Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murillo-Ramos, L.; Sihvonen, P.; Brehm, G.; Ríos-Malaver, I.C.; Wahlberg, N. A database and checklist of geometrid moths (Lepidoptera) from Colombia. Biodivers. Data J. 2021, 9, e68693. [Google Scholar] [CrossRef]
- Franzen, M.; Johannesson, M. Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J. Insect Conserv. 2007, 11, 367–390. [Google Scholar] [CrossRef]
- Bell, J.R.; Blumgart, D.; Shortall, C.R. Are insects declining and at what rate? An analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv. Divers. 2020, 13, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Uhl, B.; Wölfling, M.; Fiedler, K. Exploring the power of moth samples to reveal community patterns along shallow ecological gradients. Ecol. Entomol. 2022, 47, 371–381. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, G.J.; Shin, H.J. Biocontrol of moth pests in apple orchards: Preliminary field study of application potential for mass trapping. Biotechnol. Bioprocess Eng. 2011, 16, 153–157. [Google Scholar] [CrossRef]
- Yao, Q.; Lv, J.; Liu, Q.J.; Diao, G.Q.; Yang, B.J.; Chen, H.M.; Tang, J. An insect imaging system to automate rice light-trap pest identification. J. Integr. Agric. 2012, 11, 978–985. [Google Scholar] [CrossRef]
- Muirhead-Thomson, R.C. Trap Responses of Flying Insects; Academic Press: London, UK, 1991; pp. 1–65. [Google Scholar]
- Raimondo, S.; Strazanac, J.S.; Butler, L. Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environ. Entomol. 2004, 33, 418–425. [Google Scholar] [CrossRef]
- Brehm, G. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterol. 2017, 40, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Fayle, T.M.; Sharp, R.E.; Majerus, M.E.N. The effect of moth trap type on catch size and composition in British Lepidoptera. Br. J. Entomol. Nat. Hist. 2007, 20, 221–232. [Google Scholar]
- Bjerge, K.; Nielsen, J.B.; Sepstrup, M.V.; Helsing-Nielsen, F.; Høye, T.T. An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. Sensors 2021, 21, 343. [Google Scholar] [CrossRef]
- Yela, J.L.; Holyoak, M. Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ. Entomol. 1997, 26, 1283–1290. [Google Scholar] [CrossRef]
- Freitas, A.V.L.; Iserhard, C.A.; Santos, J.P.; Carreira, J.Y.O.; Ribeiro, D.B.; Melo, D.H.A.; Rosa, A.H.B.; Marini-Filho, O.J.; Accacio, G.M.; Uehara-Prado, M. Studies with butterfly bait traps: An overview. Rev. Colomb. Entomol. 2014, 40, 203–212. [Google Scholar]
- Süssenbach, D.; Fiedler, K. Noctuid moths attracted to fruit baits: Testing models and methods of estimating species diversity. Nota Lepidopterol. 1999, 22, 115–154. [Google Scholar]
- Laaksonen, J.; Laaksonen, T.; Itämies, J.; Rytkönen, S.; Välimäki, P. A new efficient bait-trap model for Lepidoptera surveys—The “Oulu” model. Entomol. Fenn. 2006, 17, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, M.; Hanski, I. Metapopulations of moths on islands: A test of two contrasting models. J. Anim. Ecol. 1998, 67, 149–160. [Google Scholar] [CrossRef]
- Nieminen, M.; Rita, H.; Uuvana, P. Body size and migration rate in moths. Ecography 1999, 22, 697–707. [Google Scholar] [CrossRef]
- Merckx, T.; Kaiser, A.; van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Chang. Biol. 2018, 24, 3837–3848. [Google Scholar] [CrossRef]
- Jonason, D.; Franzen, M.; Pettersson, L.B. Transient peak in moth diversity as a response to organic farming. Basic Appl. Ecol. 2013, 14, 515–522. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Heppelthwaite, V.J.; Manning, L.M.; Gibb, A.R.; Suckling, D.M. Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. J. Agric. Food Chem. 2005, 53, 953–958. [Google Scholar] [CrossRef]
- Butler, L.; Kondo, C.; Barrows, E.M.; Townsend, E.C. Effects of weather conditions and trap types on sampling for richness and abundance of forest Macrolepidoptera. Environ. Entomol. 1999, 28, 795–811. [Google Scholar] [CrossRef]
- Steinbauer, M.J.; Haslem, A.; Edwards, E.D. Using meteorological and lunar information to explain catch variability of Orthoptera and Lepidoptera from 250 W Farrow light traps. Insect Conserv. Divers. 2011, 5, 367–380. [Google Scholar] [CrossRef]
- Jonason, D.; Franzén, M.; Ranius, T. Surveying moths using light traps: Effects of weather and time of year. PLoS ONE 2014, 9, e92453. [Google Scholar] [CrossRef]
- Niermann, J.; Brehm, G. The number of moths caught by light traps is affected more by microhabitat than the type of UV lamp used in a grassland habitat. Eur. J. Entomol. 2022, 119, 36–42. [Google Scholar] [CrossRef]
- Rosenvald, R.; Lõhmus, P.; Rannap, R.; Remm, L.; Rosenvald, K.; Runnel, K.; Lõhmus, A. Assessing long-term effectiveness of green-tree retention. For. Ecol. Manag. 2019, 448, 543–548. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-153. 2021. Available online: https://CRAN.R-project.org/package=nlme (accessed on 25 August 2022).
