Larval-Transcriptome Dynamics of Ectropis grisescens Reveals Differences in Virulence Mechanism between Two EcobNPV Strains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses and Insects
2.2. Virulence Bioassay
2.3. Preparation of the Infected E. grisescens Larvae
2.4. Library Construction and Sequencing
2.5. Identification of Differentially-Expressed Genes
2.6. Validation of DEGs Using Quantitative RT-PCR
3. Results
3.1. Virulence Determination of the Two EcobNPV Strains
3.2. Transcriptome Sequencing and DEGs Identification
3.3. KEGG Enrichment-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Wang, Z.B.; Mao, T.F.; Bai, J.H.; Xiao, Q. An investigation on occurrence of tea looper (Lepidoptera: Geometridae) in Zhejiang Province in 2016. Tea 2017, 43, 71–73. [Google Scholar]
- Jiang, N.; Liu, S.X.; Xue, D.Y.; Tang, M.J.; Xiao, Q.; Han, H.X. External morphology and molecular identification of two tea Geometrid moth from southern China. Chin. J. Appl. Entomol. 2014, 51, 987–1002. [Google Scholar]
- Bai, J.H.; Tang, M.J.; Yin, K.S.; Wang, Z.B.; Xiao, Q. Differential biological characteristics between closely related tea geometrid species, Ectropis obliqua and Ectropis grisescens. Acta Agric. Zhejiangensis 2018, 30, 797–803. [Google Scholar]
- Li, H.; Tang, M.J.; Guo, H.W.; Wang, Z.B.; Xiao, Q. Toxicity difference of EoNPV of two sibling species of tea genometrids. Acta Agric. Zhejiangensis 2020, 32, 1415–1419. [Google Scholar]
- Wang, Z.; Bai, J.; Liu, Y.; Li, H.; Zhan, S.; Xiao, Q. Transcriptomic analysis reveals insect hormone biosynthesis pathway involved in desynchronized development phenomenon in hybridized sibling species of tea geometrids (Ectropis grisescens and Ectropis obliqua). Insects 2019, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Qiao, N.; Zhang, W.; Cheng, R.L.; Zhang, X.Q.; Bao, Y.Y.; Xu, Y.P.; Gu, L.Z.; Han, J.D.; Zhang, C.X. Dynamic interactions between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. J. Virol. 2012, 86, 7345–7359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.C.; Shang, J.Y.; Yang, Z.N.; Bao, Y.Y.; Xiao, Q.; Zhang, C.X. Genome sequence and organization of a nucleopolyhedrovirus that infects the tea looper caterpillar, Ectropis obliqua. Virology 2007, 360, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.J.; Guo, H.W.; Ge, C.M.; Yin, K.S.; Xiao, Q. Pathogenicity characters of Ectropis obliqua nucleopolyhedrovirus on Ectropis grisescens Warren and screening of high efficacy strain. Acta Agric. Zhejiangensis 2017, 29, 1686–1691. [Google Scholar]
- Zhang, X.X.; Mei, Y.; Li, H.; Tang, M.J.; He, K.; Xiao, Q. Differences in virulence and genomics of two Ectropis obliqua nucleopolyhedrovirus strains to Ectropis grisescens. J. Plant Prot. 2021, 48, 1457–1465. [Google Scholar]
- Braunagel, S.C.; Summers, M.D. Molecular biology of the baculovirus occlusion-derived virus envelope. Curr. Drug Targets 2007, 8, 1084–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Goldsmith, M.R.; Xia, Q.Y. Advances in the Arms Race between silkworm and baculovirus. Front. Immunol. 2021, 12, 628151. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.; Lamb, R.A. Mechanisms for enveloped virus budding: Can some viruses do without an ESCRT? Virology 2008, 372, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blissard, G.W.; Theilmann, D.A. Baculovirus Entry and Egress from Insect Cells. Annu. Rev. Virol. 2018, 5, 113–139. [Google Scholar] [CrossRef]
- Wang, G.B.; Zhang, J.J.; Shen, Y.W.; Zheng, Q.; Feng, M.; Xiang, X.W.; Wu, X.F. Transcriptome analysis of the brain of the silkworm Bombyx mori infected with Bombyx mori nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection. J. Invertebr. Pathol. 2015, 128, 37–43. [Google Scholar] [CrossRef]
- Li, G.; Qian, H.; Luo, X.; Xu, P.; Yang, J.; Liu, M.; Xu, A. Transcriptomic Analysis of Resistant and Susceptible Bombyx mori Strains Following BmNPV Infection Provides Insights into the Antiviral Mechanisms. Int. J. Genom. 2016, 2016, 2086346. [Google Scholar]
