Crystallography of Contemporary Contact Insecticides
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Compound | Fenthrin | Β-Cyfluthrin, rac-A | Β-Cyfluthrin, rac-B | Etofenprox | α-Cypermethrin | λ–Cyhalothrin | Thiacloprid | ||
---|---|---|---|---|---|---|---|---|---|
Polymorph | I | I | I | I | I | I | II | I | II |
CCDC No. | 2142944 | 2142946 | 2142945 | 2142943 | 2142947 | 2142941 | 2142942 | 2142940 | 2142939 |
Formula | C23H22ClF3O2 | C22H18Cl2FNO3 | C25H28O3 | C22H19Cl2NO3 | C23H19ClF3NO3 | C10H9ClN4S | |||
Mw, g/mol | 422.87 | 434.27 | 376.50 | 416.30 | 449.85 | 252.72 | |||
Space Group | C2/c | P21/c | P21/n | C2/c | P21/n | P21/c | P21/c | ||
Z, Z’ | 8, 2 | 4, 1 | 2, 1 | 2, 1 | 4, 1 | 8,1 | 4,1 | 4, 1 | 8, 2 |
a, Å | 35.061 (3) | 15.4332 (8) | 6.5099 (16) | 10.3004 (8) | 11.497 (2) | 34.273 (2) | 11.8222 (9) | 7.4438 (14) | 7.0305 (3) |
b, Å | 7.1704 (5) | 7.5413 (4) | 11.086 (3) | 10.5102 (8) | 13.712 (2) | 6.9368 (5) | 14.3037 (11) | 18.305 (3) | 35.2105 (13) |
c, Å | 17.1168 (12) | 19.3706 (10) | 14.333 (3) | 10.6408 (8) | 12.972 (2) | 18.3172 (12) | 12.5427 (10) | 8.2436 (15) | 9.0164 (3) |
α, ° | 90 | 90 | 94.487 (10) | 86.176 (3) | 90 | 90 | 90 | 90 | 90 |
β, ° | 99.999 (3) | 112.348 (2) | 96.984 (11) | 63.403 (3) | 98.349 (2) | 101.2360 (10) | 97.1020 (10) | 95.439 (6) | 98.2269 (11) |
ɣ, ° | 90 | 90 | 99.455 (11) | 87.263 (3) | 90 | 90 | 90 | 90 | 90 |
V, Å3 | 4237.8 (5) | 2085.14 (19) | 1007.7 (4) | 1027.56 (14) | 2023.2 (6) | 4271.3 (5) | 2104.7 (3) | 1118.21 (4) | 2209.02 (14) |
Dc, g/cm3 | 1.326 | 1.383 | 1.431 | 1.217 | 1.367 | 1.399 | 1.420 | 1.501 | 1.520 |
μ, mm−1 | 0.222 | 0.343 | 0.355 | 0.078 | 0.344 | 0.230 | 0.233 | 0.504 | 0.510 |
2θ range, ° | 2.36–28.30 | 2.18–28.33 | 1.87–26.97 | 1.94–28.32 | 2.174–28.317 | 1.211–28.288 | 2.169–28.316 | 2.23–26.00 | 2.31–28.30 |
T, K | 200 | 201 | 295 | 100 | 100 | 100 | 100 | 201 | 200 |
Total Reflections | 5187 | 5176 | 4015 | 5085 | 5045 | 5297 | 5246 | 2714 | 5478 |
Observed Reflections | 2595 | 3318 | 1642 | 3319 | 4452 | 4208 | 43842 | 2811 | 4586 |
No. Parameters | 265 | 264 | 264 | 256 | 255 | 282 | 282 | 145 | 289 |
R1[I > 2σ(I)] | 0.0735 | 0.0630 | 0.1579 | 0.0608 | 0.0349 | 0.0463 | 0.0502 | 0.0369 | 0.0401 |
wR2 all data | 0.2601 | 0.1731 | 0.4197 | 0.1506 | 0.0945 | 0.1276 | 0.1354 | 0.0946 | 0.1052 |
GoF | 1.033 | 1.054 | 1.043 | 1.022 | 1.067 | 1.022 | 1.007 | 1.087 | 1.032 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Erriah, B.; Hu, C.T.; Reiter, E.; Zhu, X.; López-Mejías, V.; Carmona-Sepúlveda, I.P.; Ward, M.D.; Kahr, B. A deltamethrin crystal polymorph for more effective malaria control. Proc. Natl. Acad. Sci. USA 2020, 117, 26633–26638. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Hu, C.T.; Erriah, B.; Vogt-Maranto, L.; Yang, J.; Yang, Y.; Qiu, M.; Fellah, N.; Tuckerman, M.E.; Ward, M.D.; et al. Imidacloprid crystal polymorphs for disease vector control and pollinator protection. J. Am. Chem. Soc. 2021, 143, 17144–17152. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, C.T.; Zhu, X.; Zhu, Q.; Ward, M.D.; Kahr, B. DDT Polymorphism and the lethality of crystal forms. Angew. Chem. 2017, 129, 10299–10303. