Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Volatiles Released by Microorganisms Directly Regulate Insect Behaviors through Olfactory Cues
2.1. Effects of Fungal Volatiles on Insect Behaviors
2.2. Effects of Bacterial Volatiles on Insect Behaviors through Olfaction
3. The Microorganism-Induced Changes in Host Volatiles Contributed to Altered Behaviors
3.1. Effects of Fungi-Induced Changes in Host Volatiles on Insect Behaviors through Olfaction
3.2. Effects of Bacteria-Induced Host Volatiles on Insect Behaviors through Olfaction
3.3. Effects of Virus-Induced Host Volatiles on Insect Behaviors through Olfaction
4. Symbiotic Microorganisms Regulate Olfaction in Insects
4.1. Effects of Symbiotic Bacteria on Insect Behaviors through Olfaction
4.2. Effects of Symbiotic Viruses on Insect Behaviors through Olfaction
5. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, B.S.; Stensmyr, M.C. Evolution of insect olfaction. Neuron 2011, 72, 698–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadenne, C.; Barrozo, R.B.; Anton, S. Plasticity in Insect Olfaction: To Smell or Not to Smell? Annu. Rev. Entomol. 2016, 61, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Wheelwright, M.; Whittle, C.R.; Riabinina, O. Olfactory systems across mosquito species. Cell Tissue Res. 2021, 383, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Touhara, K.; Vosshall, L.B. Sensing Odorants and Pheromones with Chemosensory Receptors. Annu. Rev. Physiol. 2009, 71, 307–332. [Google Scholar] [CrossRef]
- Fan, J.; Francis, F.; Liu, Y.; Chen, J.L.; Cheng, D.F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 2011, 10, 3056–3069. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.Q.; Zhang, L. Sexpheromones and olfactory proteins in Antheraea moths: A. pernyi and A. polyphemus (Lepidoptera: Saturniidae). Arch. Insect Biochem. 2020, 105, e21729. [Google Scholar] [CrossRef]
- Wicher, D.; Miazzi, F. Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors. Cell Tissue Res. 2021, 383, 7–19. [Google Scholar] [CrossRef]
- Tichy, H.; Hellwig, M. Independent processing of increments and decrements in odorant concentration by ON and OFF olfactory receptor neurons. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2018, 204, 873–891. [Google Scholar] [CrossRef] [Green Version]
- Babin, A.; Kolly, S.; Kawecki, T.J. Virulent bacterial infection improves aversive learning performance in Drosophil. Melanogaster. Brain Behav. Immun. 2014, 41, 152–161. [Google Scholar] [CrossRef]
- Wilson, R.I. Neural and behavioral mechanisms of olfactory perception. Curr. Opin. Neurobiol. 2008, 18, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.; Vosshall, L.B. Olfactory perception of chemically diverse molecules. BMC Neurosci. 2016, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Touhara, K. Insect olfaction: Receptors, signal transduction, and behavior. Results Probl. Cell Differ. 2009, 47, 121–138. [Google Scholar] [CrossRef]
- Nassel, D.R.; Zandawala, M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog. Neurobiol. 2019, 179, 101607. [Google Scholar] [CrossRef]
- Cassau, S.; Krieger, J. The role of SNMPs in insect olfaction. Cell Tissue Res. 2021, 383, 21–33. [Google Scholar] [CrossRef]
- Guo, H.; Smith, D.P. Time-Dependent Odorant Sensitivity Modulation in Insects. Insects 2022, 13, 354. [Google Scholar] [CrossRef]
- Williams, A.T.; Verhulst, E.C.; Haverkamp, A. A unique sense of smell: Development and evolution of a sexually dimorphic antennal lobe—A review. Entomol. Exp. Appl. 2022, 170, 303–318. [Google Scholar] [CrossRef]
- Clark, J.T.; Ray, A. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact. J. Chem. Ecol. 2016, 42, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Renou, M.; Anton, S. Insect olfactory communication in a complex and changing world. Curr. Opin. Insect Sci. 2020, 42, 1–7. [Google Scholar] [CrossRef]
- Anton, S.; Rossler, W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res. 2021, 383, 149–164. [Google Scholar] [CrossRef]
