Integrative Alternative Tactics for Ixodid Control
Abstract
:Simple Summary
Abstract
1. Introduction
2. Growth Regulators
3. Botanically-Based Substances
3.1. Plants In Situ
3.2. Extracts
3.3. Essential Oils
4. Animal-Based Substances
5. Injected and Ingested Curative Medications
6. Vaccines
7. Biological Control
7.1. Natural Enemies
7.2. Parasitoids
7.3. Entomophagous Nematodes
7.4. Entomopathogens
7.4.1. Bacteria
7.4.2. Protozoa
7.4.3. Fungi
8. Inert Dusts
9. Cultural Control Tactics
10. Applied Prospects for Ixodid Management
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amoo, A.O.J.; Dipeolu, O.O.; Capstick, P.B.; Munyinyi, D.M.; Gichuru, L.N.; Odhiambo, T.R. Ixodid Ticks (Acari: Ixodidae) and Livestock Production: Effect of Varying Acaricide Treatments on Ticks and Productivity in East Coast Fever-Immunized Weaner and Dairy Cattle. J. Med. Entomol. 1993, 30, 503–512. [Google Scholar] [CrossRef] [PubMed]
- L’Hostis, M.; Seegers, H. Tick-borne parasitic diseases in cattle: Current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Vet. Res. 2002, 33, 599–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick Borne Dis. 2018, 9, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Wikel, S.K. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet. Sci. 2018, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.; Kilborne, F.L. Investigations into the Nature, Causation, and Prevention of Texas or Southern Cattle Fever; U.S. Department of Agriculture, Bureau of Animal Industry: Washington, DC, USA, 1893; Volume 1–5. [Google Scholar]
- Bock, R.; Jackson, L.; de Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- McLeod, R.; Kristjanson, P. Final Report of Joint Esys/ILRI/ACIAR TickCost Project–Economic impact of Ticks and Tick-Borne Diseases to Livestock in Africa, Asia and Australia; International Livestock Research Institute: Nairobi, Kenya, 1999. [Google Scholar]
- Dumler, J.S.; Barbet, A.F.; Bekker, C.P.; Dasch, G.A.; Palmer, G.H.; Ray, S.C.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar]
- Telford, S.R.; Dawson, J.E.; Katavolos, P.; Warner, C.K.; Kolbert, C.P.; Persing, D.H. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl. Acad. Sci. USA 1996, 93, 6209. [Google Scholar] [CrossRef] [Green Version]
- Rar, V.; Golovljova, I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect. Genet. Evol. 2011, 11, 1842–1861. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Mancini, A.J. 18—Infestations, Bites, and Stings. In Hurwitz Clinical Pediatric Dermatology, 4th ed.; Paller, A.S., Mancini, A.J., Eds.; Saunders: London, UK, 2011; pp. 416–435. [Google Scholar]
- Cook, M.J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 2014, 8, 1–8. [Google Scholar] [CrossRef]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Tularemia as a Biological WeaponMedical and Public Health Management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef]
- Ellis, J.; Oyston, P.C.F.; Green, M.; Titball, R.W. Tularemia. Clin. Microbiol. Rev. 2002, 15, 631–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massung, R.F.; Dasch, G.A.; Eremeeva, M.E. Chapter 17—Rickettsia and Coxiella. In Microbial Forensics, 2nd ed.; Budowle, B., Schutzer, S.E., Breeze, R.G., Keim, P.S., Morse, S.A., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 277–295. [Google Scholar]
- Mcduffie, W.C.; Eddy, G.; Clark, J.; Husman, C. Field Studies with Insecticides to control the Lone Star Tick in Texas. J. Econ. Entomol. 1950, 43, 520–527. [Google Scholar] [CrossRef]
- Mount, G.; Hirst, J.; McWilliams, J.; Lofgren, C.; White, S. Insecticides for control of the lone star tick tested in the laboratory and as high-and ultra-low-volume sprays in wooded areas. J. Econ. Entomol. 1968, 61, 1005–1007. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.A.; Howell, D.E. Lone star ticks; their biology and control in Ozark recreation areas. Okla. Agr. Exp. Sta. Bull B 1970, 679, 1–47. [Google Scholar]
- Roberts, R.; Zimmerman, J.; Mount, G. Evaluation of potential acaricides as residues for the area control of the lone star tick. J. Econ. Entomol. 1980, 73, 506–509. [Google Scholar] [CrossRef]
- Solberg, V.; Neidhardt, K.; Sardelis, M.; Hoffmann, F.; Stevenson, R.; Boobar, L.; Harlan, H. Field evaluation of two formulations of cyfluthrin for control of Ixodes dammini and Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 1992, 29, 634–638. [Google Scholar] [CrossRef]
- Schulze, T.L.; Jordan, R.A.; Hung, R.W. Effects of granular carbaryl application on sympatric populations of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 2000, 37, 121–125. [Google Scholar] [CrossRef]
- Eisen, L.; Dolan, M.C. Evidence for personal protective measures to reduce human contact with blacklegged ticks and for environmentally based control methods to suppress host-seeking blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 2016, 53, 1063–1092. [Google Scholar]
- Eisen, R.J.; Eisen, L. The blacklegged tick, Ixodes scapularis: An increasing public health concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef]
- Vudriko, P.; Okwee-Acai, J.; Tayebwa, D.S.; Byaruhanga, J.; Kakooza, S.; Wampande, E.; Omara, R.; Muhindo, J.B.; Tweyongyere, R.; Owiny, D.O.; et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasites Vectors 2016, 9, 4. [Google Scholar] [CrossRef]
- Davey, R.B.; Miller, J.A.; George, J.E.; Miller, R.J. Therapeutic and persistent efficacy of a single injection treatment of ivermectin and moxidectin against Boophilus microplus (Acari: Ixodidae) on infested cattle. Exp. Appl. Acarol. 2005, 35, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.B.; George, J.E. Efficacy of Coumaphos Applied as a Dip for Control of an Organophosphorus-Resistant Strain of Boophilus microplus (Acari: Ixodidae) on Cattle. J. Econ. Entomol. 1999, 92, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Davey, R.B.; George, J.E. First Report of Organophosphate-resistant Boophilus microplus (Acari: Ixodidae) within the United States. J. Med. Entomol. 2005, 42, 912–917. [Google Scholar] [CrossRef]
- Showler, A.T.; Osbrink, W.L.A.; Munoz, E.; Caesar, R.M.; Abrigo, V. Lethal effects of silica gel-based CimeXa and kaolin-based Surround dusts against ixodid (Acari: Ixodidae) eggs, larvae, and nymphs. J. Med. Entomol. 2018, 56, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Showler, A.T.; Harlien, J.L. Effects of silica based CimeXa and Drione dusts against lone star tick, Amblyomma americanum (L.) (Ixodida: Ixodidae), on cattle. J. Med. Entomol. 2019, 57, 485–492. [Google Scholar]
- Showler, A.T.; Flores, N.; Caesar, R.M.; Mitchell, R.D.; de León, A.A.P. Lethal effects of a commercial diatomaceous earth dust product on Amblyomma americanum (Ixodida: Ixodidae) larvae and nymphs. J. Med. Entomol. 2020, 57, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Showler, A.T.; Dorsey, B.N.; Caesar, R.M. Lethal effects of a silica gel + thyme oil (EcoVia) dust and aqueous suspensions on Amblyomma americanum (L.) (Ixodidae: Ixodidae) larvae and nymphs. J. Med. Entomol. 2020, 57, 1516–1524. [Google Scholar] [CrossRef] [Green Version]
- Showler, A.T.; Garcia, A.R.; Caesar, R.M. Lethal effects of a silica gel + pyrethrins (Drione) on Amblyomma americanum (Ixodida: Ixodidae) larvae and nymphs. J. Med. Entomol. 2020, 57, 1864–1871. [Google Scholar] [CrossRef]
- Aguirre, J.; Sobrino, A.; Santamariá, M.; Aburto, A.; Roman, S.; Hernandez, M.; Ortiz, Y.A. Resistencia de garrapatas en Mexico. In Seminario Internacional de Parasitologia Animal, Cuernavaca, September 1985, Morelos, Mexico; Cavazzani, A.H., Garcia, M., Eds.; Delconica Impesones: Juitepec, Mexico, 1986; pp. 282–286. [Google Scholar]
- Santamariá, E.M.; Fragoso, H. Resistencia en garrapatas Boophilus microplus, a los ixodicides en Mexico. In Proceedings of the XIV Pan American Congress of Veterinary Science, Acapulco, Mexico, 9–15 October 1994; pp. 473–474. [Google Scholar]
- Miller, R.J.; Davey, R.B.; Li, A.Y.; Tijerina, M.; Davey, R.B.; George, J.E. Differential response to diazinon and coumaphos in a strain of Boophilus microplus (Acari: Ixodidae) collected in Mexico. J. Med. Entomol. 2008, 45, 905–911. [Google Scholar] [CrossRef]
- Fragoso, S.H.; Soberanes, N.; Ortiz, M.; Sanatamariá, M.; Ortiz, A. Epidemiologia de la resistencia a ixodicidas piretroides en garrapatas Boophilus microplus en la Republica Mexicana. In Seminario Internacional de Parasitologia Animal: Resistencia y Control en Garrapatas y Moscas de Importanccia Veterinaria; Rodriguez, S., Fragoso, H., Eds.; De Iconica Impresores: Jintepec, Mexico, 1995; pp. 45–46. [Google Scholar]
- Miller, R.J.; Davey, R.B.; George, J.E. Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 533–538. [Google Scholar] [CrossRef]
- Soberanes, N.C.; Sanatamariá, M.V.; Gragoso, H.S.; Garcia, Z.V. First case reported of amitraz resistance in the cattle tick Boophilus microplus in Mexico. Tec. Pecu. Mex. 2002, 40, 81–92. [Google Scholar]
- Li, A.Y.; Davey, R.B.; Miller, R.J.; George, J.E. Detection and characterization of amitraz resistance in the southern cattle tick, Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 2004, 36, 533–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, M.S.; Swindale, S.; Doverend, D.; Hess, E.A. Suppression of Boophilus microplus populations with fluazuron: An acarine growth regulator. Austral. Vet. J. 1996, 74, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.R.; Calligaris, I.B.; Roma, G.C.; Bechara, G.H.; Pizano, M.A.; Mathias, M.I.C. Potential of the insect growth regulator, fluazuron, in the control of Rhipicephalus sanguineus nymphs (Latreille, 1806) (Acari: Ixodidae): Determination of the LD95 and LD50. Exp. Parasitol. 2012, 131, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Ishaaya, I.; Horowitz, A.R. Insecticides with novel modes of action: An overview. In Insecticides with Novel Modes of Action; Ishaaya, I., Degheele, D., Eds.; Springer: Berlin, Germany, 1998; pp. 1–24. [Google Scholar]
- Ishaaya, I.; Horowitz, A.R. Novaluron, a novel IGR: Its biological activity and importance in IPM programs. In Proceedings of the 2nd Israel-Japan workshop: Ecologically sound new plant protection, Tokyo, Japan, 1–6 September 2001; Volume 30, p. 203. [Google Scholar]
- Barazani, A. Rimon (Novaluron): A Novel Benzoylphenyl Urea Insecticide with Broad Spectrum Insecticidal Activity; Makhteshim-Agan: Beer Sheva, Israel, 2000. [Google Scholar]
- Malinowski, H.; Pawinska, M. Comparative evaluation of chitin synthesis inhibitors as insecticides against Colorado potato beetle Leptinotarsa decemlineata Say. Pestic. Sci. 1992, 35, 349–353. [Google Scholar] [CrossRef]
- Glowacka, B.; Malinowski, H. The activity of acylurea insect growth regulators against forest pest sawflies (Pamphilidae and Diprionidae). Folia For. Pol. Ser. A 1994, 36, 79–90. [Google Scholar]
- Pluciennik, Z.; Olszak, R.W.; Tworkowska, U. Modern insecticides in controlling plum fruit moth (Grapholita funebrana Tr.). Prog. Plant Prot. 1999, 39, 448–451. [Google Scholar]
- Cutler, G.C.; Scott-Dupree, C.D.; Tolman, J.H.; Harris, C.R. Acute and sublethal toxicity of novaluron, a novel chitin synthesis inhibitor, to Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2005, 61, 1060–1068. [Google Scholar] [CrossRef]
- Mascari, T.M.; Mitchell, M.A.; Rowtan, E.D.; Foil, L.D. Evaluation of novaluron as a feed-through insecticide for control of immature sand flies (Diptera; Psychodidae). J. Med. Entomol. 2007, 44, 714–717. [Google Scholar]
- Arrendondo-Jimenez, J.I.; Valdez-Delgado, K.M. Effect of novaluron (Rimon 10EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus from Chiapas, Mexico. Med. Vet. Entomol. 2006, 20, 377–387. [Google Scholar] [CrossRef]
- Wilson, B.E.; Showler, A.T.; Reagan, T.E.; Beuzelin, J.M. Improved chemical control for the Mexican rice borer (Lepidoptera: Crambidae) in sugarcane: Larval exposure, a novel scouting method, and efficacy of a single aerial insecticide application. J. Econ. Entomol. 2012, 105, 1998–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Rocha, L.; Beers, E.H.; Dunley, J.E. Effect of pesticides on integrated mite management in Washington State. J. Entomol. Soc. Brit. Columbia 2008, 105, 97–107. [Google Scholar]
- Lefebvre, M.; Bostanian, N.J.; Mauffette, Y.; Racette, G.; Thistlewood, H.A.; Hardman, J.M. Laboratory-based toxicological assessments of new insecticides on mortality and fecundity of Neoseiulus fallacis (Acari: Phytoseiidae). J. Econ. Entomol. 2012, 105, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Beers, E.H.; Schmidt, R.A. Impacts of orchard pesticides on Galendromus occidentalis: Lethal and sublethal effects. Crop Prot. 2014, 56, 16–24. [Google Scholar] [CrossRef]
- Jamil, R.Z.R.; Vandervoort, C.; Gut, L.J.; Whalon, M.E.; Wise, J.C. Lethal time of insecticides on the predator mite Neoseiulus fallacis (Acari: Phytoseiidae) following topical exposure. Can. Entomol. 2016, 148, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Lohmeyer, K.H.; Davey, R.B.; Pound, J.M. Therapeutic and residual efficacy of a pour-on formulation of novaluron against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) on infested cattle. J. Entomol. Sci. 2012, 47, 238–246. [Google Scholar] [CrossRef]
- Palma, K.G.; Meola, R.W. Field evaluation of nylar for control of cat fleas (Siphonaptera: Pulicidae) in home yards. J. Med. Entomol. 1990, 27, 1045–1049. [Google Scholar] [CrossRef]
- Meola, R.; Ready, S.; Meola, S. Physiological effects of the juvenoid pyriproxyfen on adults, egg and alrvae of the cat flea. In Proceedings of the 1st International Conference on Insect Pests in the Urban Environment, Cambridge, UK, 30 June–3 July 1993; Wildey, K.B., Robinson, W.H., Eds.; John’s College: Cambridge, UK; BPCC-Wheatons: Exeter, UK, 1993; pp. 221–228. [Google Scholar]
- Palma, K.G.; Meola, S.M.; Meola, R.W. Mode of action of pyriproxyfen and methoprene on eggs of Ctenocephalides felis (Siphonaptera: Pulicidae). J. Med. Entomol. 1993, 30, 421–426. [Google Scholar] [CrossRef]
- Sanchez-Ramos, I.; Castañera, P. Laboratory evaluation of selective pesticides against the storage mite Tyrophagus putriscentiae (Acari: Acaridae). J. Med. Entomol. 2003, 40, 475–481. [Google Scholar] [CrossRef]