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, X.; Hu, C.T.; Qiu, M.; Zhu, Q.; Ward, M.D.; Kahr, B. Inverse correlation between lethality and thermodynamic stability of contact Insecticide polymorphs. Cryst. Growth Des. 2019, 19, 1839–1844. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, C.T.; Yang, J.; Joyce, L.A.; Qiu, M.; Ward, M.D.; Kahr, B. Manipulating solid forms of contact insecticides for Infectious disease prevention. J. Am. Chem. Soc. 2019, 141, 16858–16864. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019; p. 232.
- Elliott, M.; Farnham, A.W.; Janes, N.F.; Needham, P.H.; Pulman, D.A. Synthetic insecticide with a new order of activity. Nature 1974, 248, 710–711. [Google Scholar] [CrossRef]
- Ranson, H.; N’Guessan, R.; Lines, J.; Moiroux, N.; Nkuni, Z.; Corbel, V. Pyrethroid resistance in African Anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol. 2011, 27, 91–98. [Google Scholar] [CrossRef]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, R.M.; Farnham, A.W. Genetics of resistance to insecticides of the ska strain of musca domestica. Entomol. Exp. Appl. 1968, 11, 133–142. [Google Scholar] [CrossRef]
- Strycharz, J.P.; Lao, A.; Li, H.; Qiu, X.; Lee, S.H.; Sun, W.; Yoon, K.S.; Doherty, J.J.; Pittendrigh, B.R.; Clark, J.M. Resistance in the highly DDT-resistant 91-R strain of drosophila melanogaster involves decreased penetration, increased metabolism, and direct excretion. Pestic. Biochem. Physiol. 2013, 107, 207–217. [Google Scholar] [CrossRef]
- Hemingway, J. The way forward for vector control. Science 2017, 358, 998–999. [Google Scholar] [CrossRef] [PubMed]
- Paton, D.G.; Childs, L.M.; Itoe, M.A.; Holmdahl, I.E.; Buckee, C.O.; Cai, F. Exposing anopheles mosquitoes to antimalarials block plasmodium parasite transmission. Nature 2019, 567, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Kupferschmidt, K. Pick your poison. Science 2016, 354, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C. Insecticide discovery: An evaluation and analysis. Pestic. Biochem. Physiol. 2013, 107, 8–17. [Google Scholar] [CrossRef]
- Lees, R.; Praulins, G.; Davies, R.; Brown, F.; Parsons, G.; White, A.; Ranson, H.; Small, G.; Malone, D. A testing cascade to identify repurposed insecticides for next-generation vector control tools: Screening a panel of chemistries with novel modes of action against a malaria vector. Gates Open Res. 2019, 3, 1464. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, J. Polymorphism in Molecular Crystals; IUCr Monographs on Crystallography; First Publ. in Paperback; Clarendon Press: Oxford, UK, 2007; ISBN 978-0-19-923656-5. [Google Scholar]
- McCrone, W.C. Crystallographic Data: 1. DDT. Anal. Chem. 1948, 20, 274–277. [Google Scholar] [CrossRef]
- Owen, J.D. Absolute configuration of the most potent isomer of the pyrethroid insecticide α-cyano-3-phenobenzyl-cis-3-(2,2-di bromovinyl)-2,2-dimethylcyclopropanecarboxylate by crystal structure analysis. J. Chem. Soc. Perkin Trans. 1 1975, 1865–1868. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommended Insecticides for Indoor Residual Spraying against Malaria Vectors; World Health Organization: Geneva, Switzerland, 2018.