- Wang, X.W.; Blanc, S. Insect Transmission of Plant Single-Stranded DNA Viruses. Annu. Rev. Entomol. 2021, 66, 389–405. [Google Scholar] [CrossRef] [PubMed]
- Wielkopolan, B.; Jakubowska, M.; Obrepalska-Steplowska, A. Beetles as Plant Pathogen Vectors. Front. Plant Sci. 2021, 12, 748093. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Chen, Q.; Mao, Q.; Zhang, X.; Wu, W.; Chen, H.; Yu, X.; Wang, Z.; Wei, T. Vector mediated transmission of persistently transmitted plant viruses. Curr. Opin. Virol. 2018, 28, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, A.; Baweja, V.; Roy, A.; Chakraborty, A.; Singh, I.K. Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism. Microorganisms 2021, 9, 2422. [Google Scholar] [CrossRef]
- Gu, F.; Ai, S.P.; Chen, Y.Y.; Jin, S.; Xie, X.; Zhang, T.; Zhong, G.H.; Yi, X. Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference. ISME J. 2022, 16, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Yao, Z.; Raza, M.F.; Cai, Z.; Zhang, H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2021, 28, 286–301. [Google Scholar] [CrossRef]
- Ankrah, N.; Douglas, A.E. Nutrient factories: Metabolic function of beneficial microorganisms associated with insects. Environ. Microbiol. 2018, 20, 2002–2011. [Google Scholar] [CrossRef] [Green Version]
- Elston, K.M.; Leonard, S.P.; Geng, P.; Bialik, S.B.; Robinson, E.; Barrick, J.E. Engineering insects from the enc endosymbiont out. Trends Microbiol. 2022, 30, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wei, T. Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts. Mol. Plant. Microbe Interact. 2020, 33, 18–25. [Google Scholar] [CrossRef]
- Malassigne, S.; Minard, G.; Vallon, L.; Martin, E.; Valiente, M.C.; Luis, P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021, 9, 1552. [Google Scholar] [CrossRef]
- Khallaf, M.A.; Auer, T.O.; Grabe, V.; Depetris-Chauvin, A.; Ammagarahalli, B.; Zhang, D.D.; Lavista-Llanos, S.; Kaftan, F.; Weissflog, J.; Matzkin, L.M.; et al. Mate discrimination among subspecies through a conserved olfactory pathway. Sci. Adv. 2020, 6, 5279. [Google Scholar] [CrossRef] [PubMed]
- Janson, E.M.; Stireman, J.O.; Singer, M.S.; Abbot, P. Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 2008, 62, 997–1012. [Google Scholar] [CrossRef] [Green Version]
- Kaltenpoth, M.; Florez, L.V. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. Annu. Rev. Entomol. 2020, 65, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, E.L.; Karley, A.J.; Hubbard, S.F. Insect endosymbionts: Manipulators of insect herbivore trophic interactions? Protoplasma 2010, 244, 25–51. [Google Scholar] [CrossRef] [PubMed]
- Crowley-Gall, A.; Rering, C.C.; Rudolph, A.B.; Vannette, R.L.; Beck, J.J. Volatile microbial semiochemicals and insect perception at flowers. Curr. Opin. Insect Sci. 2021, 44, 23–34. [Google Scholar] [CrossRef]
- Keller, A.; Mcfrederick, Q.S.; Dharampal, P.; Steffan, S.; Danforth, B.N.; Leonhardt, S.D. (More than) Hitchhikers through the network: The shared microbiome of bees and flowers. Curr. Opin. Insect Sci. 2021, 44, 8–15. [Google Scholar] [CrossRef]
- Hosokawa, T.; Fukatsu, T. Relevance of microbial symbiosis to insect behavior. Curr. Opin. Insect Sci. 2020, 39, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Goelen, T.; Sobhy, I.S.; Vanderaa, C.; Wackers, F.; Rediers, H.; Wenseleers, T.; Jacquemyn, H.; Lievens, B. Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos 2020, 129, 1415–1428. [Google Scholar] [CrossRef]
- Borde, M.; Kshirsagar, Y.; Jadhav, R.; Baghela, A. A Rare Stinkhorn Fungus Itajahya rosea Attract Drosophila by Producing Chemical Attractants. Mycobiology 2021, 49, 223–234. [Google Scholar] [CrossRef]