- Hubert, J.; Stejskal, V.; Munzbergova, Z.; Hajslova, J.; Arthur, F.H. Toxicity and efficacy of selected pesticides and new acaricides to stored product mites (Acari: Acaridida). Exp. Appl. Acarol. 2007, 42, 283–290. [Google Scholar] [CrossRef]
- Kaplan, P.; Yorulmaz, S.; Ay, R. Toxicity of insecticides and acaricides to the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Int. J. Acarol. 2012, 38, 699–705. [Google Scholar] [CrossRef]
- Teel, P.D.; Donahue, W.A.; Strey, O.F.; Meola, R.W. Effects of pyriproxyfen on engorged females and newly oviposited eggs of the lone star tick (Acari: Ixodidae). J. Med. Entomol. 1996, 33, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Donahue, W.A.; Teel, P.D.; Strey, O.F.; Meola, R.W. Pyriproxyfen effects on newly engorged larvae and nymphs of the lone star tick (Acari: Ixodidae). J. Med. Entomol. 1997, 34, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Strey, O.F.; Teel, P.D.; Longnecker, M.T. Effects of pyriproxyfen on off-host water-balance and survival of adult lone star ticks (Acari: Ixodidae). J. Med. Entomol. 2001, 38, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Control Solutions. Tekko Pro Insect Growth Regulator Concentrate Label, EPA Reg. No. 53883-335; Control Solutions: Pasadena, TX, USA, 2018. [Google Scholar]
- Showler, A.T.; Donahue, W.A.; Harlien, J.L.; Donahue, M.W.; Vinson, B.E.; Thomas, D.B. Efficacy of novaluron + pyriproxyfen (Tekko Pro) insect growth regulators against Amblyomma americanum (Acari: Ixodidae), Rhipicephalus (Boophilus) annulatus, Rhipicephalus (Boophilus) microplus, and Rhipicephalus sanguineus. J. Med. Entomol. 2019, 56, 1338–1345. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, Z.U.D.; Jonsson, N.N.; Iqbal, Z. Syringe test (modified larval immersion test): A new bioassay for testing acaricidal activity of plant extracts against Rhipicephalus microplus. Vet. Parasitol. 2012, 188, 362–367. [Google Scholar] [CrossRef]
- Zahir, A.A.; Rahuman, A.A.; Bagavan, A.; Santoshkumar, T.; Mohamed, R.R.; Kamaraj, C.; Rajkumar, C.; Elango, G.; Hayaseelan, C.; Marimuthu, S. Evaluation of botanical exracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach. Parasitol. Res. 2010, 107, 585–592. [Google Scholar] [CrossRef]
- Zahir, A.A.; Rahuman, A.A.; Kamaraj, C.; Bagavan, A.; Elango, G.; Sangaran, A.; Kumar, B.S. Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol. Res. 2009, 105, 453–461. [Google Scholar] [CrossRef]
- Castro, K.N.C.; Lima, D.F.; Vasconcelos, L.C.; Leite, J.R.S.A.; Santos, R.C.; Neto, A.A.P.; Costa, L.M. Acaricide activity in vitro of Acmella oleracea against Rhipicephalus microplus. Parasitol. Res. 2014, 113, 3697–3701. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Sharma, A.K.; Kumar, S.; Tiwari, S.S.; Rastogi, S.; Srivastava, S.; Singh, M.; Kumar, R.; Paul, S.; Ray, D.D.; et al. In vitro and in vivo efficacy of Acorus calamus extract against Rhipicephalus (Boophilus) microplus. Parasitol. Res. 2011, 108, 361–370. [Google Scholar] [CrossRef]
- Elango, G.; Rahuman, A.A. Evaluation of medicinal plant extracts against ticks and fluke. Parasitol. Res. 2011, 108, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.F.; Borges, L.M.F.; Braga, R.S.; Ferreira, L.L.; Louly, C.C.B.; Tresvenzol, L.M.F.; Paula, J.R.; Ferri, P.H. Repellent activity of plant-derived compounds against Amblyomma cajennense (Acari: Ixodidae) nymphs. Vet. Parasitol. 2010, 167, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Aboelhadid, S.M.; AKamel, A.; Arafa, W.M.; Shokier, K.A. Effect of Allium sativum and Allium cepa oils on different stages of Boophilus annulatus. Parasitol. Res. 2013, 112, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Broglio-Micheletti, S.M.; Valente, E.C.; de Souza, L.A.; Nda, S.D.; de Araujo, A.M. Plant extracts in control of Rhipicephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae) in laboratory. Rev. Bras. Parasitol. Vet. 2009, 18, 44–48. [Google Scholar] [CrossRef]
- Alvarez, V.; Loaiza, J.; Bonilla, R.; Barrios, M. Control in vitro de garrapatas (Boophilus microplus; Acari: Ixodidae) mediante extractos vegetales. Rev. Biol. Trop. 2008, 56, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Ilham, M.O.; Razzig, A.A.A.; Elhaj, M.T.; Mohammed, Y.O. Acaricidal activity of crude extract of Annona squamosa against Hyalomma anatolicum (Ixoidea: Ixodidae). Alt. Integr. Med. 2014. [Google Scholar] [CrossRef]
- Chagas, A.C.S.; Georgetti, C.S.; de Carvalho, C.O.; Oliveira, M.C.S.; Rodrigues, R.A.; Foglio, M.A.; de Magalháes, P.M. In vitro activity of Artemisia annua L. (Asteraceae) extracts against Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2011, 20, 31–35. [Google Scholar] [CrossRef]
- Showler, A.T.; Osbrink, W.L.A.; Morris, J.; Wargovich, M.J. Effects of two commercial neem-based insecticides on lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae): Deterrence, mortality, and reproduction. Biopestic. Intern. 2017, 13, 1–12. [Google Scholar]
- Lindsay, P.J.; Kaufamn, W.R. The efficacy of azadirachtin on putative ecdysteroid-sensitive systems in the ixodid tick Amblyomma americanum L. J. Insect Physiol. 1988, 34, 439–442. [Google Scholar] [CrossRef]
- Schwalback, L.M.J.; Greyling, J.P.C.; David, M. The efficacy of a 10% aqueous neem (Azadirachta indica) seed extract for tick control in small East African and Toggenburg female goat kids in Tanzania. S. Afr. J. Anim. Sci. 2003, 33, 83–88. [Google Scholar] [CrossRef]
- Landau, S.Y.; Provenza, F.D.; Gardner, D.R.; Pfister, J.A.; Knoppel, E.L.; Peterson, C.; Kababya, D.; Needham, G.R.; Villalba, J.J. Neem-tree (Azadirachta indica Juss.) extract as a feed additive against the American dog tick (Dermancentor variabilis) in sheep (Ovis aries). Vet. Parasitol. 2009, 165, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.W.; Athayde, A.C.R.; Rodrigues, O.G.; Araújo, G.M.B.; Santos, V.D.; Neto, A.B.S.; Coelho, M.C.O.C.; Marinho, M.L. Efeitos do neem (Azadirachta indica A. Juss) e do capim santo [Cymbopogon citratus (DC) Stapf] sobre os parametros reproductivos de femeas ingurgitadas de Boophilus microplus e Rhipicephalus sanguineus (Acari: Ixodidae) no semiárido paraibano. Rev. Bras. Pl. Med. Botucatu 2007, 9, 1–5. [Google Scholar]
- Broglio-Micheletti, S.M.F.; Neves-Valente, E.C.; de Souza, L.A.; da Silva-Dias, N.; Giron-Perez, K.; Predes-Trindade, R.C. Control de Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) con extractos vegetales. Rev. Colomb. De Entomol. 2009, 35, 145–149. [Google Scholar]
- Broglio-Micheletti, S.M.; Dias, N.S.; Valente, E.; de Souza, L.A.; Lopes, D.; dos Santos, J.M. Açáo do extrato e oleo de nim no controle de Rhipicephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae) em laboratório. Rev. Bras. Parasitol. Vet. 2010, 19, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Giglioti, R.; Forim, M.R.; Oliveira, H.N.; Chagas, A.C.S.; Ferrezini, J.; Brito, L.G.; Falcoski, T.O.R.S.; Albuquerque, L.G.; Oliveira, M.C.S. In vitro acaricidal activity of neem (Azadirachta indica) seed extracts with known azadirachtin concentrations against Rhipicephalus microplus. Vet. Parasitol. 2011, 181, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, R.; Ghosh, S.; Mandal, D.B.; Azhabianambi, P.; Singhal, P.S.; Pandey, N.N.; Swarup, D. Efficacy of Azadirachta indica extracts against Boophilus microplus. Parasitol. Res. 2008, 104, 149–153. [Google Scholar] [CrossRef]
- Sugauara, E.Y.Y.; Sugauara, E.Y.; Sugauara, R.R.; Bortolucci, W.C.; Oliveira, H.L.M.; Silva, E.S.; Campos, C.F.A.A.; Gonçalves, J.E.; Colauto, N.B.; Gazim, Z.C.; et al. Control of bovine tick [Rhipicephalus (Boophilus) microplus] with Brunfelsia uniflora extract. Astral. J. Crop Sci. 2019, 13, 903–910. [Google Scholar] [CrossRef]
- Ribeiro, V.L.S.; Avancini, C.; Goncales, K.; Toigo, E.; von Poser, G. Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet. Parasitol. 2008, 151, 351–354. [Google Scholar] [CrossRef]
- Lazaro, S.F.; Fonseca, L.D.; Fernandes, R.C.; Tolentino, J.S.; Martins, E.R.; Duarte, E.R. Effect of aqueous extract of silk cotton (Calotropis procera Ait. T.Br.) on the reproductive performance of Rhipicephalus microplus. Rev. Bras. Plant Med. 2012, 14, 302–305. [Google Scholar]
- Vasconcelos, V.O.; Furlong, J.; Freitas, G.M.; Dolinski, C.; Aguillera, M.M.; Rodrigues, R.C.D.; Prata, M.C.A. Steinernema glaseri Santa Rosa strain (Rhabditida: Steinernematodiae) and Heterorhabditis bacteriophora CCA strain (Rhabditida: Heterorhabditidae) as biological control against of Boophilus microplus (Acari: Ixodida). Parasitol. Res. 2004, 94, 201–206. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A.; Bagavan, A.; Elango, G.; Rajakumar, G.; Zahir, A.A.; Marimuthu, S.; Santhoshkumar, T.; Jayaseelan, C. Evaluations of medicinal plant extracts against blood-sucking parasites. Parasitol. Res. 2010, 106, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Opiro, R.; Osinde, C.; Okello-Onen, J.; Akol, A.M. Tick-repellent properties of four plant species against Rhipicephalus appendiculatus Neumann (Acarina: Ixodidae) tick species. J. Agric. Res. Dev. 2013, 3, 17–21. [Google Scholar]
- Burridge, M.J.; Simmons, L.A.; Allen, S.A. Efficacy of acaricides for control of four ticks species of agricultural and public health significance in the United States. J. Agric. Urban Entomol. 2003, 20, 207–219. [Google Scholar]
- Fernandes, F.F.; Freitas, E.P.S. Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2007, 147, 150–154. [Google Scholar] [CrossRef]
- Panella, N.A.; Karchesy, J.; Maupin, G.O.; Malan, J.C.S.; Piesman, J. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to plant-derived acaricides. J. Med. Entomol. 1997, 34, 340–345. [Google Scholar] [CrossRef]
- Heimerdinger, A.; Olivo, C.J.; Molento, M.B.; Agnolin, C.A.; Ziech, M.F.; Scaravelli, L.F.; Skonieski, F.R.; Both, J.F.; Charao, P.S. Alcoholic extract of lemongrass (Cymbopogon citratus) on the control of Boophilus microplus in cattle. Rev. Bras. Parasitol. 2006, 15, 37–39. [Google Scholar]
- Pereira, J.R.; Famadas, K.M. Avaliaçáo “in vitro” da eficiéncia do extrato da raiz do timbó (Dahlstedtia pentaphylla) (Leguminosae, Papilionoidae, Millettiedae) sobre Boophilus microplus (Canestrini, 1887) na regláo do Vale do Paraiba, Sáo Paulo, Brasil. Arq. Inst. Biol. 2004, 71, 443–450. [Google Scholar]
- Pereira, J.R.; Famadas, K.M. The efficiency of extracts of Dahlstedtia pentaphylla (Leguminosae, Papilionoidae, Millettiedae) on Boophilus microplus (Canestrini, 1887) in artificially infested bovines. Vet. Parasitol. 2006, 142, 192–195. [Google Scholar] [CrossRef]
- Ghosh, S.; Tiwari, S.S.; Kumar, B.; Srivastava, S.; Sharma, A.K.; Kumar, S.; Bandyopadhyay, A.; Julliet, S.; Kumar, R.; Rawat, A.K.S. Identification of potential plant extracts for anti-tick activity against acaricide resistant cattle ticks, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp. Appl. Acarol. 2015, 66, 159–171. [Google Scholar] [CrossRef]
- Magano, S.R.; Mkolo, M.N.; Shai, L.J. Repellent properties of Nicotiana tabacum and Eucalyptus globoidea against adults of Hyalomma marginatum rufipes. Afr. J. Microb. Res. 2011, 5, 4508–4512. [Google Scholar]
- Costa, F.B.; Vasconcelos, P.S.D.; Silva, A.M.M.; Brandao, V.M.; Silva, I.A.; Teixeira, C.; Guerra, R.M.S.N.; dos Santos, A.C.G. Eficácia de fitoterápicos em fémeas ingurgitadas de Boophilus microplus, provenientes da mesorregiáo oeste do Maranháo, Brasil. Rev. Bras. Parasitol. Vet. 2008, 17 (Suppl. 1), 83–86. [Google Scholar] [PubMed]
- Cristina, R.T.; Morariu, S.; Cernea, M.S.; Dumitrescu, E.; Muselin, F.; Cumpanasoiu, C. Phytotherapeutic activity of Euphorbia cyparissias extracts on Ixodidae (Acari) female ticks. Afr. Tradit. Complement Altern. Med. 2014, 11, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahir, A.A.; Rahuman, A.A. Evaluation of different extracts and synthesized silver nanoparticles from leaves of Euphorbia prostrata against Haemophysalis bispinosa and Hippobosca maculata. Vet. Parasitol. 2012, 187, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Malonza, M.M.; Dipeolu, O.O.; Amoo, A.O.; Hassan, S.M. Laboratory and field observations on anti-tick properties of the plant Gynandropsis gynandra (L). Brig. Vet. Parasitol. 1992, 42, 123–126. [Google Scholar] [CrossRef]
- Ribeiro, V.L.; Bordignon, T.E.; Goncalves, K.; von Poser, G. Acaricidal properties of extracts from the aerial parts of Hypericum polanthemum on the cattle tick Boophilus microplus. Vet. Parasitol. 2007, 147, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Juliet, S.; Ravindran, R.; Ramankutty, S.A.; Gopalan, A.K.K.; Nair, S.N.; Kavillimakkil, A.R.; Bandyopadhyay, A.; Rawat, A.K.S.; Ghosh, S. Jatropha curas (Linn) leaf extract—A possible alternative for population control of Rhipicephalus (Boophilus) annulatus. Asian Pac. J. Trop. Dis. 2012, 2012, 225–229. [Google Scholar] [CrossRef]
- Fernandez-Salas, A.; Alonso-Diaz, M.A.; Acosta-Rodriguez, R.; Torres-Acosta, J.F.J.; Sondoval-Castro, C.A.; Rodriguez-Vivas, R.I. In vitro acaricidal effect of tannin-rich plants against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2011, 175, 113–118. [Google Scholar] [CrossRef]
- Catto, J.B.; Bianchin, I.; Santurio, J.M.; Feijo, G.L.; Kichel, A.N.; Silva, J.M. Grazing systems, rotenone and parasite control in crossbred laves: Effect on live weight gain and on parasites burdens. Rev. Bras. Parasitol. 2009, 18, 37–43. [Google Scholar] [CrossRef]
- Fernandes, F.F.; Bessa, P.A.D.; Freitas, E.P.S. Evaluation of activity of the crude ethanolic extract of Magonia pubescens St. Hill (Sapindaceae) against larvae of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2008, 51, 1147–1152. [Google Scholar]
- Chaiyong, S.; Jatisatienr, C.; Dheeranupattana, S.; Jatisatienr, A. Acaricidal efficiency of some local plants from Thailand. Planta Med. 2008, 74, 14. [Google Scholar] [CrossRef]