- Tang, M.J. Studies on the Production and Application of EoNPV Preparations for the Management of the Tea Looper, Ectropis obliqua. Master’s Thesis, Zhejiang University, Hangzhou, China, 2008. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Pan, Y.J.; Fang, G.Q.; Wang, Z.B.; Cao, Y.H.; Liu, Y.J.; Li, G.Y.; Liu, X.J.; Xiao, Q.; Zhan, S. Chromosome-level genome reference and genome editing of the tea geometrid. Mol. Ecol. Resour. 2021, 21, 2034–2049. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.G.; Yuan, Z.J.; Yin, K.S.; Fu, J.Y.; Xiao, Q. Molecular Cloning and Expression Analysis of Hemolin Gene in Tea Geometrid (Ectropis obliqua). Tea Sci. 2015, 35, 307–315. [Google Scholar]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erlandson, M.A.; Toprak, U.; Hegedus, D.D. Role of the peritrophic matrix in insect-pathogen interactions. J. Insect Physiol. 2019, 117, 103894. [Google Scholar] [CrossRef] [PubMed]
- Slack, J.; Arif, B.M. The baculoviruses occlusion-derived virus: Virion structure and function. Adv. Virus Res. 2007, 69, 99–165. [Google Scholar]
- Haas-Stapleton, E.J.; Washburn, J.O.; Volkman, L.E. P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens Larvae. J. Virol. 2004, 78, 6786–6791. [Google Scholar] [CrossRef] [Green Version]
- Flipsen, J.T.; Martens, J.W.; van Oers, M.M.; Vlak, J.M.; van Lent, J.W. Passage of Autographa californica nuclear polyhedrosis virus through the midgut epithelium of Spodoptera exigua larvae. Virology 1995, 208, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Danthi, P. Viruses and the Diversity of Cell Death. Annu. Rev. Virol. 2016, 3, 533–553. [Google Scholar] [CrossRef]
- Nakamoto, M.; Moy, R.H.; Xu, J.; Bambina, S.; Yasunaga, A.; Shelly, S.S.; Gold, B.; Cherry, S. Virus recognition by Toll-7 activates antiviral autophagy in drosophila. Immunity 2012, 36, 658–667. [Google Scholar] [CrossRef]
- Liu, B.; Behura, S.K.; Clem, R.J.; Schneemann, A.; Becnel, J.; Severson, D.W.; Zhou, L. P53-Mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLoS Pathog. 2013, 9, e1003137. [Google Scholar] [CrossRef] [Green Version]
- Betz, A.; Lampen, N.; Martinek, S.; Young, M.W.; Darnell, J.E., Jr. A Drosophila PIAS homologue negatively regulates stat92E. Proc. Natl. Acad. Sci. USA 2001, 98, 9563–9568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Z.; Zhu, L.B.; You, L.L.; Wang, J.; Cao, H.H.; Liu, Y.X.; Toufeeq, S.; Wang, Y.L.; Kong, X.; Xu, J.P. A Novel Digestive Proteinase Lipase Member H-A in Bombyx mori Contributes to Digestive Juice Antiviral Activity against B. mori Nucleopolyhedrovirus. Insects 2020, 11, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Z.; Wang, J.; Zhu, L.B.; Toufeeq, S.; Xu, X.; You, L.L.; Li, B.; Hu, P.; Xu, J.P. Quantitative label-free proteomic analysis reveals differentially expressed proteins in the digestive juice of resistant versus susceptible silkworm strains and their predicted impacts on BmNPV infection. J. Proteom. 2020, 210, 103527. [Google Scholar] [CrossRef] [PubMed]
- Smede, M.; Hussain, M.; Asgari, S. A lipase-like gene from Heliothis virescens ascovirus (HvAV-3e) is essential for virus replication and cell cleavage. Virus Genes 2009, 39, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–724S; discussion 724S–725S. [Google Scholar] [CrossRef] [Green Version]
- Guengerich, F.P.; Waterman, M.R.; Egli, M. Recent structural insights into Cytochrome P450 function. Trends Pharmacol. Sci. 2016, 37, 625–640. [Google Scholar] [CrossRef] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
Gene ID | Primers (5′–3′) | |
---|---|---|
Eg_22_416_0 | F: CACGATGAATACGCACACC | R: TGCACTACAGCGTTAAATCC |
Eg_22_418_0 | F: GTTCAGCAAAATCGTAGCTTTC | R: GTATTCATCATGACCGTCGTAG |
Eg_26_034_0 | F: GAAACCAGAGACGAGGAAAAG | R: TCCGGCGAGGTAATTCAAC |
Eg_10_226_1 | F: ACAAAAGAGGCAACTGTAACAC | R: GCTTATTCCTGATGCTACCCTG |