- Grunseich, J.M.; Thompson, M.N.; Aguirre, N.M.; Helms, A.M. The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. Plants 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Flury, P.; Vesga, P.; Dominguez-Ferreras, A.; Tinguely, C.; Ullrich, C.I.; Kleespies, R.G.; Keel, C.; Maurhofer, M. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J. 2019, 13, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Carthey, A.; Gillings, M.R.; Blumstein, D.T. The Extended Genotype: Microbially Mediated Olfactory Communication. Trends Ecol. Evol. 2018, 33, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, P.; Vega, F.E. Ecology and Evolution of Insect-Fungus Mutualisms. Annu. Rev. Entomol. 2020, 65, 431–455. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Chen, H.; Yang, X.; Gao, Y.; Lu, Y.; Cheng, D. Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly. Commun. Biol. 2022, 5, 973. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.F.; Wang, F.; Fang, Q.; Chen, F.; Yao, H.W.; Gatehouse, A.; Ye, G.Y. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. Plant. Cell Environ. 2021, 44, 2700–2715. [Google Scholar] [CrossRef] [PubMed]
- Shannon, U.; Morath, R.H.J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Holighaus, G.; Rohlfs, M. Fungal allelochemicals in insect pest management. Appl. Microbiol. Biotechnol. 2016, 100, 5681–5689. [Google Scholar] [CrossRef]
- Stensmyr, M.C.; Dweck, H.K.; Farhan, A.; Ibba, I.; Strutz, A.; Mukunda, L.; Linz, J.; Grabe, V.; Steck, K.; Lavista-Llanos, S.; et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 2012, 151, 1345–1357. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, L.M.; Popay, A.J.; Glare, T.R.; Finch, S.C.; Cave, V.M.; Rostas, M. Olfactory responses of Argentine stem weevil to herbivory and endophyte-colonisation in perennial ryegrass. J. Pest Sci. 2022, 95, 263–277. [Google Scholar] [CrossRef]
- Yanagawa, A.; Imai, T.; Akino, T.; Toh, Y.; Yoshimura, T. Olfactory Cues from Pathogenic Fungus Affect the Direction of Motionof Termites, Coptotermes formosanus. J. Chem. Ecol. 2015, 41, 1118–1126. [Google Scholar] [CrossRef]
- Kecskemeti, S.; Szelenyi, M.O.; Erdei, A.L.; Geosel, A.; Fail, J.; Molnar, B.P. Fungal volatiles as olfactory cues for female fungus gnat, lycoriella ingenua in the avoidance of mycelia colonized compost. J. Chem. Ecol. 2020, 46, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Audrain, B.; Farag, M.A.; Ryu, C.M.; Ghigo, J.M. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 2015, 39, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffer, R.N.; Rering, C.C.; Maalouf, I.; Beck, J.J.; Vannette, R.L. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumblebees. Biol. Lett. 2019, 15, 20190132. [Google Scholar] [CrossRef] [PubMed]
- Liscia, A.; Angioni, P.; Sacchetti, P.; Poddighe, S.; Granchietti, A.; Setzu, M.D.; Belcari, A. Characterization of olfactory sensilla of the olive fly: Behavioral and electrophysiological responses to volatile organic compounds from the host plant and bacterial filtrate. J. Insect Physiol. 2013, 59, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Ordorica, A.; Contreras-Cornejo, H.A.; Orduno-Cruz, N.; Luna-Cruz, A.; Winkler, R.; Macias-Rodriguez, L. Volatiles released by Beauveria bassiana induce oviposition behavior in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). FEMS Microbiol. Ecol. 2022, 98, fiac114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chaudhury, M.F.; Durso, L.M.; Sagel, A.; Skoda, S.R.; Jelvez-Serra, N.S.; Santanab, E.G. Semiochemicals released from five bacteria identified from animal wounds infested by primary screwworms and their effects on fly behavioral activity. PLoS ONE 2017, 12, e0179090. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.Y.; Detrain, C.; Thonart, P.; Haubruge, E.; Francis, F.; Verheggen, F.J.; Lognay, G.C. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships. Insect Sci. 2017, 24, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivens, A.; Gadau, A.; Kiers, E.T.; Kronauer, D. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 2018, 27, 1898–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becher, P.G.; Flick, G.; Rozpędowska, E.; Schmidt, A.; Hagman, A.; Lebreton, S.; Larsson, M.C.; Hansson, B.S.; Piškur, J.; Witzgall, P.; et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct. Ecol. 2012, 26, 822–828. [Google Scholar] [CrossRef]