- Eliel, E.; Wilen, S. Stereochemistry of Organic Compounds; Wiley-Interscience: New York, NY, USA, 1994. [Google Scholar]
- Liu, H.; Zhao, M.; Zhang, C.; Ma, Y.; Liu, W. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. Toxicology 2008, 253, 89–96. [Google Scholar] [CrossRef]
- Owen, J.D. Structure of rel-(α-R),(1R,trans)-α-cyano-3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, non-Insecticidal components of cypermethrin. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1981, 37, 1311–1314. [Google Scholar] [CrossRef]
- Baert, F.; Guelzim, A. X-ray structure of the pyrethroid insecticide {1R-[1α(S*),2α]}-2-(2,2-dichlorovinyl)-3,3-dimethylcyclopropanecarboxylic acid cyano(3-phenoxyphenyl)methyl ester (RU 24501). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1991, 47, 606–608. [Google Scholar] [CrossRef]
- Cheng, J.; Ju, G.; Dong, J. (1SR,3SR)-[(SR)-cyano-(3-phenoxyphenyl)methyl] 3-[(Z)-2-chloro-3,3,3-trifluoro-prop-1-enyl]-2,2-dimethylcyclopropane-1-carboxylate. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, o2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anadón, A.; Ares, I.; Martínez, M.; Martínez-Larrañaga, M.-R.; Martínez, M.-A. Chapter Four—Neurotoxicity of neonicotinoids. In Advances in Neurotoxicology; Aschner, M., Costa, L.G., Eds.; Neurotoxicity of Pesticides; Academic Press: Cambridge, MA, USA, 2020; Volume 4, pp. 167–207. [Google Scholar]
- US EPA. US EPA—Pesticides—Fact Sheet for Thiacloprid; US Environmental Protection Agency: Washington, DC, USA, 2003.
- Gao, J.-S.; Qiao, J.; Yu, Y.-H.; Hou, G.-F. (Z)-N-{3-[(6-Chloropyridin-3-yl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, o1140. [Google Scholar] [CrossRef] [PubMed]
- Shtukenberg, A.G.; Punin, Y.O.; Gunn, E.; Kahr, B. Spherulites. Chem. Rev. 2012, 112, 1805–1838. [Google Scholar] [CrossRef] [PubMed]
- Shtukenberg, A.G.; Zhu, X.; Yang, Y.; Kahr, B. Common occurrence of twisted molecular crystal morphologies from the melt. Cryst. Growth Des. 2020, 20, 6186–6197. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Punin, Y.O.; Gujral, A.; Kahr, B. Growth actuated bending and twisting of single crystals. Angew. Chem. Int. Ed. 2014, 53, 672–699. [Google Scholar] [CrossRef]
- Cui, X.; Rohl, A.L.; Shtukenberg, A.; Kahr, B. Twisted aspirin crystals. J. Am. Chem. Soc. 2013, 135, 3395–3398. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Cui, X.; Freudenthal, J.; Gunn, E.; Camp, E.; Kahr, B. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites. J. Am. Chem. Soc. 2012, 134, 6354–6364. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erriah, B.; Zhu, X.; Hu, C.T.; Kahr, B.E.; Shtukenberg, A.; Ward, M.D. Crystallography of Contemporary Contact Insecticides. Insects 2022, 13, 292. https://doi.org/10.3390/insects13030292
Erriah B, Zhu X, Hu CT, Kahr BE, Shtukenberg A, Ward MD. Crystallography of Contemporary Contact Insecticides. Insects. 2022; 13(3):292. https://doi.org/10.3390/insects13030292
Chicago/Turabian StyleErriah, Bryan, Xiaolong Zhu, Chunhua T. Hu, Bart E. Kahr, Alexander Shtukenberg, and Michael D. Ward. 2022. "Crystallography of Contemporary Contact Insecticides" Insects 13, no. 3: 292. https://doi.org/10.3390/insects13030292
APA StyleErriah, B., Zhu, X., Hu, C. T., Kahr, B. E., Shtukenberg, A., & Ward, M. D. (2022). Crystallography of Contemporary Contact Insecticides. Insects, 13(3), 292. https://doi.org/10.3390/insects13030292