Eg_07_642_0 | F: TTCCGTCTCACAACCCGTTC | R: GCCGCCTAGCAACAAGAAAG |
Eg_21_212_1 | F: ATTTGAAGCCGCTCGCATC | R: CTTACCAGGAAAGGGTACGC |
Eg_02_229_0 | F: AAATGTTCATCGTCCTATGCC | R: CAGAAGCAGCAGCATACAG |
Eg_07_392_1 | F: ACCAACCAAACCACCACAC | R: CCACTAAAGCGGCAAATTCTTC |
Eg_30_027_1 | F: AGAGCCATCTTCTGACTCC | R: TCTGATACCCACTGCTAACAC |
Eg_29_151_1 | F: CCGCTTCAACTTCCACTTC | R: CCACCATAGCCTCCATAGTC |
Eg_10_045_0 | F: ACCAACCAAACCACCACAC | R: CCACTAAAGCGGCAAATTCTTC |
Eg_06_107_0 | F: CAAATCTTCCCTCACATACCC | R: TGCGCTTTCTTCGATAAATCC |
Eg_22_432_1 | F: TGTTCTCCAAAGTAGTGTGCC | R: TCGTGTCTCACGATGCTCTG |
Eg_22_583_0 | F: ACCATCACATCAAACTACCATC | R: ACAACATCAAGCCAAAAACG |
Eg_22_441_1 | F: TTACTCGTCGCAGCACATC | R: ACACCTTGTACGCGAACTC |
Eg_18_150_1 | F: TGTCTTCCAATTCAGCAAACTC | R: GCCTCATTCTGTTGTGTTTCC |
GAPDH | F: TCCCTCAGCGGCTTCCTT | R: AACATCATTCCAGCGTCCACT |
Strain | EcobNPV-QV | EcobNPV-QF4 | |
---|---|---|---|
Number | 254 | 260 | |
Virulence regression equation | y = −1.534 + 0.712x | y = −2.638 + 1.107x | |
Correlation coefficient R | 0.9932 | 0.9653 | |
*LD50 and 95% confidence interval | 4.35 × 108 | 7.89 × 106 | |
(2.57 × 108–8.16 × 108) | (3.44 × 106–1.40 × 107) | ||
Virulence multiple | 1 | 55.1 | |
**LT50 | 2 × 104 OB | 26.42 | 11.51 |
2 × 105 OB | 11.89 | 9.55 | |
2 × 106 OB | 10.13 | 6.91 | |
2 × 107 OB | 8.15 | 3.56 |
Pathway | Gene ID | Time (hpi) | Annotation | Log2FoldChange |
---|---|---|---|---|
Toll and Imd signaling pathway | Eg_02_074_0 | 0 | Cyclic AMP-dependent transcription factor ATF-2 | −2.293196074 |
Eg_10_718_1 | 0 | Putative uncharacterized protein | −1.671969275 | |
Eg_10_719_1 | 0 | Caspase-8 | −1.326504487 | |
Eg_24_090_0 | 0 | Modular serine protease | 2.269082305 | |
Eg_27_193_1 | 0 | Putative uncharacterized protein | −1.814366107 | |
Eg_27_194_1 | 0 | Ankyrin-3 | −1.803220912 | |
Eg_27_195_1 | 0 | Putative uncharacterized protein | −1.823257098 | |
Eg_16_351_1 | 48 | Peptidoglycan recognition protein 4 | 2.732780083 | |
Eg_22_255_0 | 48 | Beta-1,3-glucan-binding protein | −1.929052092 | |
Eg_24_072_0 | 48 | F-box/WD repeat-containing protein 1A | −1.280895798 | |
Eg_27_212_0 | 0 | Ankyrin-3 | −1.207470231 | |
JAK-STAT signaling pathway | Eg_17_178_1 | 48 | Suppressor of cytokine signaling 2 | 1.126190772 |
Eg_13_099_0 | 48 | Tyrosine-protein phosphatase non-receptor type 11 | −1.128339941 | |
Eg_12_232_1 | 0 | Phosphatidylinositol 3-kinase regulatory subunit alpha | −2.135074923 | |
Eg_11_449_0 | 0 | Suppressor of cytokine signaling 6 | −1.314295799 | |
Toll-like receptor signaling pathway | Eg_12_232_1 | 0 | Phosphatidylinositol 3-kinase regulatory subunit alpha | −2.135074923 |
Eg_10_718_1 | 0 | Putative uncharacterized protein | −1.671969275 | |
Eg_10_719_1 | 0 | Caspase-8 | −1.326504487 | |
Eg_18_286_1 | 48 | CWF19-like protein 2 homolog | 2.143904653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Mei, Y.; Li, H.; Tang, M.; He, K.; Xiao, Q. Larval-Transcriptome Dynamics of Ectropis grisescens Reveals Differences in Virulence Mechanism between Two EcobNPV Strains. Insects 2022, 13, 1088. https://doi.org/10.3390/insects13121088
Zhang X, Mei Y, Li H, Tang M, He K, Xiao Q. Larval-Transcriptome Dynamics of Ectropis grisescens Reveals Differences in Virulence Mechanism between Two EcobNPV Strains. Insects. 2022; 13(12):1088. https://doi.org/10.3390/insects13121088
Chicago/Turabian StyleZhang, Xinxin, Yang Mei, Hong Li, Meijun Tang, Kang He, and Qiang Xiao. 2022. "Larval-Transcriptome Dynamics of Ectropis grisescens Reveals Differences in Virulence Mechanism between Two EcobNPV Strains" Insects 13, no. 12: 1088. https://doi.org/10.3390/insects13121088
APA StyleZhang, X., Mei, Y., Li, H., Tang, M., He, K., & Xiao, Q. (2022). Larval-Transcriptome Dynamics of Ectropis grisescens Reveals Differences in Virulence Mechanism between Two EcobNPV Strains. Insects, 13(12), 1088. https://doi.org/10.3390/insects13121088