- Zhao, T.; Axelsson, K.; Krokene, P.; Borg-Karlson, A.K. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol. J. Chem. Ecol. 2015, 41, 848–852. [Google Scholar] [CrossRef]
- Wu, S.Y.; Duncan, L.W. Recruitment of an insect and its nematode natural enemy by olfactory cues from a saprophytic fungus. Soil Biol. Biochem. 2020, 144, 107781. [Google Scholar] [CrossRef]
- Vitanovic, E.; Aldrich, J.R.; Boundy-Mills, K.; Cagalj, M.; Ebeler, S.E.; Burrack, H.; Zalom, F.G. Olive fruit fly, bactrocera oleae (Diptera: Tephritidae), attraction to volatile compounds produced by host and Insect-Associated yeast strains. J. Econ. Entomol. 2020, 113, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.Y.; Lognay, G.C.; Detrain, C.; Heil, M.; Grigorescu, A.; Sabri, A.; Thonart, P.; Haubruge, E.; Verheggen, F.J. Bacteria may enhance species association in anant-aphid mutualistic relationship. Chemoecology 2015, 25, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Goelen, T.; Sobhy, I.S.; Vanderaa, C.; de Boer, J.G.; Delvigne, F.; Francis, F.; Wackers, F.; Rediers, H.; Verstrepen, K.J.; Wenseleers, T.; et al. Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Funct. Ecol. 2020, 34, 507–520. [Google Scholar] [CrossRef]
- Babikova, Z.; Gilbert, L.; Bruce, T.; Dewhirst, S.Y.; Pickett, J.A.; Johnson, D. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct. Ecol. 2014, 28, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Jallow, M.F.A.; Dugassa-Gobena, D.; Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Inteact. 2008, 2, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, D.; Gershenzon, J.; Andersson, M.N.; Hammerbacher, A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019, 13, 1788–1800. [Google Scholar] [CrossRef] [Green Version]
- Fingu-Mabola, J.C.; Martin, C.; Bawin, T.; Verheggen, F.J.; Francis, F. Does the Infectious Status of Aphids Influence Their Preference Towards Healthy, Virus-Infected and Endophytically Colonized Plants? Insects 2020, 11, 435. [Google Scholar] [CrossRef]
- Rizvi, S.; Raman, A. Volatiles from Botrytis cinerea-infected and healthy berries of Vitis vinifera influence the oviposition behaviour of Epiphyas postvittana. Entomol. Exp. Appl. 2016, 160, 47–56. [Google Scholar] [CrossRef]
- Penaflor, M.; Bento, J. Red-rot infection in sugarcane attenuates the attractiveness of sugarcane borer-induced plant volatiles to parasitoid. Arthropod-Plant Interact. 2019, 13, 117–125. [Google Scholar] [CrossRef]
- Lozano-Soria, A.; Picciotti, U.; Lopez-Moya, F.; Lopez-Cepero, J.; Porcelli, F.; Lopez-Llorca, L.V. Volatile Organic Compounds from Entomopathogenic and Nematophagous Fungi, Repel Banana Black Weevil (Cosmopolites sordidus). Insects 2020, 11, 509. [Google Scholar] [CrossRef]
- Pineda, A.; Soler, R.; Weldegergis, B.T.; Shimwela, M.M.; VAN Loon, J.J.; Dicke, M. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. Plant. Cell Environ. 2013, 36, 393–404. [Google Scholar] [CrossRef]
- Li, H.J.; Ren, L.; Xie, M.X.; Gao, Y.; He, M.Y.; Hassan, B.; Lu, Y.Y.; Cheng, D.F. Egg-surface bacteria are Indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr. Biol. 2020, 30, 4432. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Brewer, J.W.; Harrison, M.D. Insect transmission of Erwinia carotovora var. carotovora and Erwinia carotovora var. atroseptica to potato plants in the field. Am. Potato J. 1981, 58, 165–175. [Google Scholar] [CrossRef]
- Molina, J.J.; Harrison, M.D.; Brewer, J.W. Transmission of Erwinia carotovora var atroseptica by Drosophila melanogaster Meig. I. Acquisition and transmission of the bacterium. Am. Potato J. 1974, 51, 245–250. [Google Scholar] [CrossRef]
- Keesey, I.W.; Koerte, S.; Khallaf, M.A.; Retzke, T.; Guillou, A.; Grosse-Wilde, E.; Buchon, N.; Knaden, M.; Hansson, B.S. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat. Commun. 2017, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Wada-Katsumata, A.; Zurek, L.; Nalyanya, G.; Roelofs, W.L.; Zhang, A.; Schal, C. Gut bacteria mediate aggregation in the German cockroach. Proc. Natl. Acad. Sci. USA 2015, 112, 15678–15683. [Google Scholar] [CrossRef] [Green Version]