- Pirali-Kheirabadi, K.; Razzaghi-Abyaneh, M. Biological activities of chamomile (Matricaria chamomile) flowers’ extract against the survival and egg laying of the cattle fever tick (Acari: Ixodidae). J. Zhejiang Univ. Sci. B 2007, 8, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Sousa, L.A.D.; Soares, S.F.; Júnior, H.B.P.; Ferri, P.H.; Borges, L.M.F. Evaluation of efficacy of ripe and unripe fruit oil extracts of Melia azedarach against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Rev. Bras. Parasitol. Vet. 2008, 17, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, L.M.F.; Ferri, P.H.; Silva, W.C.; Silva, W.J.; Melo, L.S.; Souza, L.A.D.; Soares, S.F.; Faria, K.A.; Gomes, N.A.; Mori, A.; et al. Ação do extrato hexanico de frutos maduros de Melia azedarach (Meliaceae) sobre Boophilus microplus (Acari: Ixodidae) em bezerros infestados artifcialmente. Rev. Patol. Trop. 2005, 34, 53–59. [Google Scholar]
- Borges, L.M.F.; Ferri, P.H.; Silva, W.J.; Silva, W.C.; Silva, J.G. In vitro efficacy of extracts of Melia azedarach against the tick Boophilus microplus. Med. Vet. Entomol. 2003, 17, 228–231. [Google Scholar] [CrossRef]
- De Sousa, L.A.D.; DaCosta, D.P.; Ferri, P.H.; Showler, A.T.; Borges, L.M.F. Soil quality influences efficacy of Melia azedarach (Sapindales: Meliaceae), fruit extracts against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Ann. Entomol. Soc. Am. 2014, 107, 484–489. [Google Scholar] [CrossRef]
- Mwangi, E.N.; Essuman, S.; Kaaya, G.P.; Nyandat, E.; Munyinyi, D. Repellence of the tick Rhipicephalus appendiculatus by the grass Melinis minutiflora. Trop. Anim. Health Prod. 1995, 27, 211–216. [Google Scholar] [CrossRef]
- Castrejón, F.J.M.; Cruz-Vázquez, C.; Fernández-Ruvalcaba, M.; Torres, J.M. Repellent effect of Melinis minutiflora extract on Boophilus microplus tick larvae. Vet. Mex. 2004, 35, 153–159. [Google Scholar]
- Mkolo, N.M.; Sako, K.B.; Olowoyo, J.O.; Ndlovu, S.; Magano, S.R. Variation in the repellency effects of the leaves of Mentha piperita against adults of Amblyomma hebraeum. Afr. J. Biotechnol. 2011, 10, 11426–11432. [Google Scholar]
- Puyvelde, L.V.; Geyensen, D.; Ayobangira, F.X.; Hakizamungu, E.; Nshimiyimana, A.; Kalisa, A. Screening of medicinal plants of Rwanda for acaricidal activity. J. Ethnopharmacol. 1985, 13, 209–215. [Google Scholar] [CrossRef]
- Carroll, J.F.; Babish, J.G.; Pacioretty, L.M.; Kramer, M. Repellency to ticks (Acari: Icodidae) of extracts of Nigella sativa (Ranunculaceae) and the anti-inflammatory DogsBestFriend. Exper. Appl. Acarol. 2016, 70, 89–97. [Google Scholar] [CrossRef]
- Aboelhadid, S.M.; Mahran, H.A.; El-Hariri, H.M.; Shokier, K.M. Rhipicephalus annulatus (Acari: Ixodidae) control by Nigella sativa, thyme and spinosad preparations. J. Arthropod-Borne Dis. 2016, 10, 148–158. [Google Scholar]
- Silva, W.C.; Martins, J.R.S.; Cesio, M.V.; Azevedo, J.L.; Heinzen, H.; de Barros, N.M. Acaricidal activity of Palicourea marcgravii, a species from the Amazon forest, on cattle tick, Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2011, 179, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, A.B.; Hamdi, N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from Pelargonium graveolens growing in Tunisia. Lipids Health Dis. 2012, 11, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosado-Aguilar, J.A.; Rodriguez-Vivas, R.I.; Aguilar-Caballero, A.; Borges-Argaez, R.; Garcia-Vazquez, Z.; Menendez-Gonzalez, M. Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2010, 168, 299–303. [Google Scholar] [CrossRef]
- Johnson, L.; Williams, L.A.D.; Roberts, E.V. An insecticidal and acaricidal polysulfide metabolite from the roots of Petiveria alliacea. Pestic. Sci. 1997, 50, 228–232. [Google Scholar] [CrossRef]
- Ferraz, B.R.J.; Balbino, M.; Zini, C.A.; Ribeiro, V.L.S.; Bordignon, S.A.L.; von Poser, G. Acaricidal activity and chemical composition of the essential oil from three Piper species. Parasitol. Res. 2010, 207, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.C.; Martins, J.R.D.; de Souza, H.E.M.; Heinzen, H.; Cesio, M.V.; Mato, M.; Albrecht, F.; de Azevedo, L.C.; de Barros, N.M. Toxicity of Piper aduncum L. (Piperales: Piperaceae) from the Amazon forest for the cattle tick Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2009, 164, 267–274. [Google Scholar] [CrossRef]
- Chagas, A.C.S.; de Barros, L.D.; Cotinguiba, F.; Furlan, M.; Giglioti, R.; de Oliveira, M.C.; Bizzo, H.R. In vitro efficacy of plant extracts and synthesized substances of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol. Res. 2011, 110, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.A.; Filho, J.G.S.; Pereira, S.G.; Guillon, G.M.; Santos, L.S.; Costa, S. Acaricide activity of different extracts from Piper tuberculatum fruits against Rhipicephalus microplus. Parasitol. Res. 2014, 113, 107–112. [Google Scholar] [CrossRef]
- Ghosh, S.; Tiwari, S.S.; Srivastava, S.; Sharma, A.K.; Kumar, S.; Ray, D.D.; Rawat, A.K.S. Acaricidal properties of Ricinus communis leaf extracts against organsophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2013, 192, 259–267. [Google Scholar] [CrossRef]
- Arnosti, A.; Brienza, P.D.; Furquim, K.C.S.; Chierice, G.O.; Bechara, G.H.; Calligaris, I.Z.; Camargo-Mathias, M.I. Effects of ricinoleic acid esters from castor oil of Ricinus communis on the vitellogenesis of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) ticks. Exp. Parasitol. 2011, 127, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Magano, S.R.; Thembo, K.M.; Ndlovu, S.M.; Makhubela, N.F.H. The anti-tick properties of the root extracts of Senna italica subsp. arachoides. Afr. J. Biotechnol. 2008, 7, 476–481. [Google Scholar]
- Castrejón, F.M.; Cruz-Vázques, C.; Fernández-Revalcaba, M.; Molina-Torres, J.; Cruz, J.S.; Parra, M.R. Repellence of Boophilus microplus larvae in Stylosanthes humilis and Stylosanthes hamata plants. Parasitol. Latinoam. 2003, 58, 118–121. [Google Scholar] [CrossRef]
- Cruz-Vazquez, C.; Fernandez-Ruvalcaba, M.; Solano-Vergara, J.; Garcia-Vazquez, Z. Anti-tick effect observed in mature plants of tropical legumes Stylosanthes humilis and Stylosanthes hamata. Parasitol. Al Día. 1999, 23, 15–18. [Google Scholar] [CrossRef]
- Pliti, F.A.S.; Figueira, G.M.; Araújo, A.M.; Sampieri, B.R.; Mathias, M.I.C.; Szabo, M.P.J.; Bechara, G.H.; de Santos, L.C.; Vilegas, W.; Pietro, R.C.L.R. Acaricidal activity of ethanolic extract from aerial parts of Tagetes patula L. (Asteraceae) against larvae and engorged adult females of Rhipicephalus sanguineus (Latreille, 1806). Parasites Vectors 2012, 5, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chungsamarnyart, N.; Jansawan, W. Effect of Tamarindus indicus L. against e Boophilus microplus. Kasetsart J. Nat. Sci. Suppl. 2001, 35, 34–39. [Google Scholar]
- Matovu, H.; Olila, D. Acaricidal activity of Tephrosia vogelii extracts on nymph and adult ticks. Int. J. Trop. Med. 2007, 2, 83–88. [Google Scholar]
- Kalume, M.K.; Lossen, B.; Angenot, L.; Tits, M.; Wauters, J.N.; Frederick, M.; Saegerman, C. Rotenoid content and in vitro acaricidal activity of Tephrosia vogelii leaf extract on the tick Rhipicephalus appendiculatus. Vet. Parasitol. 2012, 190, 204–209. [Google Scholar] [CrossRef]
- Gadzirayi, C.T.; Mutandwa, E.; Mwale, M.; Chindundu, T. Utilization of Tephrosia vogelii in controlling ticks in dairy cows by small-scale commercial farmers in Zimbabwe. Afr. J. Biotechnol. 2009, 8, 4134–4136. [Google Scholar]
- Monteiro, C.M.O.; Daemon, E.; Silva, A.M.R.; Maturano, R.; Amral, C. Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol. Res. 2010, 106, 615–619. [Google Scholar] [CrossRef]
- Daemon, E.; Monteiro, C.M.O.; Rosa, L.S.; Clemente, M.A.; Arcoverde, A. Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille, 1808) (Acari: Ixodidae). Parasitol. Res. 2009, 105, 495–497. [Google Scholar] [CrossRef]
- Pivoto, F.L.; Buzatti, A.; Krawczak, F.D.; Camillo, G.; Sangioni, L.A.; Zanetti, F.D.; Manfron, M.P.; Vogel, F.S.F. In vitro acaricidal effect of Tropaeolum majus on the engorged female of Rhipicephalus (Boophilus) microplus. Cienc. Rural. 2010, 40, 2141–2145. [Google Scholar] [CrossRef] [Green Version]
- Mehlhorn, H.; Schmahl, G.; Schmidt, J. Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol. Res. 2005, 95, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Vemu, B.; Nandi, A.; Singh, H.; Kumar, R.; Dumka, V.K. Acaricidal activity of Cymbopogon winterianus, Vitex negundo and Withania somnifera against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus. Parasitol. Res. 2014, 113, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Monika, C. Steroids-chemical constituents of Withania somnifera Dunal through TLC and HPTLC. Int. J. Chem. 2014, 10, 21. [Google Scholar]
- Thorsell, W.; Mikivier, A.; Tunón, H. Repelling properties of some plant materials on the tick Ixodes ricinus L. Phytomedicine 2006, 13, 132–134. [Google Scholar] [CrossRef]
- Lebouvier, N.; Hue, T.; Hnawia, E.; Lesaffre, L.; Menut, C.; Nour, M. Acaricidal activity of essential oils from five endemic conifers of New Caledonia on the cattle tick, Rhipicephalus (Boophilus) microplus. Parasitol. Res. 2013, 112, 1379–1384. [Google Scholar] [CrossRef]
- Pamo, T.E.; Tendonkeng, F.; Kana, J.R.; Tenekau, G.; Tapondjou, L.A.; Payne, V.K. The acaricidal effect of the essential oil of Ageratum houstonianun Mill. flowers on ticks (Rhipicephalus lunulatius) in Cameroon. S. Afr. J. Anim Sci. Suppl. 2004, 34, 244. [Google Scholar]
- Pamo, T.E.; Tendonkeng, F.; Kana, J.R.; Tenekau, G.; Payne, V.K.; Boukila, B.; Lemoufouet, L.; Miegoue, E.; Nanda, A.S. A study of the acaricidal properties of an essential oil extracted from the leaves of Ageratum houstonianum. Vet. Parasitol. 2005, 128, 319–323. [Google Scholar] [CrossRef]
- Castro, K.N.D.C.; Carnuto, K.M.; Brito, E.D.S.; Costa-Junior, L.M.; Andrade, I.M.D.; Magalhaes, J.A.; Barros, D.M.A. In vitro efficacy of essential oils with different concentrations of 1,8-cineole against Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2018, 27, 203–210. [Google Scholar] [CrossRef]
- Carroll, J.F.; Paluch, G.; Coats, J.R.; Kramer, M. Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays. Exp. Appl. Acarol. 2010, 51, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalakumar, B.; Kumar, H.S.A.; Kumar, B.A.; Reddy, K.S. Evaluation of custard seed oil and neem oil as acaricides. J. Vet. Parasitol. 2000, 14, 171–172. [Google Scholar]
- Pirali-Kheirabadi, K.; da Silva, J.A.T. In vitro assessment of the acaricidal properties of Artemisia annua and Zataria multiflora essential oils to control cattle ticks. Iran. J. Parasitol. 2011, 6, 58. [Google Scholar] [PubMed]
- El-Seedy, H.; Azeem, M.; Khalil, N.S.; Sakr, H.H.; Khalifa, S.A.M.; Awang, K.; Saeed, A.; Farag, M.A.; Al-Ajmi, M.F.; Palsson, K.; et al. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2017, 73, 139–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndumu, P.A.; George, J.B.D.; Choudhury, M.K. Toxicity of neem seed oil (Azadirachta indica) against the lavae of Amblyomma variegatum a three-host tick in cattle. Phytother. Res. 1999, 13, 532–534. [Google Scholar] [CrossRef]
- Abdel-Shafy, S.; Zayed, A.A. In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Vet. Parasitol. 2002, 106, 89–96. [Google Scholar] [CrossRef]
- Al-Rajhy, D.H.; Alahmed, A.M.; Hussein, H.I.; Kheir, S.M. Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Manag. Sci. 2004, 59, 1250–1254. [Google Scholar] [CrossRef]
- Peixoto, E.C.T.M.; Figueiredo, A.; Novo, S.M.F.; Porto, E.P.; Valadares, F.; da Silva, L.P.; Marcio, R.; da Silva, G. Application of Cymbopogon winterianus Jowitt and Azadirachta indica A. juss in the control of Rhipicephalus (Boophilus) microplus. J. Med. Plants Res. 2013, 7, 2392–2398. [Google Scholar]
- Lage, T.C.A.; Montanari, R.M.; Fernandes, S.A.; Monteiro, C.M.O.; Senra, T.O.S.; Zeringota, V.; Daemon, E. Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia De Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Exp. Parasitol. 2015, 148, 24–29. [Google Scholar] [CrossRef]
- Ribeiro, V.L.S.; Santos, J.C.; Martins, J.R.; Schripsema, J.; Siqueira, I.R.; von Poser, G.L.; Apel, M.A. Acaricideal properties of the essential oil and precocene II obtained from Calea serrata (Asteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2011, 179, 195–198. [Google Scholar] [CrossRef]
- Dolan, M.C.; Dietrich, G.; Panella, N.A.; Montenieri, J.A.; Karchesy, J.J. Biocidal activity of three wood essential oils against Ixodes scapularis (Acari: Ixodidae), Xenopsylla cheopis (Siphonaptera: Pulicidae), and Aedes aegypti (Diptera: Culicidae). J. Econ. Entomol. 2007, 100, 622–625. [Google Scholar] [CrossRef]
- Chagas, A.C.S.; Oliveira, S.; Giglioti, R.; Santana, R.C.M.; Bizzo, H.R.; Gama, P.E.; Chaves, F.C.M. Efficacy of 11 Brazilian essential oils on lethality of the cattle tick Rhipicephalus (Boophilus) microplus. Tick-Borne Dis. 2016, 7, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farias, M.P.O.; Sousa, D.P.; Arruda, A.C.; Arrudo, M.S.P.; Wanderley, A.G.; Alves, L.C.; Faustino, M.A.G. Eficacia in vitro do oleo da Carapa guianensis Aubl. (andiroba) no controle de Boophilus microplus (Acari: Ixodidae). Rev. Bras. Plantas Medic. 2007, 9, 68–71. [Google Scholar]
- Vendramini, M.C.R.; Mathias, M.I.C.; de Faria, A.U.; Furquim, K.C.S.; de Souza, L.P.; Bechara, G.H.; Roma, G.C. Action of andiroba oil (Carapa guianensis) on Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females: Morphophysiological evaluation of reproductive system. Microsc. Res. Technol. 2012, 75, 1745–1754. [Google Scholar] [CrossRef]
- Farias, M.P.O.; Sousa, D.P.; Arruda, A.C.; Wanderley, A.G.; Teixeira, W.C.; Alves, L.C.; Faustino, M.A.G. Potencial acaracida do oleo de andiroba Carapa guinanensis Aubl. Sobre femeas adultes ingurgitades de Anocentor nitens Neumann, 1897 e Rhipicephalus sanguineus Latreille, 1806. Arq. Bras. Med. Vet. Zootec. 2009, 61, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Panella, N.A.; Dolan, M.C.; Karchesy, J.J.; Xiong, Y.; Peralta-Cruz, J.; Khasawneb, M.; Montenieri, J.A.; Maupin, G.O. Use of novel compounds for pest control: Insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar (Chaemaecyparis nootkatensis). J. Med. Entomol. 2005, 42, 352–358. [Google Scholar] [CrossRef]
- Dietrich, G.; Dolan, M.C.; Peralta-Cruz, J.; Schmidt, J.; Piesman, J.; Eisen, R.J.; Karchesy, J.J. Repellent activity of fractioned compounds from Chamaecyparis nootkatensis essential oil against nymphal Ixodies scapularis (Acari: Ixodidae). J. Med. Entomol. 2006, 43, 957–961. [Google Scholar] [CrossRef]
