Z.; Ge, H.; Li, J.; Liu, Y.; Ma, D. Transformation Capability Optimization and Product Application Potential of Proteatia brevitarsis (Coleoptera: Cetoniidae) Larvae on Cotton Stalks. Insects 2022, 13, 1083. https://doi.org/10.3390/insects13121083
Zhang G, Xu Y, Zhang S, Xu A, Meng Z, Ge H, Li J, Liu Y, Ma D. Transformation Capability Optimization and Product Application Potential of Proteatia brevitarsis (Coleoptera: Cetoniidae) Larvae on Cotton Stalks. Insects. 2022; 13(12):1083. https://doi.org/10.3390/insects13121083
Chicago/Turabian StyleZhang, Guangjie, Yeshan Xu, Shuai Zhang, Andong Xu, Zhuo Meng, Hao Ge, Jing Li, Yusheng Liu, and Deying Ma. 2022. "Transformation Capability Optimization and Product Application Potential of Proteatia brevitarsis (Coleoptera: Cetoniidae) Larvae on Cotton Stalks" Insects 13, no. 12: 1083. https://doi.org/10.3390/insects13121083
APA StyleZhang, G., Xu, Y., Zhang, S., Xu, A., Meng, Z., Ge, H., Li, J., Liu, Y., & Ma, D. (2022). Transformation Capability Optimization and Product Application Potential of Proteatia brevitarsis (Coleoptera: Cetoniidae) Larvae on Cotton Stalks. Insects, 13(12), 1083. https://doi.org/10.3390/insects13121083