- Kathe, E.; Seidelmann, K.; Lewkowski, O.; Le Conte, Y.; Erler, S. Changes in chemical cues of Melissococcus plutonius infected honey bee larvae. Chemoecology 2021, 31, 189–200. [Google Scholar] [CrossRef]
- Mann, R.S.; Ali, J.G.; Hermann, S.L.; Tiwari, S.; Pelz-Stelinski, K.S.; Alborn, H.T.; Stelinski, L.L. Induced release of a plant-defense volatile ’deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog. 2012, 8, e1002610. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, H.; Zhou, G.H. Synergism Between Southern rice black-streaked dwarf virus and Rice ragged stunt virus Enhances Their Insect Vector Acquisition. Phytopathology 2014, 104, 794–799. [Google Scholar] [CrossRef]
- Mauck, K.E.; Smyers, E.; De Moraes, C.M.; Mescher, M.C. Virus infection influences host plant interactions with non-vector herbivores and predators. Funct. Ecol. 2015, 29, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, Y.; Liu, Z.; Peng, Y.; Peng, W.; Tong, L.; Wang, J.; Liu, Q.; Wang, P.; Cheng, G. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell 2022, 22, 2510–2522. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Jiao, X.G.; Xie, W.; Wang, S.L.; Wu, Q.J.; Shi, X.B.; Chen, G.; Su, Q.; Yang, X.; Pan, H.P.; et al. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia Tab. Sci. Rep. 2013, 3, 2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.L.; Zhang, B.B.; He, H.F.; Yan, M.H.; Li, J.J.; Yan, F.M. Changes in Visual and Olfactory Cues in Virus-Infected Host Plants Alter the Behavior of Bemisia tabaci. Front. Ecol. Evol. 2022, 10, 766570. [Google Scholar] [CrossRef]
- Fernandez-Conradi, P.; Jactel, H.; Robin, C.; Tack, A.; Castagneyrol, B. Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology 2018, 99, 300–311. [Google Scholar] [CrossRef]
- Manoussopoulos, Y.; Mantzoukas, S.; Lagogiannis, I.; Goudoudaki, S.; Kambouris, M. Effects of Three Strawberry Entomopathogenic Fungi on the Prefeeding Behavior of the Aphid Myzus persicae. J. Insect Behav. 2019, 32, 99–108. [Google Scholar] [CrossRef]
- Gehring, C.A.; Whitham, T.G. Mycorrhizae-Herbivore Interactions: Population and Community Consequences. Mycorrhizal Ecol. 2003, 157, 295–320. [Google Scholar] [CrossRef]
- Goggin, F.L. Plant-aphid interactions: Molecular and ecological perspectives. Curr. Opin. Plant Biol. 2007, 10, 399–408. [Google Scholar] [CrossRef]
- Thompson, G.A.; Goggin, F.L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 2006, 57, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Razak, N.A.; Gange, A.C. Multitrophic Interactions Between Arbuscular Mycorrhizal Fungi, Foliar Endophytic Fungi and Aphids. Microb. Ecol. 2021, 21, 1937. [Google Scholar] [CrossRef]
- Bell, K.; Naranjo-Guevara, N.; Santos, R.; Meadow, R.; Bento, J. Predatory earwigs are attracted by Herbivore-Induced plant volatiles linked with plant Growth-Promoting rhizobacteria. Insects 2020, 11, 271. [Google Scholar] [CrossRef]
- Meunier, J. Social immunity and the evolution of group living in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140102. [Google Scholar] [CrossRef] [Green Version]
- Cremer, S.; Pull, C.D.; Furst, M.A. Social Immunity: Emergence and Evolution of Colony-Level Disease Protection. Annu. Rev. Entomol. 2018, 63, 105–123. [Google Scholar] [CrossRef]
- Wang, H.; Xu, D.; Pu, L.; Zhou, G. Southern rice black-streaked dwarf virus alters insect vectors’ host orientation preferences to enhance spread and increase rice ragged stunt virus co-infection. Phytopathology 2014, 104, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Gaburro, J.; Paradkar, P.N.; Klein, M.; Bhatti, A.; Nahavandi, S.; Duchemin, J.B. Dengue virus infection changes Aedes aegypti oviposition olfactory preferences. Sci. Rep. 2018, 8, 13179. [Google Scholar] [CrossRef] [Green Version]
- Masuda-Nakagawa, L.M.; Gendre, N.; O’Kane, C.J.; Stocker, R.F. Localized olfactory representation in mushroom bodies of Drosophila larvae. Proc. Natl. Acad. Sci. USA 2009, 106, 10314–10319. [Google Scholar] [CrossRef] [Green Version]