- R Core Team, R. A Language and Environment for Statistical Computing (Version 4.1.2); R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Jürivete, U.; Õunap, E. Estonian Lepidoptera Catalogue; Eesti lepidopteroologide Selts: Tallinn, Estonia, 2020; pp. 5–192. [Google Scholar]
- Troen, I.; Peterson, E.L. European Wind Atlas; Risø National Laboratory: Roskilde, Denmark, 1989; p. 656. ISBN 87-550-1482-8.
- Jaagus, J.; Kull, A. Changes in surface wind directions in Estonia during 1966-2008 and their relationships with large-scale atmospheric circulation. Est. J. Earth Sci. 2011, 60, 220–231. [Google Scholar] [CrossRef]
- Hikisz, J.; Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 2015, 17, 59–71. [Google Scholar]
- Contreras, H.L.; Goyret, J.; von Arx, M.; Pierce, C.T.; Bronstein, J.L.; Raguso, R.A.; Davidowitz, G. The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 1053–1063. [Google Scholar] [CrossRef]
- Komatsu, M.; Kurihara, K.; Saito, S.; Domae, M.; Masuya, N.; Shimura, Y.; Kajiyama, S.; Kanda, Y.; Sugizaki, K.; Ebina, K.; et al. Management of flying insects on expressways through an academic-industrial collaboration: Evaluation of the effect of light wavelengths and meteorological factors on insect attraction. Zool. Lett. 2020, 6, 15. [Google Scholar] [CrossRef]
- Miao, J.; Guo, P.; Li, H.; Wei, C.; Liu, Q.; Gong, Z.; Duan, Y.; Li, T.; Jiang, Y.; Feng, H.; et al. Low barometric pressure enhances tethered-flight performance and reproductive of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). J. Econ. Entomol. 2021, 114, 620–626. [Google Scholar] [CrossRef]
- Pellegrino, A.C.; Peñaflor, M.F.G.V.; Nardi, C.; Bezner-Kerr, W.; Guglielmo, C.G.; Bento, J.M.S.; McNeil, J.N. Weather forecasting by Insects: Modified sexual behaviour in response to atmospheric pressure changes. PLoS ONE 2013, 8, e75004. [Google Scholar] [CrossRef] [PubMed]
- Zagvazdina, N.Y.; Paris, T.M.; Udell, B.J.; Stanislauskas, M.; McNeill, S.; Allan, S.A.; Mankin, R.W. Effects of atmospheric pressure trends on calling, mate-seeking, and phototaxis of Diaphorina citri (Hemiptera: Liviidae). Ann. Entomol. Soc. Am. 2015, 108, 762–777. [Google Scholar] [CrossRef] [Green Version]
- Austin, C.J.; Guglielmo, C.G.; Moehring, A.J. A direct test of the effects of changing atmospheric pressure on the mating behavior of Drosophila melanogaster. Evol. Ecol. 2014, 28, 535–544. [Google Scholar] [CrossRef]
Village | Coordinates * | Altitude (m asl) ** |
---|---|---|
Ivaste | 58°08′05″ N 26°37′26″ E | 165 |
58°08′02″ N 26°38′08″ E | 176 | |
Lutike | 58°07′28″ N 26°36′32″ E | 163 |
58°07′13″ N 26°36′29″ E | 156 |
Species | Total Abundance |
---|---|
Drepanidae | |
Thyatira batis | 193 |
Tethea or | 2 |
Ochropacha duplaris | 5 |
Geometridae | |
Timandra comae | 1 |
Idaea biselata | 4 |
Idaea aversata | 1 |
Scopula immutata | 1 |
Xanthorhoe spadicearia | 1 |
Ecliptopera silaceata | 4 |
Ecliptopera capitata | 2 |
Eupithecia icterata | 1 |
Hypomecis roboraria | 1 |
Hypomecis punctinalis | 1 |
Epione repandaria | 3 |
Cabera exanthemata | 1 |
Sphingidae | |
Deilephila elpenor | 2 |
Deilephila porcellus | 1 |
Erebidae | |
Scoliopteryx libatrix | 8 |
Rivula sericealis | 6 |
Pelosia muscerda | 2 |
Lithosia quadra | 1 |
Schrankia costaestrigalis | 137 |
Parascotia fuliginaria | 6 |
Catocala fulminea | 25 |
Catocala fraxini | 192 |
Catocala nupta | 31 |
Catocala pacta | 3 |
Noctuidae | |
Autographa gamma | 10 |
Deltote pygarga | 1 |