- Vinturelle, R.; Mattos, C.; Meloni, J.; Nogueira, J.; Numes, M.J.; Vaz, L.S.; Chagas, E.F.D. In vitro evaluation of essential oils derived from Piper nigrum (Piperaceae) and Citrus limonum (Rutaceae) against the tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Biochem. Res. Int. 2017, 2017, 5342947. [Google Scholar] [CrossRef] [Green Version]
- Chungsamarnyart, N.; Jansawan, W. Acaricidal activity of peel oil of Citrus spp. on Boophilus microplus. Kasetsart J. Nat. Sci. 1996, 30, 112–117. [Google Scholar]
- Velazquez, M.M.; Herrera, G.A.C.; Cruz, R.R.; Fernandez, J.M.F.; Ramirez, J.L.; Gutierrez, R.H.; Cervantes, E.C.L. Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica, and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol. Res. 2011, 108, 481–487. [Google Scholar] [CrossRef]
- Apel, M.A.; Ribeiro, V.L.S.; Bordignon, S.A.L.; Henriques, A.T.; von Poser, G. Chemical composition and toxicity of the essential oils from Cunila species (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Parasitol. Res. 2009, 105, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Junior, G.S.L.; Campos, J.P.; Monteiro, C.M.O.; Fiorotti, J.; Júnior, F.E.A.C.; Tomé, A.L.; Perinotto, W.M.S. Chemical compostion and acaricidal activity of essential oils from fruits of Illicium verum and rhizomes of Curcuma zedaoria against Dermacentor nitens (Acari: Ixodidae). J. Essential. Oils Res. 2020, 32, 571–576. [Google Scholar] [CrossRef]
- Santos, F.C.C.; Vogel, F.S.F. In vitro evaluation of the action of lemon grass (Cymbopogon citratus) essential oil on the cattle tick Rhipicephalus (Boophilus) microplus. Rev. Bras. Plantas Med. 2012, 14, 712–716. [Google Scholar] [CrossRef]
- Clemente, M.A.; Monteiro, C.M.O.; Scoralik, M.G.; Gomes, F.T.; Prata, M.C.A.; Daemon, E. Acaricidal activity of the essential oils from Eucalyptus citriodora and Cymbopogon nardus on larvae of Amblyomma cajennense (Acari: Ixodidae) and Anocentor nitens (Acari: Ixodidae). Parasitol. Res. 2010, 107, 987–992. [Google Scholar] [CrossRef]
- Agwunobi, D.O.; Pei, T.; Wang, K.; Yu, Z. Effects of the essential oil from Cymbopogon citratus on mortality and morphology of the tick Haemophysalis longicornis (Acari: Ixodidae). Exper. Appl. Acarol. 2020, 81, 37–50. [Google Scholar] [CrossRef]
- Martins, R.M. Estudio in vitro de la acción acaracida del aceite esencial de la gramínea citronele de Java (Cymbopogon winterianus Jowitt) en la garrapta Boophilus microplus. Rev. Bras. Pl. Med. Botucatu 2006, 8, 71–78. [Google Scholar]
- Gardulf, A.; Wohlfart, I.; Gustafson, R. A prospective cross-over field trial shows protection of lemon eucalyptus extract against tick bites. J. Med. Entomol. 2004, 41, 1064–1067. [Google Scholar] [CrossRef]
- Lwande, S.W.; Ndakala, A.J.; Hassanali, A.; Mreka, E.; Ndungu, M.; Amiani, H.; Gitu, P.M.; Malonza, M.M.; Punyua, D.K. Gynandropsis gynandra essential oil and its constituents as tick (Rhipicephalus appendiculatus) repellents. Phytochem 1999, 50, 401–405. [Google Scholar] [CrossRef]
- Ribeiro, V.L.S.; Santos, J.C.; Bordognon, S.A.L.; Apel, M.A.; Henriques, A.T.; von Poser, G.L. Acaricidal properties of the essential oil from Hesperozygis ringens (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Bioresour. Technol. 2010, 101, 2506–2509. [Google Scholar] [CrossRef]
- Cruz, E.M.O.; Costa-Junior, L.M.; Pinto, J.A.O.; Santos, D.A.; Araujo, S.A.; Arrigoni-Blank, M.F.; Bacci, L.; Alves, P.B.; Cavalcanti, S.C.H.; Blank, A.F. Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2013, 195, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Velazquez, M.M.; Cruz, R.R.; Herrera, G.C.; Fernandez, J.M.F.; Alvarez, A.H.; Cervantes, E.L. Acaricidal effect of essential oil from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), (and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Med. Entomol. 2011, 48, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.A.; Monteiro, C.M.O.; Senra, T.O.S.; Zeringota, V.; Calmon, F.; Matos, R.S.; Daemon, E.; Gois, R.W.S.; Santiago, G.M.P.; Carvalho, M.G. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol. Res. 2012, 111, 2423–2430. [Google Scholar] [CrossRef]
- Lage, T.C.A.; RMontanari, M.; Fernandes, S.A.; Monteiro, C.M.O.; Senra, T.O.S.; Zeringota, V.; Calmon, F.; Matos, R.S.; Daemon, E. Activity of essential oil of Lippia triplinervis Gardner (Verbenaceae) on Rhipicephalus microplus (Acari: Ixodidae). Parasitol. Res. 2013, 112, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Iori, A.; Grazioli, D.; Gentile, E.; Marano, G.; Salvatore, G. Acaricidal properties of the essential oil of Melaleuca alternifolia Cheel (tea tree oil) against nymphs of Ixodes ricinus. Vet. Parasitol. 2005, 129, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Mkolo, N.M.; Olowoyo, J.O.; Sako, K.B.; Mdakane, S.T.R.; Mitonga, M.M.A.; Magano, S.R. Repellency and toxicity of essential oils of Mentha piperita and Mentha spicata on larvae and adult of Amblyomma hebraeum (Acari: Ixodidae). Sci. J. Microbiol. 2011, 1, 59430830. [Google Scholar]
- El-Seedy, H.; Khalil, N.S.; Azeem, M.; Taher, E.A.; Goransson, U.; Palsson, K.; Borg-Karlson, A.K. Chemical compositon and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae). J. Med. Entomol. 2012, 49, 1067–1075. [Google Scholar] [CrossRef]
- Birkett, M.A.; Hassanali, A.; Hoglund, S.; Petterson, J.; Pickett, J.A. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochem 2011, 72, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, E.N.; Hassanali, A.; Essuman, S.; Myandat, E.; Moreka, L.; Kimondo, M. Repellent and acaricidal properties of Ocimum suave against Rhipicephalus appendiculatus ticks. Exp. Appl. Acarol. 1995, 19, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Koc, S.; Oz, E.; Cinbilgel, I.; Aydin, L.; Cetin, H. Acaricidal activity of Origanum bilgeri PH Davis (Lamiaceae) essential oil and its major component, carvacrol against adult Rhipicephalus turanicus (Acari: Ixodidae). Vet. Parasitol. 2013, 193, 316–319. [Google Scholar] [CrossRef]
- Cetin, H.; Cilek, J.E.; Aydin, L.; Yanikoglu, A. Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodida). Vet. Parasitol. 2009, 160, 359–361. [Google Scholar] [CrossRef]
- Coskum, S.; Girisgin, O.; Kürkcüoglu, M.; Malyer, H.; Girisgin, A.O.; Kirimer, N.; Baser, K.H. Acaricidal efficacy of Origanum onites L. essential oil against Rhipicephalus turanicus (Ixodidae). Parasitol. Res. 2008, 103, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Li, A.Y.; Junior, L.M.C.; Castro-Arellano, I.; Liu, J. Evaluation of DEET and eight essential oils for repellency against nymphs of the lone star tick, Amblyomma americanum (Acari: Ixodidae). Exp. Appl. Acarol. 2016, 68, 241–249. [Google Scholar] [CrossRef]
- Elias, S.P.; Lubelczyk, C.B.; Rand, P.W.; Staples, J.K.; Amand, T.W.S.; Stubbs, C.S.; Lacombe, E.H.; Smith, L.B.; Smith, R.P. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. J. Med. Entomol. 2013, 50, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Gazim, Z.C.; Demarchi, I.G.; Lonardoni, M.V.; Amorim, A.C.; Hovell, A.M.; Rezende, C.M.; Ferreira, G.A.; de Lima, E.L.; de Cosmo, F.A.; Cortez, D.A. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp. Parasitol. 2011, 129, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Koc, S.; Oz, E.; Aydin, L.; Cetin, H. Acaricidal activity of the essential oils from three Lamiaceae plant species on Rhipicephalus turanicus Pom. (Acari: Ixodidae). Parasitol. Res. 2012, 111, 1863–1865. [Google Scholar] [CrossRef]
- Civitello, D.J.; Flory, L.; Clay, K. Exotic grass invasion reduces survival of Amblyomma americanum and Dermacentor variabilis ticks (Acari: Ixodidae). J. Med. Entomol. 2008, 45, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Aycardi, E.; Benavides, E.; Garcia, O.; Mateus, G.; Henao, F.; Zuluaga, F.N. Boophilus microplus tick burdens on grazing cattle in Colombia. Trop. Anim. Health Prod. 1984, 16, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.C.; Roa, J.; Romero, T. Anti-tick grasses as the basis for developing practical tropical tick control packages. Trop. Anim. Health Prod. 1978, 10, 179–182. [Google Scholar] [CrossRef]
- Fernandez-Ruvalcaba, M.; Torre, F.P.; Cruz-Vasquez, C.; Garcia-Vaquez, Z. Anti-tick effects of Melinis minutiflora and Andropogon gayanus grasses on plots experimentally infested with Boophilus microplus larvae. Exp. Appl. Acarol. 2004, 32, 293–299. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Jones, R.J.; Schnitzerling, H.J. Tropical legumes of the genus Stylosanthes immobilize and kill cattle ticks. Nature 1982, 295, 320–321. [Google Scholar] [CrossRef]
- Elliott, M.; James, N.F. Synthetic pyrethroids—A new class of insecticide. Chem. Soc. Rep. 1978, 7, 473–505. [Google Scholar] [CrossRef]
- Davies, T.G.E.; Field, L.M.; Usherwood, P.N.R.; Williamson, M.S. DDT, pyrethrins, pyrethroids and insect sodium channels. Int. Union Biochem. Molec. Biol. Life 2007, 59, 151–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anadón, A.; Arés, I.; Martínez, M.A.; Martínez-Larrañaga, M.R. Pyrethrins and synthetic pyrethroids: Use in veterinary medicine. In Natural Products; Ramawat, K.G., Mérillon, J.M., Eds.; Springer: Berlin, Germany, 2013; pp. 4061–4086. [Google Scholar]
- Narahashi, T. Mode of action of pyrethroids. Bull. World Health Org. 1971, 44, 337–345. [Google Scholar] [PubMed]
- George, J.E.; Pound, J.M.; Davey, R.B. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 2004, 129, S353–S366. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Alsonso-Diaz, M.A.; Rodriguez-Arevalo, F.; Fragoso-Sanchez, H.; Santamaria, V.M.; Rosario-Cruz, R. Prevalence and potential risk factors for organophosphate and pyrethroid resistance in Boophilus microplus ticks on cattle ranches from the State of Yucatan, Mexico. Vet. Parasitol. 2006, 136, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Chevillon, C.; Ducornez, S.; de Meeus, T.; Koffi, B.B.; Gaia, H.; Delathiere, J.M.; Barre, N. Accumulation of acaricide resistancre mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonia Island. Vet. Parasitol. 2007, 147, 276–288. [Google Scholar] [CrossRef]
- Rosario-Cruz, R.; Guerrero, F.D.; Miller, R.J.; Rodriguez-Vivas, R.I.; Tijerina, M.; Dominguez-Garcia, D.I.; Hernandez-Ortiz, R.; Conel, A.J.; McAbee, R.D.; Alonso-Diaz, M.A. Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus. Parasitol. Res. 2009, 105, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Veiga, L.P.; Souza, A.P.; Bellato, V.; Sartor, A.A.; Nunes, A.P.; Cardoso, H.M. Resistance to cypermethrin and amitraz in Rhipicephalus (Boophilus) microplus on the Santa Catarina Plateau, Brazil. Rev. Bras. Parasitol. Vet. 2012, 21, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Mulla, M.S.; Su, T. Activity and biological effects on neem products against arthropods of medical and veterinary importance. J. Am. Mosq. Control Assoc. 1999, 15, 1330152. [Google Scholar]
- Shah, G.; Shir, R.; Pachai, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus Stapf (lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3–8. [Google Scholar] [CrossRef]
- Panzinato, R.; Olpato, A.; Baldissera, M.D.; Santos, R.C.V.; Baretta, D.; Vaucher, R.A.; Giongo, J.L.; Boligon, A.A.; Stafani, L.M.; da Silva, A.S. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J. Adv. Res. 2016, 7, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Kohl, E.; Hölldobler, B.; Bestman, H.J. Trail and recruitment pheromones in Camponotus socius (Hymenoptera: Formicidae). Chemoecology 2001, 11, 67–73. [Google Scholar] [CrossRef]
- Falótico, T.; Labruna, M.B.; Verderane, M.P.; Resende, B.D.; Izar, P.; Ottoni, A.B. Repellent efficacy of formic acid and the abdominal secretion of carpenter ants (Hymenoptera: Formicidae) against Amblyomma ticks (Acari: Ixodidae). J. Med. Entomol. 2007, 44, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Zingg, S.; Dolle, P.; Voordouw, M.J.; Kern, M. The negative effect of wood ant presence on tick abundance. Parasites Vectors 2018, 11, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, S.A.H. Anting by an American dipper (Cinclus mexicanus). Wilson Bull. 1998, 110, 423–425. [Google Scholar]
- Wenny, D. Three-striped warbler (Basileuterus tristiatus) “anting” with a caterpillar. Wilson Bull. 1998, 110, 128–131. [Google Scholar]
- Birkinshaw, C.R. Use of millipedes by black lemurs to anoint their boides. Folia Primatol. 1999, 70, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, X.; Robinson, J.G.; Attygalle, A.B.; Eisner, T. Seasonal anointment with millipedes in a wild primate: A chemical defense against insects? J. Chem. Ecol. 2000, 26, 2781–2790. [Google Scholar] [CrossRef]
- Zito, M.; Evans, S.; Weldon, P.J. Owl monkeys (Aotus spp.) self-anoint with plants and millipedes. Folia Primatol. 2003, 74, 159–161. [Google Scholar] [CrossRef]
- Valderane, M.P.; Falótico, T.; Resende, B.D.; Labruna, M.B.; Izar, P.; Ottoni, E.B. Anting in a semifree-ranging group of Cebusapella. Int. J. Primatol. 2007, 28, 17–53. [Google Scholar]
- Colin, M.E. Alternative control of the varroosis. Cah. Option Med. 1997, 21, 87–98. [Google Scholar]
- Elzen, P.J.; Westervelt, D.; Lucas, R. Formica acid treatment for control of Varroa destructor (Mesostigmata: Varroidae) and safety to Apis mellifera (Hymenoptera: Apidae) under southern United States conditions. J. Econ. Entomol. 2004, 97, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Asha, R.G.; Sharma, S.K. Comparative evaluation of oxalic acid and formic acid against Varroa destructor Anderson and Trueman in Apis mellifera L. colonies. J. Entomol. Zool. Stud. 2014, 2, 119–124. [Google Scholar]
- Pietropaoli, M.; Formato, G. Liquid formic acid 60% to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera): Protocol evaluation. J. Agric. Res. 2018, 57, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Keyhani, J.; Keyhani, E. EPR study of the effect of formate on cytochrome oxidase. Biochem. Biophys. Res. Commun. 1980, 92, 327–333. [Google Scholar] [CrossRef]
- Song, C.; Sharf, M.E. Formic acid: A neurologically active, hydrolyzed metabolite of insecticidal formate esters. Pestic. Biochem. Physiol. 2008, 92, 77–82. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Types of Registrations under FIFRA; EPA: Washington, DC, USA, 2018. Available online: https://epa.gov/pesticide-registration/types-registrations-under-fifra (accessed on 5 March 2022).