- Jefferis, G.S.; Potter, C.J.; Chan, A.M.; Marin, E.C.; Rohlfing, T.; Maurer, C.J.; Luo, L. Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell 2007, 128, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- de Paula, G.T.; Menezes, C.; Pupo, M.T.; Rosa, C.A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 2021, 44, 41–47. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.F. Infection of Wolbachia may improve the olfactory response of Drosophila. Chin. Sci. Bull. 2009, 54, 1369–1375. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.T.; Li, H.; Borch, J.M.; Maksoud, E.; Borneo, J.; Liang, Y.; Quake, S.R.; Luo, L.; Haghighi, P.; Jasper, H. Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature 2021, 596, 97–102. [Google Scholar] [CrossRef]
- Keita, S.; Masuzzo, A.; Royet, J.; Kurz, C.L. Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor. J. Insect Physiol. 2017, 99, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.M.; Davis, F.P.; Henry, G.L.; Dubnau, J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 2019, 9, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Kobler, J.M.; Rodriguez, J.F.; Petcu, I.; Grunwald, K.I. Immune Receptor Signaling and the Mushroom Body Mediate Post-ingestion Pathogen Avoidance. Curr. Biol. 2020, 30, 4693–4709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mu, X.; Cao, Q.; Shi, Y.; Hu, X.; Zheng, H. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 2022, 13, 2037. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Palacios-Munoz, A.; Okray, Z.; Adair, K.L.; Waddell, S.; Douglas, A.E.; Ewer, J. The impact of the gut microbiome on memory and sleep in Drosophila. J. Exp. Biol. 2021, 224, jeb233619. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [Green Version]
- Slankster, E.; Lee, C.; Hess, K.M.; Odell, S.; Mathew, D. Effect of gut microbes on olfactory behavior of Drosophila melanogaster larva. Bios 2019, 90, 227–238. [Google Scholar] [CrossRef]
- Wilson, R.I.; Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 2005, 25, 9069–9079. [Google Scholar] [CrossRef] [Green Version]
- van Riel, D.; Verdijk, R.; Kuiken, T. The olfactory nerve: A shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 2015, 235, 277–287. [Google Scholar] [CrossRef]
- Bentley, M.D.; Day, J.F. Chemical ecology and behavioral aspects of mosquito oviposition. Annu. Rev. Entomol. 1989, 34, 401–421. [Google Scholar] [CrossRef]
- Navarro-Silva, M.A.; Marques, F.A.; Duque, J.E. Review of semiochemicals that mediate the oviposition of mosquitoes: Apossible sustainable tool for the control and monitoring of Culicidae. Rev. Bras. Entomol. 2009, 53, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vantaux, A.; Lefevre, T.; Dabire, K.R.; Cohuet, A. Individual experience affects host choice in malaria vector mosquitoes. Parasit Vectors 2014, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002, 10, 100–103. [Google Scholar] [CrossRef]
- Malik, B.R.; Gillespie, J.M.; Hodge, J.J. CASK and CaMKII function in the mushroom body alpha’/beta’ neurons during Drosophila memory formation. Front. Neural Circuits 2013, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Widmann, A.; Artinger, M.; Biesinger, L.; Boepple, K.; Peters, C.; Schlechter, J.; Selcho, M.; Thum, A.S. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae. PLoS Genet. 2016, 12, e1006378. [Google Scholar] [CrossRef] [Green Version]
- Lutz, E.K.; Lahondere, C.; Vinauger, C.; Riffell, J.A. Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: A life history perspective. Curr. Opin. Insect Sci. 2017, 20, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.; Galizia, C.G. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol. Parasit Vectors 2014, 7, 315. [Google Scholar] [CrossRef] [Green Version]