Amphipyra pyramidea | 2 |
Amphipyra perflua | 20 |
Amphipyra tragopoginis | 1 |
Allophyes oxyacanthae | 54 |
Acronicta cuspis | 1 |
Acronicta auricoma | 8 |
Acronicta rumicis | 26 |
Caradrina morpheus | 1 |
Dypterygia scabriuscula | 1 |
Trachea atriplicis | 33 |
Amphipoea fucosa | 1 |
Amphipoea oculea | 1 |
Photedes fluxa | 17 |
Xanthia togata | 1 |
Agrochola helvola | 2 |
Agrochola lota | 1 |
Enargia paleacea | 1 |
Ammoconia caecimacula | 10 |
Mniotype satura | 7 |
Lacanobia thalassina | 1 |
Lacanobia oleracea | 1 |
Mythimna conigera | 1 |
Mythimna impura | 1 |
Ochropleura plecta | 1 |
Noctua pronuba | 4 |
Eurois occulta | 1 |
Xestia c-nigrum | 5 |
Xestia baja | 11 |
Xestia xanthographa | 3 |
Nolidae | |
Meganola strigula | 1 |
Variable | Average | Minimum | Maximum | Average Norm * |
---|---|---|---|---|
independent | ||||
Temperature (°C) | 12.1 | 3.4 | 18.6 | 13.4 (3.4–27.5) |
Humidity (%) | 93.4 | 78.5 | 98.5 | 78 (87) |
Air pressure (mbar) | 1010.9 | 998.7 | 1020.7 | 1014.0 |
Change in pressure during the night (mbar) | −0.05 | −4.5 | 2.4 | n.a. |
Wind speed (m/s) | 0.10 | 0.00 | 1.21 | 0.16 |
Rainfall (mm) | 0.56 | 0.00 | 8.4 | 2.54 |
dependent | ||||
Abundance | 5.43 | 0 | 52 | |
Shannon index | 0.72 | 0 | 2.78 |
Type 1 Tests of Fixed Effects | |||||
---|---|---|---|---|---|
Effect | ω2, % * | NumDF | DenDF | F Value | p |
Date | 16.1 | 1 | 135 | 42.88 | <0.0001 |
Date2 | 10.1 | 1 | 135 | 10.11 | 0.0018 |
Temperature | 22.4 | 1 | 135 | 96.92 | <0.0001 |
Humidity | 9.7 | 1 | 135 | 37.57 | <0.0001 |
Variable | Abundance | Shannon Index | ||||
---|---|---|---|---|---|---|
t | p | Direction 1 | t | p | Direction 1 | |
Air pressure | −0.42 | 0.66 | X | X | X | |
Air pressure change | −0.86 | 0.39 | X | X | X | |
Wind speed | −1.76 | 0.08 | Negative | −0.4 | 0.69 | |
Maximal wind speed | −1.21 | 0.22 | 0.77 | 0.44 | ||
Dew 2 | −1.24 | 0.21 | −1.33 | 0.18 | Negative | |
Rainfall 3 | 0.15 | 0.87 | 1.39 | 0.16 | Positive | |
Raining time 4 | 0.27 | 0.78 | 1.27 | 0.2 | ||
Rain in daytime 5 | 1.16 | 0.24 | 1.82 | 0.07 | Positive |
Type 1 Tests of Fixed Effects | |||||
---|---|---|---|---|---|
Effect | ω2, % * | NumDF | DenDF | F Value | p |
Date | 19.4 | 1 | 134 | 21.30 | <0.0001 |
Temperature | 12.2 | 1 | 134 | 62.14 | <0.0001 |
Humidity | 6.3 | 1 | 134 | 34.46 | <0.0001 |
Air pressure | 2.5 | 1 | 134 | 6.70 | 0.0107 |
Air pr. change | 0.9 | 1 | 134 | 5.94 | 0.0161 |
Measure of Temperature and Humidity | Abundance, Delta AIC | Shannon, Delta AIC |
---|---|---|
Full night | ||
Maximal | 31.26 | 13.5 |
Minimal | 20.4 | 0.89 |
First half of the night | ||
Average | 1.12 | 2.17 |
Maximal | 23.59 | 4.14 |
Minimal | 4.69 | −1.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetnassi, N.; Ude, K.; Kull, A.; Tammaru, T. Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe. Insects 2022, 13, 1087. https://doi.org/10.3390/insects13121087
Fetnassi N, Ude K, Kull A, Tammaru T. Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe. Insects. 2022; 13(12):1087. https://doi.org/10.3390/insects13121087
Chicago/Turabian StyleFetnassi, Nidal, Kadri Ude, Ain Kull, and Toomas Tammaru. 2022. "Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe" Insects 13, no. 12: 1087. https://doi.org/10.3390/insects13121087
APA StyleFetnassi, N., Ude, K., Kull, A., & Tammaru, T. (2022). Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe. Insects, 13(12), 1087. https://doi.org/10.3390/insects13121087