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef] [Green Version]
- Showler, A.T.; Dorsey, B.N.; Caesar, R.M. Effects of formic acid on Amblyomma americanum (Ixodida: Ixodidae) larvae and nymphs. J. Med. Entomol. 2020, 57, 1184–1192. [Google Scholar] [CrossRef] [Green Version]
- Ozoe, Y.; Asahi, M.; Ozoe, F.; Nakahira, K.; Mita, T. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochem. Biophys. Res. Commun. 2010, 391, 744–749. [Google Scholar] [CrossRef]
- Gassel, M.; Wolf, C.; Noack, S.; Williams, H.; Ilg, T. The novel isoxazoline ectoparasiticide fluralaner: Selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochem. Mol. Biol. 2014, 45, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Asahi, M.; Kobayashi, M.; Matsui, H.; Nakahira, K. Differential mechanisms of action of the novel γ-aminobutyric acid receptor antagonist ectoparasiticides fluralaner (A1443) and fipronil. Pest Manag. Sci. 2015, 71, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kilp, S.; Ramirez, D.; Allan, M.J.; Roepke, R.K.A.; Nuernberger, M.C. Pharmacokinetics of fluralaner in dogs following a single oral or intravenous administration. Parasites Vectors 2014, 7, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaei, S.A.; Soleimani, M.; Mansouri, M.R.; Mirshahi, A.; Inanlou, B.; Abrishami, M.; Pakrah, A.R.; Masarat, H. Closantel; a veterinary drug with potential severe morbidity in humans. BMC Ophthalmol. 2016, 16, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, R.O.; Miller, J.A. Systemic activity of closantel for control of lone star ticks, Amblyomma americanum (L.), on cattle. Exp. Appl. Acarol. 1985, 1, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Vardanyan, R.; Hruby, V. Chapter 36—Anthelmintics. In Synthesis of Best-Seller Drugs; Vardanyan, R., Hruby, V., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 749–764. [Google Scholar]
- Richard-Lenoble, D.; Chandenier, J.; Gaxotte, P. Ivermectin and filariasis. Fundam. Clin. Pharmacol. 2003, 17, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Õmura, S.; Crump, A. The life and times of ivermectin—A success story. Nat. Rev. Microbiol. 2004, 2, 984–989. [Google Scholar] [CrossRef]
- Camargo, J.A.; Sapin, A.; Daloz, D.; Maincent, P. Ivermectin-loaded microparticles for parenteral sustained release: In vitro characterization and effect of some formulation variables. J. Microencapsul. 2010, 27, 609–617. [Google Scholar] [CrossRef]
- Sommer, C.; Steffansen, B.; Nielsen, B.O.; Grønvold, J.; Jensen, K.M.V.; Jespersen, J.B.; Springborg, J.; Nansen, P. Ivermectin excreted in cattle dung after subcutaneous injection or pour-on treatment: Concentrations and impact on dung fauna. Bull. Entomol. Res. 1992, 82, 257–264. [Google Scholar] [CrossRef]
- Miller, J.A.; Garris, G.I.; George, J.E.; Oehler, D.D. Control of lone star ticks (Acari: Ixodidae) on Spanish goats and white-tailed deer with orally administered ivermectin. J. Econ. Entomol. 1989, 82, 1650–1656. [Google Scholar] [CrossRef]
- Pound, J.M.; Miller, J.A.; George, J.E.; Oehler, D.D.; Harmel, D.E. Systemic treatment of white-tailed deer with ivermectin-medicated bait to control free-living populations of lone star ticks (Acari:Ixodidae). J. Med. Entomol. 1996, 33, 385–394. [Google Scholar] [CrossRef]
- Gonzales, J.C.; Muniz, R.A.; Farias, A.; Goncalves, L.C.B.; Rew, R.S. Therapeutic and persistent efficacy of doramectin against Boophilus microplus in cattle. Vet. Parasitol. 1993, 49, 107–119. [Google Scholar] [CrossRef]
- Muniz, R.A.; Hernandez, F.; Lombardero, O.; Leite, R.C.; Moreno, J.; Errecalde, J.; Goncalves, L.C. Efficacy of injectable doramectin against natural Boophilus microplus infestations in cattle. Am. J. Vet. Res. 1995, 56, 460–463. [Google Scholar] [PubMed]
- Steere, A.C.; Sikand, V.K.; Meurice, F.; Parenti, D.L.; Fikrig, E.; Schoen, R.T.; Nowakowski, J.; Schmid, C.H.; Laukamp, S.; Buscarino, C.; et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 1998, 339, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Solecki, M.; Arnaboldi, P.M.; Backenson, P.B.; Benach, J.L.; Cooper, C.L.; Dattwyler, R.J.; Diuk-Wasser, M.; Fikrig, E.; Hovius, J.W.; Laegreid, W.; et al. Protective Immunity and New Vaccines for Lyme Disease. Clin. Infect Dis. 2020, 70, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Almazán, C.; Kocan, K.M.; Blouin, E.F.; de la Fuente, J. Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. Vaccine 2005, 23, 5294–5298. [Google Scholar] [CrossRef] [PubMed]
- Merino, O.; Alberdi, P.; de la Lastra, J.M.P.; de la Fuente, J. Tick vaccines and the control of tick-borne pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Willadsen, P.; Kemp, D.H.; Cobon, G.S.; Wright, I.G. Successful vaccination against Boophilus microplus and Babesia bovis using recombinant antigens. Mem. Inst. Oswaldo Cruz 1992, 87 (Suppl. 3), 289–294. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Sánchez, R.; Camacho-Nuez, M.; Castañeda-Ortiz, E.J.; Martínez-Benítez, M.B.; Hernández-Silva, D.J.; Aguilar-Tipacamú, G.; Mosqueda, J. Vaccine efficacy of recombinant BmVDAC on Rhipicephalus microplus fed on Babesia bigemina-infected and uninfected cattle. Vaccine 2020, 38, 3618–3625. [Google Scholar] [CrossRef]
- Bhowmick, B.; Han, Q. Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Front. Vet. Sci. 2020, 7, 319. [Google Scholar] [CrossRef]
- Saelao, P.; Hickner, P.V.; Bendele, K.G.; de León, A.A.P. Phylogenomics of tick inward rectifier potassium channels and their potential as targets to innovate control technologies. Front. Cell. Infect. Microbiol. 2021, 11, 157. [Google Scholar] [CrossRef]
- Francischetti, I.M.B.; Sa-Nunes, A.; Mans, B.J.; Santos, I.M.; Ribeiro, J.M.C. The role of saliva in tick feeding. Front. Biosci (Landmark Ed) 2009, 14, 2051–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klouwens, M.J.; Trentelman, J.J.A.; Wagemakers, A.; Ersoz, J.I.; Bins, A.D.; Hovius, J.W. Tick-Tattoo: DNA vaccination against B. burgdorferi or Ixodes scapularis tick proteins. Front. Immunol. 2021, 12, 615011. [Google Scholar] [PubMed]
- Bins, A.D.; Jorritsma, A.; Wolkers, M.C.; Hung, C.F.; Wu, T.C.; Schumacher, T.N.; Haanen, J.B. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat. Med. 2005, 11, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, I.K.; Liu, M.A. Gene vaccines. Ann. Intern. Med. 2003, 138, 550–559. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, J.; Kocan, K.M. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 2006, 28, 275–283. [Google Scholar] [CrossRef]
- Almazán, C.; Lagunes, R.; Villar, M.; Canales, M.; Rosario-Cruz, R.; Jongejan, F.; de la Fuente, J. Ideentification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigen for the control of cattle tick infestations. Parasitol. Res. 2010, 106, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Almazán, C.; Moreno-Cantú, O.; Moreno-Cid, J.A.; Galindo, R.C.; Canales, M.; Villar, M.; de la Fuente, J. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 2012, 30, 265–272. [Google Scholar] [CrossRef]
- Ndawula, C.; Tabor, A.E. Cocktail anti-tick vaccines: The unforeseen constraints and approaches toward enhanced efficacies. Vaccines 2020, 8, 457. [Google Scholar] [CrossRef]
- Duffy, D.C. Ants, ticks and nesting seabirds, dynamic interaction? In Bird-Parasite Interaction: Ecology, Evolution and Behavior; Loye, J.E., Zuk, M., Eds.; Oxford University: Oxford, UK, 1991; pp. 242–257. [Google Scholar]
- Mwangi, E.N.; Dipeolu, O.O.; Newson, R.M.; Kaaya, G.P.; Hassan, S.M. Predators, parasites and pathogens of ticks: A review. Biocontrol Sci. Technol. 1991, 1, 147–156. [Google Scholar] [CrossRef]
- Samish, M.; Rehacek, J. Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 1999, 44, 159–182. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Wilson, L.J.; Cook, I.M. Predation of the cattle tick, Boophilus microplus (Canestrini) (Acarina: Ixodidae), in three Australian pastures. Austr. J. Entomol. 2000, 39, 70–77. [Google Scholar] [CrossRef]
- Samish, M.; Alekseev, E. Arthropods as predators of ticks (Ixodidae). J. Med. Entomol. 2001, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Showler, A.T.; Osbrink, W.L.A.; Abrigo, V.; Phillips, P.I. Relationships of salinity, relative humidity, mud flat fiddler crabs, ants, and sea ox-eye daisy with ixodid distribution and egg survival on the South Texas coastal plains. Environ. Entomol. 2019, 48, 733–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lofgren, C.S.; Banks, W.A.; Glancey, B.M. Biology and control of imported fire ants. Annu. Rev. Entomol. 1975, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.M.; Sterling, W.L. Boll weevil mortality factors within flower buds of cotton. Bull. Entomol. Soc. Am. 1986, 12, 239–247. [Google Scholar] [CrossRef]
- Sturm, M.M.; Sterling, W.L. Geographical patterns of boll weevil mortality: Observations and hypotheses. Environ. Entomol. 1990, 19, 59–65. [Google Scholar] [CrossRef]
- Showler, A.T.; Reagan, T.E. Effects of sugarcane borer, weed, and nematode control strategies in Louisiana sugarcane. Environ. Entomol. 1991, 20, 358–370. [Google Scholar] [CrossRef]
- Showler, A.T.; Reagan, T.E. Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae): Range expansion, biology, ecology, control, and new resistance factors in United States sugarcane. Am. Entomol. 2016, 63, 36–51. [Google Scholar] [CrossRef]
- Harris, W.G.; Burns, E.C. Predation on the lone star tick by the imported fire ant. Environ. Entomol. 1972, 1, 362–365. [Google Scholar] [CrossRef]
- Burns, E.C.; Melancon, D.G. Effect of imported fire ant (Hymenoptera: Formicidae) invasion on lone star tick (Acarina: Ixodidae) populations. J. Med. Entomol. 1977, 14, 247–249. [Google Scholar] [CrossRef]
- Fleetwood, S.C.; Teel, P.D.; Thompson, G. Impact of imported fire ant on lone star tick mortality in open and canopied pasture habitats of east central Texas. Southwest Entomol. 1984, 9, 158–162. [Google Scholar]
- Wojcik, D.P.; Allen, C.R.; Brenner, R.J.; Forys, E.A.; Jouvenaz, D.P.; Lutz, R.S. Red imported fire ant impact on biodiversity. Am. Entomol. 2001, 47, 16–23. [Google Scholar] [CrossRef]
- Gleim, E.R.; Conner, L.M.; Yabsley, M.J. The effects of Solenopsis invicta (Hymenoptera: Formicidae) and burned habitat on the survival of Amblyomma maculatum (Acari: Ixodidae). J. Med. Entomol. 2013, 50, 270–276. [Google Scholar] [CrossRef]
- Castellanos, A.A.; Medeiros, M.C.I.; Hamer, G.L.; Morrow, M.E.; Eubanks, M.D.; Teel, P.D.; Hamer, S.A.; Light, J.E. Decreased small mammal and on-host tick abundance in association with invasive red imported fire ants (Solenopsis invicta). Biol. Lett. 2016, 12, 20160463. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.M.; Ammerman, N.C.; Norris, D.E. Molecular differentiation of metastriate tick immatures. Vector Borne Zoonotic Dis. 2004, 4, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Yoder, J.A.; Pollack, R.J.; Spielman, A. An ant-diversionary secretion of ticks: First demonstration of an acarine allomone. J. Insect Physiol. 1992, 39, 429–435. [Google Scholar] [CrossRef]
- Yoder, J.A.; Benoit, J.B.; Bundy, M.R.; Hedges, B.Z.; Gribbins, K.M. Functional morphology of secretion by the large wax glands (sensilla sagittiformia) involved in tick defense. Psyche 2009, 2009, 631030. [Google Scholar] [CrossRef] [Green Version]
- Yoder, J.A.; Domingus, J.L. Identification of hydrocarbons that protect ticks (Acari: Ixodidae) against fire ants (Hymenoptera: Formicidae), but not lizards (Squamata: Polychtroda), in an allomonal defense secretion. Int. J. Acarol. 2003, 29, 87–91. [Google Scholar] [CrossRef]
- Barré, N.; Mauléon, H.; Garris, G.I.; Kermarrec, A. Predators of the tick Amblyomma variegatum (Acari: Ixodidae) in Guadaloupe, French West Indies. Exper. Appl. Acarol. 1991, 12, 163–170. [Google Scholar] [CrossRef]
- Showler, A.T.; Osbrink, W.L.A.; Dorsey, D.N.; Ryan, C.M. Metastriate ixodid life stages protected from predatory ants in Texas. Environ. Entomol. 2019, 48, 1063–1070. [Google Scholar] [CrossRef]
- Lees, A.D.; Beament, J.W.L. An egg-waxing organ in ticks. Quart. J. Microscop. Sci. 1948, 89, 291–322. [Google Scholar] [CrossRef]
- Hill, D.S. Agricultural Pests of Temperate Regions and Their Control; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Osbrink, W.L.A.; Goolsby, J.A.; Thomas, D.B.; Mejorado, A.; Showler, A.T.; de León, A.A.P. Higher ant diversity in native vegetation than in stands of the invasive arundo, Arundo donax L., along the Rio Grande Basin in Texas, USA. Int. J. Insect Sci. 2017, 9, 1179543317724756. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.E. Ticks, Tick-Borne Diseases and Insect Pests of Cattle in Southern Cone Countries of South America; Empresa Brasileira de Pesquisa Agropecuaria-Centro Nacional de Pesquisa de Gado de Leite (EMBRAPA-CNPGL): Coronel Pachero, Brazil, 1992. [Google Scholar]
- Showler, A.T. Predators of ixodids on the South Texas coastal plains. Ann. Entomol. Soc. Am. 2020, 113, 481–482. [Google Scholar] [CrossRef]
- Dawes-Gromadzki, T.Z.; Bull, C.M. Ant predation on different life stages of two Australian ticks. Exp. Appl. Acarol. 1997, 21, 109–115. [Google Scholar] [CrossRef]
- Samish, M.; Ginsberg, H.; Glazer, L. Biological control of ticks. Parasitology 2004, 129, S389–S403. [Google Scholar] [CrossRef]
- Van Someren, V.D. The red billed oxpecker and its relation to stock in Kenya. East Afr. Agric. J. 1951, 17, 1–11. [Google Scholar] [CrossRef]
- Stutterheim, C.; Stutterheim, I.M. Evidence of an icnrase in a red-billed oxpecker population in the Kruger National Park. S. Afr. J. Zool. 1980, 15, 284. [Google Scholar]
- Stutterheim, C.; Brooke, R. Past and present ecological distribution of the yellow billed oxpecker in South Africa. S. Afr. J. Zool. 1981, 16, 44–49. [Google Scholar]
- Robertson, A.; AJarvis, M. Oxpeckers in northeastern Namibia: Recent population trends and the possible negative impacts of drought and fire. Biol. Conserv. 2000, 92, 241–247. [Google Scholar] [CrossRef]
- Holderman, C.J.; Kaufman, P.E. Lone Star Tick Amblyomma americanum (Linnaeus) (Acari: Ixodidae); Pub. no. EENY580. Entomol. Nematol; Department UF/IFAS Extension: Gainesville, FL, USA, 2014. [Google Scholar]
- Davey, R.B.; Garza, J.; Thompson, G.D.; Drummond, R.O. Ovipositional biology of the southern cattle tick, Boophilus microplus (Acari: Ixodidae) in the laboratory. J. Med. Entomol. 1980, 17, 117–121. [Google Scholar] [CrossRef]