- Vogels, C.; Fros, J.J.; Pijlman, G.P.; van Loon, J.; Gort, G.; Koenraadt, C. Virus interferes with host-seeking behaviour of mosquito. J. Exp. Biol. 2017, 220, 3598–3603. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, C.W.; Zhou, Y.J. Olfactory co-receptor Orco stimulated by Rice stripe virus is essential for host seeking behavior in small brown planthopper. Pest. Manag. Sci. 2019, 75, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Gasque, S.N.; van Oers, M.M.; Ros, V.I. Where the baculoviruses lead, the caterpillars follow: Baculovirus-induced alterations in caterpillar behaviour. Curr. Opin. Insect Sci. 2019, 33, 30–36. [Google Scholar] [CrossRef]
- Llopis-Gimenez, A.; Caballero-Vidal, G.; Jacquin-Joly, E.; Crava, C.M.; Herrero, S. Baculovirus infection affects caterpillar chemoperception. Insect Biochem. Mol. Biol. 2021, 138, 103648. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Ceballos, R.; Arismendi, N.; Dalmon, A.; Vargas, M. Variant A of the Deformed Wings Virus Alters the Olfactory Sensitivity and the Expression of Odorant Binding Proteins on Antennas of Apis mellifera. Insects 2021, 12, 895. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.L.; Keesey, I.W.; Hansson, B.S.; Knaden, M. Gut microbiota affects development and olfactory behavior in Drosophila melanogaster. J. Exp. Biol. 2019, 222, jeb192500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, J.M.; Bracke, J.W.; Markovetz, A.J.; Wood, D.L.; Browne, L.E. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 1975, 254, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zwiebel, L.J. Identification and characterization of an odorant receptor from the West Nile virus mosquito, Culex quinquefasciatus. Insect Biochem. Mol. Biol. 2006, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
Microorganisms (Type) | Targets | Microbial Volatiles | Olfactory Modification | References |
---|---|---|---|---|
Penicillium (Fungi) | Bactrocera dorsalis | geosmin | Attracting egg laying | [25] |
Isaria fumosorosea (Fungi) | Coptotermes formosanus | 3-octanone and 1-octen-3-ol | Affecting direction of motion | [50] |
Agaricus bisporus (Fungi) | Lycoriella ingenua | 1-hepten-3-ol, 3-octanone and 1-octen-3-ol | Repelling egg laying | [51] |
Accharomyces cerevisiae (Fungi) | Drosophila melanogaster | ethanol, acetic acid, acetoin, 2-phenyl ethanol and 3-methyl-1-butanol | Attracting egg laying | [59] |
Bacillus cereus (Fungi) | Ips paraconfusus | 2-Methyl-3-buten-2-ol | Facilitating aggregation behavior | [60] |
Fusarium solani (Fungi) | Drosophila melanogaster | 1-pentanol and 1-octen-3-ol | Attracting feeding | [61] |
uraishia capsulata, Scheffersomyces ergatensis, Peterozyma xylosa, Wickerhamomyces subpelliculosus, and Lachancea thermotolerans (Bacteria) | Bactrocera oleae (Diptera: Tephritidae) | Isoamyl alcohol | Attracting mating | [62] |
Metschnikowia reukaufii (Bacteria) | Asaia astilbes | 2-ethyl-1-hexanol | Attracting feeding | [53] |
Pseudomonas putida (Bacteria) | Bactrocera oleae | methyl thiolacetate, olive leaves and olives, α-pinene, acetic acid | [54] | |
Klebsiella oxytoca Flugge, Proteus mirabilis Hauser, Proteus vulgaris Hauser, Providencia rettgeri Rettger and Providencia stuartii Ewing (Bacteria) | Cochliomyia hominivorax | dimethyl disulfide, dimethyl trisulfide, phenol, p-cresol and indole | Attracting egg laying | [56] |
Staphylococcus xylosus (Bacteria) | Aphis fabae | phenylethyl alcohol | Attracting feeding | [57,58,63] |
Corynebacterium sputi (Bacteria) | Aphidius colemani | esters, organic acids, aromatics and cycloalkanes | Repelling parasitism | [64] |
Microorganisms (Type) | Targets | Microbial Volatiles | Olfactory Modification | References |
---|---|---|---|---|
Arbuscular mycorrhizal (Fungi) | Acyrthosiphon pisum L. | (E)-caryophyllene and (E)-β-farnesene | Attracting feeding | [65] |
Acremonium strictum (Fungi) | Helicoverpa armigera | trans-β-caryophyllene | Attracting egg laying | [66] |
Endoconidiophora polonica, Grosmannia penicillata, Grosmannia europhioides, Ophiostoma bicolor and Ophiostoma piceae (Fungi) | Ips typographus | 3-methyl-1-butyl acetate, 2-methyl-1-butyl acetate | Attracting feeding | [67] |
Beauveria bassiana, Metarhizium acridum (Fungi) | Myzus persicae and Rhopalosiphum padi | heptanal, octanal, nonanal and decanal | Attracting feeding | [68] |