- Senbill, H.; Hazarika, L.K.; Baruah, A.; Rahman, S. Life cycle of the southern cattle tick, Rhipicephalus (Boophilus) microplus Canestrini 1888 under laboratory conditions. Syst. Appl. Acarol. 2018, 23, 1169–1179. [Google Scholar] [CrossRef]
- Knipling, E.F.; Steelman, C.D. Feasibility of controlling ticks (Acari: Ixodidae), the vector of Lyme disease, by parasitoid augmentation. J. Med. Entomol. 2000, 37, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Stafford, K.C.; Denicola, A.J.; Kilpatrick, H.J. Redjuced abundance of Ixodes scapularis (Acari: Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) with reduction of white-tailed deer. J. Med. Entomol. 2003, 40, 642–652. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.M. Biological control of ticks by the use of hymenopterous parasites: A review. WHO EBL 1965, 43, 65. [Google Scholar]
- Wood, H.P. Notes on the life history of the tick parasite, Hunterellus hookeri Howard. J. Econ. Entomol. 1911, 4, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Cooley, R.A.; Kohls, G.M. Egg laying of Ixodiphagus caucurtei (DuBuysson) in larval ticks. Science 1928, 1748, 656. [Google Scholar] [CrossRef]
- Smith, C.N.; Cole, M.M. Studies of parasites of the American dog tick. J. Econ. Entomol. 1943, 36, 569–572. [Google Scholar] [CrossRef]
- Davis, A.J. Bibliography of the Ixodiphagini (Hymenoptera: Chalcidoidea, Encyrtidae), parasites of ticks (Acai: Ixodidae), with notes on their biology. Tijdschr. Voor Entomol. 1986, 129, 181–190. [Google Scholar]
- Mwangi, E.N.; Newson, M.; Kaaya, G.P. A hymenopteran parasitoid in the laboratory and some aspects of its basic biology. Biol. Control 1993, 4, 101–104. [Google Scholar]
- Hu, R.; Hyland, K.E.; Oliver, J.H. A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Syst. Appl. Acarol. 1998, 3, 19–28. [Google Scholar] [CrossRef]
- Bowman, J.L.; Logan, T.M.; Hair, J.A. Host suitability of Ixodiphagus texanaus Howard on five species of hard ticks. J. Agric. Entomol. 1986, 3, 109. [Google Scholar]
- Shastri, U.V. Some observations on Hunterellus hookeri Howard, a parasitoid of Hyalomma-anatolicum anatolicum Koel in Marathwada region Maharashtra State. Cheiron 1984, 13, 2. [Google Scholar]
- Mather, T.N.; Piesman, J.; Spichman, A. Absence of spirochaetes (Borrellia burgdorferi) and piroplasma (Babesia microti) in deer ticks, Ixodes dammini parasitized by chalcid wasps (Hunterellus hookeri). Med. Vet. Entomol. 1987, 1, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Hyland, K.E.; Mather, T.N. Occurrence and distribution in Rhode Island of Hunterellus hookeri (Hymenoptera: Encyrtidae): A wasp parasite of Ixodiis dammini. J. Med. Entomol. 1993, 30, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, E.N.; Kaaya, G.P.; Essuman, S.; Kimondo, M.G. Parasitism of Amblyomma variegatus by a hymenopterous parasitoid in the laboratory and some aspects of its basic biology. Biol. Control 1994, 4, 101–104. [Google Scholar] [CrossRef]
- Lyon, S.M.; van Driesche, R.; Edman, J.D. Ecology of Hunterellus hookeri (Hymenoptera: Encyrtidae) and evaluation of its impact on Ixodes scapularis (Acari: Ixodidae) on Nanamasset Island in Massachusetts. Environ. Entomol. 1998, 27, 463–468. [Google Scholar] [CrossRef]
- Stafford, K.C.; Denicola, A.J.; Magnarelli, L.A. Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two Connecticut populations of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 1996, 33, 183–188. [Google Scholar] [CrossRef]
- Larrouse, F.; King, A.G.; Wolback, S.B. The overwintering in Massachusetts of Ixodiphagus caucurteri. Science 1928, 67, 351–353. [Google Scholar] [CrossRef]
- Cooley, R.A.; Kohls, G.M. A summary on tick parasites. Proc. Pac. Sci. Congr. 1933, 35, 3375–3381. [Google Scholar]
- Alfeev, N.I. The utilization of Hunterellus hookeri Howard for the control of the ticks, Ixodes ricinus L. and Ixodes persulcatus P. Sch. with reference to peculiarities of their metamorphosis under conditions of the Province of Lenningard. Rev. Appl. Entomol. B 1946, 34, 108–109. [Google Scholar]
- Knipling, E.F. Principles of Insect Parasitism Analyzed from New Perspectives: Practical Implications for Regulating Insect Populations by Biological Means; USDA-ARS Handbook 693: Washington, DC, USA, 1992. [Google Scholar]
- Georgis, R.; Manweiler, S.A. Entomopathogenic Nematodes: A Developing Biocontrol Technology; Evans, K., Ed.; Agricultural Zoology Reviews: Andover, MA, USA, 1994; pp. 63–94. [Google Scholar]
- Kaya, H.K.; Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 1993, 38, 181–206. [Google Scholar] [CrossRef]
- Martin, W.R.J. Using entomopathogenic nematodes to control insects during stand establishment. Hort. Sci. 1997, 32, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Samish, M.; Alekseev, E.; Glazer, I. Biocontrol of ticks by entomopthogenic nematodes: Research update. Ann. N. Y. Acad. Sci. 2000, 916, 589–594. [Google Scholar] [CrossRef]
- Samish, M.; Glazer, I. Infectivity of the entomopathogenic nematodes (Steinernamatidae and Heterorhabditidae) to female ticks of Boophilus annulatus (Arachnica: Ixodidae). J. Med. Entomol. 1992, 29, 614–618. [Google Scholar] [CrossRef]
- Mauléon, H.; Barre, N.; Panoma, S. Pathogenicity of 17 isolates of entomophagous nematodes (Steinernematidae and Heterorhabditidae) for the ticks Amblyomma variegatum (Fabricius), Boophilus microplus (Canestrini) and Boophilus annulatus (Say). Exp. Appl. Acarol. 1993, 17, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; Pidherney, M.S.; Blouin, E.F.; Claypool, P.L.; Samish, M.; Glazer, I. Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acari: Ixodidae). J. Med. Entomol. 1998, 35, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Alekseev, E.; Glazer, I. Interaction between ticks (Acari: Ixodidae) and pathogenic nematodes: Susceptibility of tick species at various developmental stages. J. Med. Entomol. 1999, 36, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Alekseev, E.; Glazer, I. Efficacy of entomopathogenic nematode strains against engorged Boophilus annulatus female (Acari: Ixodidae) under simulated field conditions. J. Med. Entomol. 1999, 36, 727–732. [Google Scholar] [CrossRef]
- Kirkland, B.H.; Westwood, G.S.; Keyhani, N.O. Pathogenicity of entomopathogenic funi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J. Med. Entomol. 2004, 41, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, E.; Glazer, I.; Samish, M. Effect of soil texture and moisture on the activity of entomopathogenic nematodes against females Boophilus annulatus ticks. Biocontrol 2006, 51, 507–518. [Google Scholar] [CrossRef]
- Georgis, R.; Koppenhöfer, A.M.; Lacey, L.A.; Bélair, G.; Duncan, L.W.; Grewal, P.S.; Samish, M.; Tan, L.; Torr, P.; van Tol, R.W.H.M. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 2006, 38, 103–123. [Google Scholar] [CrossRef]
- Hartelt, K.; Wurst, E.; Collatz, J.; Zimmermann, G.; Klespies, R.G.; Oehme, R.M.; Mackenstedt, U. Biological control of the tick Ixodes ricinus with entomopathogenic fungi and nematodes: Preliminary results from laboratory experiments. Int. J. Med. Microbiol. 2008, 298, 314–320. [Google Scholar] [CrossRef]
- Freitas-Ribeiro, G.M.; Vasconcelos, V.O.; Furlong, J.; Dolinski, C. Evaluation of the efficacy of strains of Steinernema carpocapsae Santa Rosa and ALL (Steinernematidae: Rhabditida) to control engorged female Anocentor nitens (Acari: Ixodidae). Parsitol. Res. 2009, 104, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.M.O.; Furlong, J.; Prata, M.C.A.; Soares, A.E.; Batista, E.S.P.; Dolinski, C. Evaluation of the action of Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) isolate HP88 on the biology of engorged females of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2010, 170, 355–358. [Google Scholar] [CrossRef]
- da Silva, E.R.; Monteiro, C.M.; Reis-Menini, C.; Prata, M.C.A.; Dolinksi, C.; Furlong, J. Action of Heterorhabditis indica (Rhabditida: Heterorhabditidae) strain LPP1 on the reproductive biology of engorged females of Rhipicephalus microplus (Acari: Ixodidae). Biol. Control 2012, 62, 140–143. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.K.; Goolsby, J.A.; Shapiro-Ilan, D.I.; Miller, R.J.; Setamou, M.; de León, A.A.P. Effect of immersion time on efficacy of entomopathogenic nematodes against engorged females of cattle fever tick, Rhipicephalus (= Boophilus) microplus. Southwest Entomol. 2018, 43, 19–28. [Google Scholar] [CrossRef]
- Samish, M.; Alekseev, E.A.; Glazer, I. The effect of soil composition on anti-tick activity of entomopathogenic nematodes. Ann. N. Y. Acad. Sci. 1998, 849, 398–399. [Google Scholar] [CrossRef]
- Samish, M.; Alekseev, E.; Glazer, I. Entomopathogenic nematodes for the biocontrol of ticks. Trends Parasitol. 2001, 17, 368–371. [Google Scholar] [CrossRef]
- Poinar, G.O. Non-insects hosts for the entomogeneous rhabditoid nematodes Neoplectanus (Steinernematidae) and Heterorhabditidae). Rev. Nematol. 1989, 12, 423–428. [Google Scholar]
- Samish, M.; Glazer, I. Killing ticks with parasitic nematodes of insects. J. Invert. Pathol. 1991, 58, 281–282. [Google Scholar] [CrossRef]
- Zhioua, E.; Lebrun, R.A.; Ginsberg, H.S.; Aeschlimann, A. Pathogenicity of Steinernema carpocapsae and S. glaseri (Nematoda: Steinernematidae) to Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 1995, 32, 900–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.H.; Yang, X.L.; Liu, J.Z.; Jian, H. Virulence of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to female ticks Haemophysalis longicornis Neumann (Acari: Ixodidae). Acta Entomol. Sin. 2004, 47, 20–24. [Google Scholar]
- Yang, X.; Gao, Z.; Yu, Z.; Wang, D.; Tang, Y.; Li, F.; Liu, J. Pathogenicity of five species of entomopthogenic nematodes (Steinernematidae and Heterorhabditidae) to the ixodid tick Dermacentor silvarum Olenev (Acari: Ixodidae). Biocontrol Sci. Technol. 2013, 23, 1349–1361. [Google Scholar] [CrossRef]
- Cabanillas, H.E.; Poinar, G.O.; Raulston, R. Steinernema riobravis n. sp. (Rhabditida: Steinernematidae) from Texas. Fund. Appl. Nematol. 1994, 17, 123–131. [Google Scholar]
- Glazer, L.; Samish, M. Suitability of Boophilus annulatus replete females ticks as hosts of the nematode Steinernema carpocapsai. J. Invert. Pathol. 1993, 61, 220–222. [Google Scholar] [CrossRef]
- Cardoso, R.; Monteiro, M.O.; Prata, M.C.A.; Batista, E.S.P. Effct of the entomopathogenic nematode Steinernema glaseri (Rhabditida: Steinernematidae) isolate Santa Rosa on the biological parameters of engorged nymphs of Amblyomma cajennense (Acari: Ixodidae). Arq. Inst. Biol. 2013, 80, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Triggiana, O.; Poinar, G.O. Infection of adult Lepidoptera by Neoplectana carpocapsae (Nematoda). J. Invert. Pathol. 1976, 27, 413–414. [Google Scholar] [CrossRef]
- Poinar, G.O. Nematodes for Biological Control of Insects; CRC: Boca Raton, FL, USA, 1979. [Google Scholar]
- Georgis, R.; Hague, N.G.M. A neoplectanid nematode in the larch sawfly Cephalica lariciphila (Hymenoptera: Pamphilidiidae). Ann. Appl. Biol. 1981, 99, 171–177. [Google Scholar] [CrossRef]
- Bedding, R.A.; Molyneux, A.S. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica 1982, 28, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Akhurst, R.J. Controlling insects in soil with entomopathogenic nematodes. In Fundamental and Applied Aspects of Invertebrate Pathology; Samson, R.A., Vlak, J.M., Peters, D., Eds.; Foundation of the Fourth International Colloquim of Invertebrate Pathology: Wageningen, The Netherlands, 1986; pp. 265–267. [Google Scholar]
- Marcek, Z.; Hanzal, R.; Kodrik, D. Site of penetration of juvenile steinernematids and heterorhabditids (Nematoda) into the larvae of Gallerioa mellonella (Lepidoptera). J. Invert. Pathol. 1988, 52, 477–478. [Google Scholar] [CrossRef]
- Nguyen, K.B.; Smart, G.C. Mode of entry and sites of development of Steinernema scapterisci in mole crickets. J. Nematol. 1990, 23, 267–268. [Google Scholar]
- Wang, J.X.; Bedding, R.A. Population development of Heterorhabditis bacteriophora and Steinernema carpocapsae in the larvae of Galleria mellonella. Fund. Appl. Nematol. 1996, 19, 363–367. [Google Scholar]
- Gaugler, R.; Kaya, H.K. Entomopathogenic Nematodes in Biological Control; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Akhurst, R.J. Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 1980, 121, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Akhurst, R.J. Neoplectana species: Specificity of association with bacteria of the genus Xenorhabdus. Exp. Parasitol. 1983, 55, 258–263. [Google Scholar] [CrossRef]
- Hazir, R.S.; Kaya, H.K.; Stock, P.; Keskin, N. Entomophathogenic nematodes (Steinernemtidae and Heterrhabditidae) for biological control of soil pests. Turk. J. Biol. 2003, 27, 181–202. [Google Scholar]
- Poinar, G.O. Entomogenous nematodes. In Biological Plant and Health Protection; Franz, B.D., Ed.; Fischer: Stuttgart, Germany, 1986; pp. 95–121. [Google Scholar]
- Ehlers, R.U. Mass production of entomopathogenic neamtodes for plant protection. Appl. Microbiol. Biotechnol. 2001, 56, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Hassanain, M.A.; Derbala, A.A.; Abdel-Barry, N.A.; El-Sherif, M.A.; El-Sadawe, H.A. Biological control of ticks (Argasideae) by entomopathogenic nematodes. Egypt. J. Biol. Pest Control 1999, 7, 41–46. [Google Scholar]
- Gaugler, R.; LeBick, L.; Nakagaki, B.; Bouch, G.M. Orientation of the entomogeneous nematode Neoplectana carpocapsae to carbon dioxide. Environ. Entomol. 1980, 9, 649–652. [Google Scholar] [CrossRef]
- Kaya, H.K. Entomogeneous nematodes for insect control in IPM systems. In Biological Control in Agricultural IPM Systems; Hass, M.A., Herzog, D.C., Eds.; Academic: New York, NY, USA, 1985; pp. 283–302. [Google Scholar]
- Aquino-Bolaños, T.; Ruiz-Vega, J.; Hernández, Y.D.O.; Casteñeda, J.C.J. Survival of entompathogenic nematodes in oil emulsions and control effectiveness on adult engorged ticks (Acari: Ixodida). J. Nematol. 2019, 51, e2019-01. [Google Scholar] [CrossRef] [Green Version]
- Yates, J.A.; Lowrie, R.C. Development of Yatesia hydrochoerus (Nematoda: Filarioidea) to the infective stage in eoxdid ticks. Proc. Helminthol. Soc. Wash. 1984, 51, 187–190. [Google Scholar]
- Tokarz, R.; Tagliafierro, T.; Lipkin, W.I.; Marques, A.R. Characterization of a Monanema Nematode in Ixodes scapularis. Parasites Vectors 2020, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Knapp, F.W. Insecticide Dust Bags for Cattle Insect Control; University Kentucky: Lexington, KY, USA, 2008; Available online: https://entomology.ca.uky.edu/ef515 (accessed on 10 December 2020).
- Olmeda-Garcia, A.S.; Rodriguez-Rodriguez, J.A. Stage specific development of filarial nematodes in vector ticks. J. Helminthol. 2014, 68, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Megaw, M.W.J. Virus-like particles pathogenic to salivary glands of the tick Boophilus microplus. Nature 1978, 271, 483–484. [Google Scholar] [CrossRef] [PubMed]
- Burgdorfer, W.; Ormslee, R.A. Development of Rickettsia prowazeki in certain species of ixodid ticks. Acta Virol. 1968, 12, 36–40. [Google Scholar] [PubMed]
- Noda, H.; Munderloh, U.G.; Kurtti, T.J. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 1997, 63, 3926–3932. [Google Scholar] [CrossRef] [Green Version]
- Kurtti, T.J.; Palmer, A.T.; Oliver, J.H. Rickettsia-like bacteria in Ixodes woodi (Acari: Ixodidae). J. Med. Entomol. 2002, 39, 534–540. [Google Scholar] [CrossRef]
- Martin, P.A.W.; Schmidtmann, E.T. Isolation of aerobic microbes from Ixodes scapularis (Acari: Ixodidae), the vector of Lyme disease in the eastern United States. J. Econ. Entomol. 1998, 91, 864–868. [Google Scholar] [CrossRef]
- Machado-Ferreira, E.; Vizzoni, V.F.; Piesman, J.; Gazeta, G.S.; Soares, C.A.G. Bacteria association with Amblyomma cajennense tick eggs. Genet. Mol. Biol. 2015, 38, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.S.; Reichelderfer, C.F.; Anderson, W.R. An endemic disease maong laboratory populations of Dermacentor andersoni (= D. venustus) (Acarina: Ixodidae). J. Invert. Pathol. 1970, 16, 142–143. [Google Scholar] [CrossRef]
- Hendry, D.A.; Rechav, T. Acaricidal bacteria infecting laboratory colonies of the tick Boophilus decolaratus (Acarina: Ixodidae). J. Invert. Pathol. 1981, 38, 149–151. [Google Scholar] [CrossRef]
- Brum, J.G.W.; Teixeira, M.O. Acaricidal activity of Cedea lapagei on engorged females of Boophilus microplus exposed to the environment. Arqu.Brasil. Medic. Vet. Zootecnol. 1992, 44, 543–544. [Google Scholar]
- Brum, J.G.W.; Caccini, J.L.H.; Do Amaral, M.M. Infection in engorged females of Boophilus microplus (Acari: Ixodidae). II. Histopathology and in vitro trials. Arqu.Brasil. Medic. Vet. Zootecnol. 1991, 43, 35–37. [Google Scholar]
- Brum, J.G.W.; Teixeira, M.O.; da Silva, E.G. Infection in engorged females of Boophilus microplus (Acari: Ixodidae). I. Etiology and seasonal incidence. Arqu.Brasil. Medic. Vet. Zootecnol. 1991, 43, 25–30. [Google Scholar]
- Martinez, R.; Fernández-Ruvalcaba, M.; Hernandez-Velazquez, V.M.; Pena-Chora, G.; Lina-Garcia, P.; Osorio-Miranda, J. Evaluation of natural origin products for the control of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) on cattle artificially infested. Basic Res. J. Agric. Sci. Rev. 2013, 2, 64–79. [Google Scholar]
- Fernández-Ruvalcaba, M.; Peña-Chora, G.; Roma-Martínez, A.; Hernández-Velázquez, V.; de la Parra, A.B.; de la Rosa, D.P. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chekical pesticides. J. Insect Sci. 2010, 10, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhioua, E.; Ginsberg, H.S.; Humber, R.A.; Lebrun, R.A. Preliminary survey for entomopathogenic fungi associated with Ixodes scapularis (Acari: Ixodidae) in southern New York and New England, USA. J. Med. Entomol. 1999, 36, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Zhioua, E.; Heyer, K.; Browning, M.; Ginsberg, H.S.; Lebrun, R.A. Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 900–902. [Google Scholar] [CrossRef]
- Sebesta, K.; Farkas, J.; Horska, K.; Vankova, J. Thuringiensin, the beta-exotoxin of Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases (1970–1980); Burges, H.D., Ed.; Academic Press: New York, NY, USA, 1981; pp. 249–281. [Google Scholar]
- Dubois, N.R.; Dean, D.H. Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantridae) larvae. Environ. Entomol. 1995, 24, 1741–1747. [Google Scholar] [CrossRef]
- Gill, S.S.; Cowlers, E.A.; Pietrantonio, P.V. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 1992, 37, 615–636. [Google Scholar] [CrossRef]
- Habeeb, S.M.; El-Hag, H.A.A. Ultrastructural changes in hemocyte cells of hard tick (Hyalomma dromedarii: Ixodidae): A model of Bacillus thuringiensis var. thuringiensis H14 δ-endotoxin mode of action. Am.-Euras. J. Agric. Environ. Sci. 2008, 3, 829–836. [Google Scholar]
- Rehacek, R.C.S.; Kovacova, E.; Kocianova, E. Isolation of Nosema slovaca (Microsporidiai) from Dermacentor reticulatus ticks (Acari: Ixoxdidae) collected in Hungary. Exp. Appl. Acarol. 1996, 20, 57–60. [Google Scholar]
- Brumpt, E. Formes evolutives d’Haemogregarina mauritanica chez la tique Hyalomma syriacum. Ann. Parasitol. 1938, 16, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Kolomyetz, U.S. Aspergilus fumigatus as a parasite of ticks. Priroda 1950, 39, 64–65. [Google Scholar]
- Samsinakova, A. Beauveria globulifera (SPEG) Pic. as a parasite of the tick Ixodies ricinus L. Zool. List. 1957, 20, 329–330. [Google Scholar]
- Steinhaus, E.A.; Marsh, G.A. Report of diagnoses of diseased insects 1951–1961. Hilgardia 1962, 33, 249–390. [Google Scholar] [CrossRef] [Green Version]
- Samsinakova, A.; Kalalova, S.; Daniel, M.; Dusbabek, F.; Houzakova, E.; Cerny, V. Entomophagous fungi associated with the tick Ixodes ricinus. Folia Prarasitologica 1974, 21, 39–48. [Google Scholar]
- Estrada-Pena, A.; Gonzalez, J.; Casasolas, A. The activity of Aspergillus ocharaceus (Fungi) on replete females of Rhipicephalus sanguineus (Acari: Icodidae) in natural and experimental conditions. Folia Parastologica 1990, 37, 331–336. [Google Scholar]
- Guerra, R.M.S.N.C.; Filho, W.L.T.; Costa, G.L.; Bittencourt, V.R.E.P. Fungus isolated from Rhipicephalus sanguineus (Acari: Ixodidae), Cochliomya macellaria (Diptera: Muscidae) and Musca domestica (Diptera: Muscidae), naturally infected on Seropedica, Rio de Janeiro. Cienc. Anim. 2001, 11, 133–136. [Google Scholar]
- Ostfeld, R.S.; Price, A.; Hornbostel, V.L.; Benjamin, M.A.; Keesing, F. Controlling ticks and tick-borne zoonoses with biological and chemical agents. Bioscience 2006, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Humber, R.A. Collection of Entomopathogenic Fungal Cultures: Catalog of Strains; ARS-110; USDA-ARS: Ithaca, NY, USA, 1992. [Google Scholar]
- Sun, M.; Ren, Q.; Guan, G.; Li, Y.; Han, X.; Ma, C.; Yin, H.; Luo, J. Effectiveness of Beauveria bassiana sensu lato strains for biological control against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in China. Parasitol. Int. 2013, 62, 412–415. [Google Scholar] [CrossRef]
- Onofre, S.B.; Miniuk, C.M.; de Barros, N.M.; Azevedo, J.L. Pathogenicity of four strains of entomopathogenic fungi against the bovine tick Boophilus microplus. Am. J. Vet. Res. 2001, 62, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Beys-da-Silva, W.O.; Rosa, R.L.; Berger, M.; Coutinho-Rodrigues, C.J.B.; Vainstein, M.H.; Schrank, A.; Bittencourt, V.R.E.P.; Santi, L. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp. Parasitol. 2020, 208, 107812. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.B.A.; Bittencourt, V.R.E.P.; Daemon, E.; Veigas, E.D.C. Efficacy of the fungus Metarhizium anisopliae (isolate 959) on the tick Boophilus microplus in a stall test. Rev. Univ. Rural. Ser. Cienc. Vida 1997, 19, 73082. [Google Scholar]
- Correia, A.C.B.; Fiorin, A.C.; Monteiro, A.C.; Verissimo, C.J. Effects of Metarhizium anisopliae on the tick Boophilus micoplus (Acari: Ixodidae) in stabled cattle. J. Invert. Pathol. 1998, 71, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, V.R.E.P.; Souza, E.J.; Peralva, S.L.F.S.; Reis, R.C.S. Efficacy of the fungus Metarhizium anisopliae (Metschnikoff, 1887) Sorokin, 1883 in field test with bovines naturally infested with the tick Boophilus microplus (Canestrini, 18887) (Acari: Ixodidae). Rev. Brasil. Med. Vet. 1999, 21, 78–81. [Google Scholar]
- Kaaya, G.P.; Hassan, S. Entomophagous fungi as promising biopesticides for tick control. Exp. Appl. Acarol. 2000, 24, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.A.; Zhioua, E.; Ostfeld, R.S. Laboratory and field evaluation o the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2002, 30, 723–728. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; da Costa, G.L.; Moraes, Á.M.L.; Bittencourt, V.R.E.P. Entomopathogenic potential of Metarhizium anisopliae isolated from engorged females and tested in eggs and larvae of Boophilus microplus (Acari: Ixodidae). J. Basic Microbiol. 2004, 44, 270–274. [Google Scholar] [CrossRef]
- Kaaya, G.P.; Munyinyi, D.M. Biocontrol potential of the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae for tsetse flies (Glossina spp.) at developmental sites. J. Invert. Pathol. 1995, 66, 237–241. [Google Scholar] [CrossRef]
- Kaaya, G.P.; Mwangi, E.N.; Ouna, E.A. Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum, using the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae. J. Invert. Pathol. 1996, 67, 15–20. [Google Scholar] [CrossRef]
- Gomathinayagam, S.; Cradock, K.R.; Needham, G.R. Pathogenicity of the fungus Beauveria bassiana (Balsamo) to Amblyomma americanum (L.) and Dermacentor variabilis (Say) ticks (Acari: Ixodidae). Int. J. Acarol. 2002, 28, 395–397. [Google Scholar] [CrossRef]
- Abdigoudarzi, M.; Esmaeilnia, K.; Shariat, N. Laboratory study on biological control of ticks (Acari: Ixodidae) by entomopathogenic indigenous fungi (Beauveria bassiana). Iran. J. Arthropod-Borne Dis. 2009, 3, 36–43. [Google Scholar] [PubMed]
- Cradock, K.; Needham, G. Physiological effects upon Amblyomma americanum (Acari: Ixodidae) infected with Beauveria bassiana (Ascomycota: Hypocreales). Exp. Appl. Acarol. 2011, 53, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Immediato, D.; Iatta, R.; Ramos, R.A.N.; Lia, R.P.; Poretta, D.; Figueredo, L.A.; Dantes-Torres, F.; Otranto, N.D. Native strains of Beauveria bassiana for the control of Rhipicephalus sanguineus sensu lato. Parasites Vectors 2015, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Kalsbeek, V.; Frandsen, F.; Steenberg, T. Entomopathogenic fungi associated with Ixodes ricinus ticks. Exp. Appl. Acarol. 1995, 19, 45–51. [Google Scholar] [CrossRef]
- Kaaya, G.P. Laboratory and field evaluation of entomogenous fungi for tick control. Ann. N. Y. Acad. Sci. 2000, 916, 559–564. [Google Scholar] [CrossRef]
- Kaaya, G.P.; Samish, M.; Glazer, I. Laboratory evaluation of pathogencitity of entomopathogenic nematodes to Africa ticks species. Ann. N. Y. Acad. Sci. 2000, 916, 303–308. [Google Scholar] [CrossRef]
- Rot, A.; Gindin, G.; Ment, D.; Mishoutchenko, A.; Glazer, I.; Samish, M. On-host control of the brown dog tick Rhipicephalus sanguineus Latreille (Acari: Ixodidae) by Metarhizium brunneum (Hypocreales: Clavicipitaceae). Vet. Parasitol. 2013, 193, 229–237. [Google Scholar] [CrossRef]
- Tuininga, A.R.; Miller, J.L.; Morath, S.U.; Daniels, T.J.; Falco, R.C.; Marchese, M.; Sahabi, S.; Rosa, D.; Stafford, K.C. Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: Prevalence and methods. J. Med. Entomol. 2009, 46, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Greengarten, P.J.; Tuininga, A.R.; Morath, S.U.; Falco, R.C.; Norelus, H.; Daniels, T.J. Occurrence of soil-and tick-borne fungi and related virulence tests for pathogencity to Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2011, 48, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, A.; Stafford, K.C. Evaluation of Metarhizium anisopliae strain F52 (Hypocreales: Clavicipitaceae) for control of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2010, 47, 862–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, K.C.; Allan, S.A. Field applications of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae F52 (Hypocreales: Clavicipitaceae) for the control of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2010, 47, 1107–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornbostel, V.L.; Zhioua, E.; Benjamin, M.A.; Ginsberg, H.; Ostfeld, R.S. Pathogenicity of Metarhizium anisopliae (Deutermycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs. Exp. Appl. Acarol. 2005, 35, 301–316. [Google Scholar] [CrossRef]
- Campos, R.A.; Boldo, J.T.; Pimentel, L.C.; Dalfovo, V.; Araújo, W.L.; Azevedo, J.L.; Vainstein, M.H.; Barros, N.M. Endophytic and entomopathogenic strains of Beauveria sp to control the bovine tick Rhipicephalus (Boophilus) microplus. Genet. Molec. Res. 2010, 9, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Stafford, K.C.; Kitron, U. Environmental mamagement for Lyme borreliosis control. In Lyme Borreliosis Biology, Epidemiology an Control; Gray, J.S., Kahl, O., Lame, R., Stanek, G., Eds.; CABI: Oxford, UK, 2002; pp. 301–334. [Google Scholar]
- Hornbostel, V.L.; Ostfeld, R.S.; Benjamin, M.A. Effectiveness of Metarhizium anisopliae (Deuteromycetes) against Ixodies scapularis (Acari: Ixodidae) engorging on Peromnyscus leucopus. J. Vector Ecol. 2005, 30, 91–101. [Google Scholar] [PubMed]
- Rijo, E. Biological control of ticks with entomopathogenic fungi. Riv. Pecu. De Nicar. 1998, 22, 17–18. [Google Scholar]
- Suleiman, E.A.; Shigidi, M.T.; Hassan, S.M. Metarhizium anisopliae as a biological control agent against Hyalomma anatolicum (Acari: Ixodidae). Pak. J. Biol. Sci. 2013, 16, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Arruda, W.; Lubek, I.; Schrank, A.; Vainstein, M.H. Morphologial alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Exp. Appl. Acarol. 2005, 37, 231–244. [Google Scholar] [CrossRef]
- Leemon, D.M.; Jonsson, N.N. Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. J. Invert. Pathol. 2008, 97, 40–49. [Google Scholar] [CrossRef]
- Leemon, D.M.; Jonsson, N.N. Comparison of bioassay responses to the potential fungal biopesticide Metarhizium anisopliae in Rhipicephalus (Boophilus) microplus and Lucilia cuprina. Vet. Parasitol. 2012, 185, 236–247. [Google Scholar] [CrossRef]
- Angelo, I.C.; Gôlo, P.S.; Perinotto, W.M.S.; Camargo, M.G.; Quinelato, S.; Sá, F.A.; Pontes, E.G.; Bittencourt, V.R.E.P. Neutral lipid composition changes in the fat bodies of engorged females Rhipicephalus microplus ticks in response to fungal infections. Parasitol. Res. 2012, 112, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Leger, R.J.S.; Wu, L.P. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J. Biol. Chem. 2007, 282, 8969–8977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gôlo, P.S.; Angelo, I.C.; Camargo, M.G.; Perinotto, W.M.S.; Bittencourt, V.R.E.P. Effects of destruxin A on Rhipicephalus (Boophilus) microplus ticks (Acari: Ixodidae). Rev. Bras. Parasitol. Vet. 2011, 20, 338–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, R.A.; Arruda, W.; Boldo, J.T.; Silva, M.V. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 2005, 50, 257–261. [Google Scholar] [CrossRef]
- Guangfu, T. Experiment of infection and killing of Hyalomma detritum with fungi. J. Vet. Sci. 1984, 7, 11–13. [Google Scholar]
- Gindin, G.; Samish, M.; Alekseev, E.; Glazer, I. The susceptibility of Boophilus annulatus (Ixodidae) ticks to entomophagous fungi. Biocontrol Sci. Technol. 2001, 11, 111–118. [Google Scholar] [CrossRef]
- Casasolas-Oliver, A.; Estrad-Pena, A.; Gonsalez-Cabo, J. Activity of Rhizopus thailandensis, Rhizopus arrhizus and Curvularia lunata on reproductive efficacy of Rhipicephalus sanguineus (Ixodidae). In Modern Acarology; Dusbadek, F., Bukva, V., Eds.; Academia Prague and SPB Academic Publ. BV: Prague, Czech Republic, 1991; pp. 633–637. [Google Scholar]
- Mwangi, E.N.; Kaya, G.P.; Essumen, S. Experimental infections of the tick Rhipicephalus appendiculatus with entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, and natural infections of some ticks with bacteria and fungi. J. Afr. Zool. 1995, 109, 151–160. [Google Scholar]
- Castineiras, A.; Jimeno, G.; Lopez, M.; Sosa, L.M. Effect of Beauveria bassiana, Metarhizium anisoplieae (Fungi, Imperfecti) and Pheidole megacephala (Hymenoptera, Formicicae) on eggs of Boophilus microplus (Acarina: Ixodidae). Rev. Salud Anim. 1987, 9, 288–293. [Google Scholar]
- Barci, L.A.G. Biological control off the cattle tick Boophilus microlus (Acari: Ixodidae) in Brazil. Arqu. Inst. Biol. Sao Paulo 1997, 64, 95–101. [Google Scholar]
- Zangi, G. Tick Control by Mens of Entomopathogenic Njueamdes and Fungi. Master’s Thesis, Hebrew University, Jerusalem, Israel, 2003. [Google Scholar]