Botrytis cinerea (Fungi) | Epiphyas postvittana | Ethanol and 3-methyl-1-butanol | Repelling egg laying | [69] |
Diatraea saccharalis (Fungi) | Cotesia flavipes | 1-octen-3-ol | Repelling parasitism | [70] |
Beauveria bassiana and Metarhizium robertsii (Fungi) | Cosmopolites sordidus | styrene, benzothiazole, camphor, borneol, 1,3-dimethoxy-benzene, 1-octen-3-ol and 3-cyclohepten-1-one | Repelling feeding | [71] |
Pseudomonas fluorescens (Bacteria) | Diaeretiella rapae | jasmonic acid | Repelling parasitism | [72] |
Providencia, Klebsiella (Bacteria) | Bactrocera dorsalis | β-caryophyllene | Attracting egg laying | [73] |
Erwinia carotovora carotovora (Bacteria) | Drosophila melanogaster | methyl laurate, methyl myristate and methyl palmitate | Facilitating aggregation behavior | [74,75,76] |
Enterococcus avium, Weissella cibaria, Pseudomonas japonica, Pseudomonas monteilii, Acinetobacter pittii, Acinetobacter sp. (Bacteria) | Blattella germanica | carboxylic acids | Facilitating aggregation behavior | [77] |
Melissococcus plutonius (Bacteria) | Apis mellifera | cuticular hydrocarbon, brood ester pheromones, γ-octalactone | Repelling egg laying | [78] |
Candidatus Liberibacter asiaticus (Las) (Bacteria) | Diaphorina citri Kuwayama | methyl salicylate | Attracting feeding | [79] |
Rice dwarf virus (Virus) | Nephotettix cincticeps | (E)-β-caryophyllene and 2-heptanol | Attracting feeding | [45] |
Southern rice black-streaked dwarf virus (Virus) | Sogota furcifera | Chlorophyll alcohol | Attracting feeding | [80] |
Cucumber mosaic virus (Virus) | Anasa tristis | salicylic acid, ethylene | Attracting feeding | [81] |
Zika virus (Virus) | Aedes aegypti | acetophenone | Attracting feeding | [82] |
Tomato yellow leaf curl virus (Virus) | Bemisia tabaci | β-myrcene, thymene, β-phellandrene, caryophyllene, (+)-4-carene and α-humulene | Attracting feeding | [83] |
Cucurbit chlorotic yellows virus (Virus) | Bemisia tabaci | terpenes | Attracting feeding | [84] |
Microorganisms (Type) | Targets | Effects | Olfactory Modification | References |
---|---|---|---|---|
Wolbachia (Bacteria) | Drosophila melanogaster | Olfactory sensitivity | Attracting feeding | [99] |
Erwinia carotovora carotovora (Bacteria) | Drosophila melanogaster, Drosophila suzukii | Olfactory sensitivity | Repelling feeding | [101] |
Pseudomonas entomophila (Bacteria) | rosophila melanogaster | Olfactory sensitivity | Repelling feeding | [10,103] |
Lactobacillus plantarum and Acetobacter malorum (Bacteria) | Drosophila melanogaster | Olfactory sensitivity | Repelling chemotaxis response | [123] |
West Nile virus (Virus) | Culex pipiens Linnaeus | Olfactory memory | Repelling feeding | [118,124] |
Rice stripe virus (Virus) | Laodelphax striatellus | Olfactory sensitivity | Repelling feeding | [119] |
Spodoptera exigua multiple nucleopolyhedrovirus, Autographa californica multiple nucleopolyhedro virus (Virus) | Spodoptera exigua | Olfactory sensitivity | Attracting feeding | [121] |
Deformed Wings Virus (Virus) | Apis melllifera | Olfactory sensitivity | Repelling feeding | [122] |
West Nile Virus and Bancroftian filarisis (Virus) | Culex quinquefasciatus | Olfactory memory | Repelling feeding | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, S.; Zhang, Y.; Chen, Y.; Zhang, T.; Zhong, G.; Yi, X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. Insects 2022, 13, 1094. https://doi.org/10.3390/insects13121094
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. Insects. 2022; 13(12):1094. https://doi.org/10.3390/insects13121094
Chicago/Turabian StyleAi, Shupei, Yuhua Zhang, Yaoyao Chen, Tong Zhang, Guohua Zhong, and Xin Yi. 2022. "Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems" Insects 13, no. 12: 1094. https://doi.org/10.3390/insects13121094
APA StyleAi, S., Zhang, Y., Chen, Y., Zhang, T., Zhong, G., & Yi, X. (2022). Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. Insects, 13(12), 1094. https://doi.org/10.3390/insects13121094