- Perinotto, W.M.S.; Angelo, I.C.; Gôlo, P.S.; Quinelato, S.; Carmago, M.G.; Sá, F.A.; Bittencourt, V.R.E.P. Susceptibility of different populations of ticks to entomopathogenic fungi. Exp. Parasitol. 2012, 130, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Gindin, G.; Samish, M.; Zangi, G.; Mishoutchenko, A.; Glazer, I. The susceptibility of different species and stages of ticks to entomopathgenic fungi. Exp. Appl. Acarol. 2002, 28, 283–288. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Costa, G.L.; de Souza, E.J.; Moraes, Á.M.L.; Bittencourt, V.R.E.P. Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus (Acari: Ixodidae). J. Basic Microbiol. 2003, 43, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Boichev, D.; Rizvanov, K. Relation of Botrytis cinerea Pers. to ixodid ticks. Zool. Shurnal Akad. Nauk USSR 1960, 39, 462. [Google Scholar]
- Gorshkova, G.J. Reduction of fecundity of ixodid ticks females by fungal infection. Vestn. Leningr. Univ. Seria Biol. 1966, 21, 13–16. [Google Scholar]
- Monteiro, S.G.M.; Bittencourt, V.R.E.P.; Daemon, E.; Faccini, J.L.H. Effect of the entompopathogenic fungi Metarhizium anisopliae and Beauveria bassiana on eggs of Rhipicephalus sanguineus (Acari: Ixodidae). Cienc. Rural. St. Maria 1998, 28, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.G.M.; Bittencourt, V.R.E.P.; Daemon, E.; Faccini, J.L.H. Pathogenicity under laboratory condictions of the fungi Beauveria bassiana and Metarhizium anisopliae on larvae of the tick Rhipicephalus sanguineus (Acari: Ixodidae). Rev. Bras. Parasitol. Vet. 1998, 7, 113–116. [Google Scholar]
- Bittencourt, V.R.E.P.; Massard, C.L.; Lima, A.F. The action of Metarhizium anisopliae, at eggs and larvae of tick Boophilus microplus. Rev. Univ. Rural. Ser. Cienc. Vida 1994, 16, 41–47. [Google Scholar]
- Paiao, J.C.V.; Monteiro, A.C.; Kronka, S.N. Susceptibility of the cattle tick, Boophilus microplus (Acari: Ixodidae) to isolates of the fungus Beauveria bassiana. World J. Microbiol. Biochem. 2001, 17, 245–251. [Google Scholar] [CrossRef]
- Reis, R.C.S.; Mielo, D.R.; Souza, E.J.; Bittencourt, V.R.E.P. In vitro action of the fungi Beauveria bassiana Vuill and Metahizium anisopliae Sork on nymphs and adults of Amblyomma cajenense (Acari: Ixodidae). Arqu. Brasil. Med. Vet. Zootecnol. 2001, 53, 544–547. [Google Scholar] [CrossRef]
- Bittencourt, V.R.E.P.; Massard, C.L.; Lima, A.F. The action of Metarhizium anisopliae, at free living stages of Boophilus microplus. Rev. Univ. Rural. Ser. Cienc. Vida 1994, 16, 49–55. [Google Scholar]
- Hornbostel, V.L.; Ostfeld, R.S.; Zhioua, E.; Benjamin, M.A. Sublethal effects of Metarhizium anisopliae (Deuteromycetes) on engorged larval, nymphal, and adult Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2004, 41, 922–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, M.G.; Marciano, A.F.; Sá, F.A.; Perinotto, W.M.S.; Quinelato, S.; Gôlo, P.S.; Angelo, I.C.; Prata, M.C.A.; Bittencourt, V.R.E.P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Vet. Parasitol. 2014, 205, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, E.R.; Navaro, G.; Rodriguez, R.M.; Murillo, E.Y. Effectiveness of Verticillium lecanii against the parasitic stage of the tick Boophilus microplus (Acari: Megastigmata: Ixodidae). Rev. Colomb. Entomol. 1998, 24, 67–69. [Google Scholar]
- Pirali-Kheirabadi, K.; Haddadzadeh, H.; Razzaghi-Abyaneh, M.; Bokaie, S.; Zare, R. Biological control of Rhipicephalus (Boophilus) annulatus by different strains of Metarhizium anisopliae, Beauveria bassiana, and Lecanicillium psalliotae fungi. Parasitol. Res. 2007, 100, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Angelo, I.C.; Fernandes, É.K.K.; Bahiense, T.C.; Perinotto, W.M.; Moraes, A.P.R. Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus. Vet. Parasitol. 2010, 172, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Zekeya, N.; Mbega, E.R.; Ndossi, H. Susceptibility of different species of ticks (Acari: Ixodidae) to an entomopathogenic fungus in Tanzania. J. Anim. Sci Res. 2010, 9, 1421–1430. [Google Scholar]
- Sun, M.; Ren, Q.Y.; Guan, G.Q.; Liu, Z.J.; Ma, M.L.; Gou, H.T. Virulence of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus to the engorged female Hyalomma anatolicum tick (Acari: Ixodidae). Vet. Parasitol. 2011, 180, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Genther, F.J.; Middaugh, D.P. Nontarget testing of an insect control fungus: Effects of Metarhisium anisopliae on developing embros of the insland silverside fish Menidiaberyllina. Dis. Aquat. Org. 1995, 22, 163–171. [Google Scholar] [CrossRef]
- Fargues, J.F.; Goettel, M.S.; Smits, N.; Ouedraogo, A.; Vidal, C.; Lacy, L.A.; Lomer, C.J.; Rougier, M. Variability in susceptibility to simulated sunlight of conidia among isolates of entomolathogenic Hyphomycetes. Mycopathologia 1996, 135, 171–181. [Google Scholar] [CrossRef]
- Fargues, J.F.; Rougier, M.; Goujet, R.; Smits, N.; Coustere, C.; Itier, B. Inactivation of conidia of Paecilomyces fumosoroseus by near-ultraviolet (UVB and UVA) and visible radiation. J. Invert. Pathol. 1997, 69, 70–78. [Google Scholar] [CrossRef]
- Braga, G.U.L.; Rangel, D.E.N.; Flint, S.D.; Miller, C.D.; Andrson, A.J.; Roberts, D.W. Damage and recovery from UB-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia 2002, 94, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.S.; Lebrun, R.A.; Heyer, K.; Zhioua, E. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae). Environ. Entomol. 2002, 31, 1191–1196. [Google Scholar] [CrossRef] [Green Version]
- Magalhaes, B.P.; Boucias, D.G. Effects of drying on the survival of conidiospores of Metarhizium anisopliae var. acridum Driver and Milner. J. Orthop. Res. 2004, 13, 155–159. [Google Scholar]
- Rangel, D.E.N.; Braga, G.U.L.; Anderson, A.J.; Roberts, D.W. Variability in conidial thermoteloerance of Metarhizium anisopliae isolates from diferent geographic origins. J. Invert. Pathol. 2005, 88, 116–125. [Google Scholar] [CrossRef]
- Rangel, D.E.N.; Alston, D.G.; Roberts, D.W. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol. Res. 2008, 112, 1355–1361. [Google Scholar] [CrossRef]
- Rangel, D.E.N.; Anderson, A.J.; Roberts, D.W. Evaluating physical and nutritional stress suring mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol. Res. 2008, 112, 1362–1372. [Google Scholar] [CrossRef]
- Babendreier, D.; Jeanneret, P.; Pilz, C.; Toepfer, S. Non-target effects of insecticuds, entomopathogenic fungi and nematodes applied against western corn rootweorm larvae in maize. J. Appl. Entomol. 2015, 139, 457–467. [Google Scholar] [CrossRef]
- Muniz, E.R.; Paixão, F.R.S.; Barreto, L.P.; Luz, C.; Arrunda, W.; Angelo, I.C.; Fernandes, É.K.K. Efficacy of Metarhizium anisopliae conidia in oil-in-water emulsion against the tick Rhipicephalus microplus under heat and dry conditions. BioControl 2020, 65, 339–351. [Google Scholar] [CrossRef]
- DeGarcia, M.C.C.; Arboleda, M.L.; Barraquer, F.; Grose, E. Fungal keratitis caused by Metarhizium anisopliae var. anisopliae. J. Med. Vet. Mycol. 1997, 35, 361–363. [Google Scholar] [CrossRef] [Green Version]
- Tucker, D.L.; Beresford, C.H.; Sigler, L.; Rogers, K. Disseminated Beauveria bassiana infection in a patient with acute lymphoblastic leukemia. J. Clin. Microbiol. 2004, 42, 5412–5414. [Google Scholar] [CrossRef] [Green Version]
- Shelton, A.M.; Roush, R.T. Resistance to insect pathogens and strategies to manage resistance. In Field Manual of Techniques in Invertebrate Pathology; Lacy, L.A., Kaya, H.K., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 629–845. [Google Scholar]
- Bateman, R.P.; Carey, M.; Moore, D.; Prior, C. The enhancd infectivity of Metarhizium flavoviride in oil formulations to disert lcousts at low humidities. Ann. Appl. Biol. 1993, 122, 145–152. [Google Scholar] [CrossRef]
- Moore, D.; Brigde, P.D.; Higgins, P.M.; Bateman, R.P. Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineal oils and chemical sunscreens. Ann. Appl. Biol. 1993, 122, 605–616. [Google Scholar] [CrossRef]
- Barreto, L.P.; Luz, C.; Mascarin, G.M.; Roberts, D.W.; Arruda, W.; Fernandes, É.K.K. Effect of heat stress and oil formulation on condial germination of Metarhizium anisopliae s.s. on tick cuticle and artifial medium. J. Invert. Pathol. 2016, 138, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.M.; Bernardo, C.C.; Paixão, F.B.; Barreto, L.P.; Luz, C.; Humber, R.A.; Fernandes, É.K.K. Heat-stressed Metarhizium anisopliae: Viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitol. Res. 2017, 116, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Polar, P.; Kairo, M.T.K.; Peterkin, D.; Moore, D.; Pegram, R.; John, S.A. Assessment of fungal isolates for development of a myco-acaricide for cattle tick control. Vector Borne Zoonotic Dis. 2005, 5, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, É.K.K.; Bittencourt, V.R.E.P. Entomopathognic fungi against South American tick species. Exp. Appl. Acarol. 2008, 46, 71–93. [Google Scholar] [CrossRef]
- Ángel-Sahagún, C.A.; Lezama-Gutiérrez, R.; Molina-Ochoa, J.; Pescador-Rubio, A.; Skoda, S.R.; Cruz-Vazquez, C.; Lorenoni, A.G.; Galindo-Velasco, E.; Fragoso-Sánchez, H.; Foster, J.E. Virulence of Mexican isolates of entomopathogenic fungi (Hypocreales: Clavicipitaceae) upon Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) larvae and the efficacy of conidia formulations to reduce larval tick density under field condtions. Vet. Parasitol. 2010, 170, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Hedimbi, M.; Kaaya, G.P.; Chinsembu, K.C. Mortalities induced by entomopathogenic fungus Metarhizium anisopliae to different ticks of economic importance using two fomulations. Int. Res. J. Microbiol. 2011, 2, 141–145. [Google Scholar]
- Kaaya, G.P.; Samish, M.; Hedimbi, M.; Gindin, G.; Glazer, I. Control of tick populations by spraying Metarhizium anisopliae conidia on cattle under field conditions. Exp. Appl. Acarol. 2011, 55, 273–281. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Stafford, K.C. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) using three exposure assays in the laboratory. J. Econ. Entomol. 2012, 105, 222–231. [Google Scholar] [CrossRef]
- Hunt, T.R.; Moore, D.; Higgins, P.M.; Prior, C. Effects of sunscreens, irradiance and resting periods on the germination of Metarhizium flavoviride conidia. Entomophaga 1994, 39, 313–322. [Google Scholar] [CrossRef]
- Hedimbi, M.; Kaaya, G.P.; Singh, S.; Chimwamurombe, P.M.; Dindin, G.; Glazer, I.; Samish, M. Protection of Metarhizium anisopliae conidia from ultra-vilet radiation and their pathogenicity to Rhipicephalus evertsi ticks. Exp. Appl. Acarol. 2008, 46, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Chi, M.M.; Rodriguez-Vivas, R.I.; Galindo-Velasco, E.; Lezama-Gutiérrez, R. Laboratory and field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Vet. Parasitol. 2010, 170, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.A.D.; Junior, H.B.P.; Soares, S.F.; Ferri, P.H.; Ribas, P.; Lima, E.M.; Furlong, J.; Bittencourt, V.R.E.P.; Perinotto, W.M.S.; Borges, L.M.F. Potential synergistic effect of Melia azedarach fruit extract and Beauveria bassiana in the control of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in cattle infestations. Vet. Parasitol. 2011, 175, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Maranga, R.O.; Kaaya, G.P.; Mueke, J.M.; Hassanali, A. Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (Ixodidae) in relations to seasonal changes. Mycopathologia 2005, 159, 527–532. [Google Scholar] [CrossRef]
- Roberts, D.W.; Campbell, A.A. Stability of entomopathogeinc fungi. In Environmental Stability of Microbial Insecticides; Ignoffo, C.M., Hostetter, D.I., Eds.; Entomological Society of America: Latham, MD, USA, 1977; pp. 19–76. [Google Scholar]
- Sonenshine, D.E. The respiratory system. In Biology of Ticks; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 1991; Volume 1, pp. 213–220. [Google Scholar]
- Glenn, D.M.; Puterka, G.J.; Vanderswet, T.; Byers, R.E.; Feldman, C. Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. J. Econ. Entomol. 1999, 92, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Puterka, G.J.; Glenn, D.M.; Sekutowski, D.G.; Unruh, T.R.; Jones, S.K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 2000, 29, 329–339. [Google Scholar] [CrossRef]
- Allan, S.A.; Patrican, L.A. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to desiccants and an insecticidal soap. Exper. Appl. Acarol. 1994, 18, 691–702. [Google Scholar]
- Tarshis, I.B. Laboratory and field studies with sorptive dusts for the control of arthropods affecting man and animal. Exp. Parasitol. 1961, 11, 10–33. [Google Scholar] [CrossRef]
- Ebeling, W. Control of the tropical rat mite. J. Econ. Entomol. 1960, 53, 475–476. [Google Scholar] [CrossRef]
- Ebeling, W. Sorptive dusts for pest control. Annu. Rev. Entomol. 1971, 16, 123–158. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, W. Inorganic insecticides and dusts. In Understanding and Controlling the German Cockroach; Rust, M.K., Owens, J.M., Reierson, D.A., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 193–228. [Google Scholar]
- Ebeling, W.; Wagner, R.E. Rapid desiccation of drywood termites with inert sorptive dusts and other substances. J. Econ. Entomol. 1959, 52, 190–207. [Google Scholar] [CrossRef]
- Tarshis, I.B. Preliminary laboratory and field studies on the utilization of Dri-Die 67 and 2% Dibrom-Dri-Die 67 for the control of the western cone-nosed bug, Triatoma protracta (Uhler). Am. J. Trop. Med. Hyg. 1963, 12, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Teas, C.; Kalligeros, S.; Zanikos, F.E.; Stournal, S.; Lois, E.; Anastopoulos, G. Investigation of the effectiveness of absorbent materials in oil spill clean up. Desalination 2001, 140, 259–264. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Perlite toxicology and epidemiology—A review. Inhal. Toxicol. 2014, 26, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Aliniaeifard, S.; Nejad, A.R.; Seifikalhor, M.; Shahlaei, A.; Aliniaeifard, A. Comparison of soil and perlite (with nutrient solution supply) growing media for cultivation of lemon verbena (Lippia citriodora var. ‘Verbena’). Med. Aromat. Plant Sci. Biotechnol. 2009, 5, 30–33. [Google Scholar]
- Al-Shammari, A.M.A.; Abood, M.A.; Hamdi, G.J. Perlite affects some plant indicators and reduces water deficit in tomato. Int. J. Veg. Sci. 2018, 24, 490–500. [Google Scholar] [CrossRef]
- Miller, D.M.; Rogers, J. Non-Chemical Bed Bug Management; Ento-130NP, Virginia Cooperative Extension; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2015; Available online: https://www.pubs.ext.vt.edu/ENTO/ENTO-130/ENTO-130.html (accessed on 5 March 2022).
- Islam, M.S.; Rahman, M.M. Diatomaceous earth-induced alterations in the reproductive attributes in the housefly, Musca domestica L. (Diptera: Muscidae). Appl. Zool. 2016, 96, 41241–41244. [Google Scholar] [CrossRef]
- Katz, H.; Desiccants: Dry as dust means insects death. Pest Control Technol. 1991. Available online: Pctonline.com/article/desiccants—dry-as-dust-means-insect-deaths/ (accessed on 15 March 2022).
- Korunic, Z. Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Korunic, Z. Diatomaceous earths–natural insecticides. Pestic. Phytomed. 2013, 28, 77–95. [Google Scholar] [CrossRef]
- Lilly, D.G.; Latham, S.L.; Webb, C.E.; Doggett, S.L. Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). PLoSOne 2016, 11, e0153302. [Google Scholar] [CrossRef]
- Lilly, D.G.; Webb, C.E.; Doggett, S.L. Evidence of tolerance to silica-based desiccant dusts in a pyrethroid-resistant strain of Cimex lectularius (Hemiptera: Cimicidae). Insects 2016, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.F.; Cowles, R. Susceptibility of Cimex lectularius (Hemiptera: Cimicidae) to pyrethroid insecticides and to insecticidal dusts with or without pyrethroid insecticides. J. Econ. Entomol. 2012, 105, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Showler, A.T. Effects of kaolin-based particle film application on boll weevil (Coleoptera: Curculionidae) injury to cotton. J. Econ. Entomol. 2002, 95, 754–762. [Google Scholar] [CrossRef]
- Matthews, G.A. Pesticide Application Equipment; Wiley-Blackwell: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hayes, B.W.; Janes, J.; Beardsley, D.W. Dust bag treatments in improved pastures to control horn flies and cattle grubs. J. Econ. Entomol. 1972, 65, 1368–1371. [Google Scholar] [CrossRef]
- Williams, R.E. Control of Cattle Pests. E-12-W; Purdue University: Lafayette, IN, USA, 2010; Available online: https://extension.entm.purdue.edu/publications/E-12.pdf (accessed on 16 November 2020).
- Showler, A.T.; Perez de León, A. Landscape ecology of Rhipicephalus (Boophilus) microplus (Ixodida: Ixodidae) outbreaks in the South Texas coastal plain wildlife corridor including man-made barriers. Environ. Entomol. 2020, 49, 546–552. [Google Scholar] [CrossRef]
- Doggett, S.L.; Dwyer, D.E.; Peñas, P.F.; Russell, R.C. Bed bugs: Clinical relevance and control options. Clin. Microbiol. Rev. 2012, 25, 164–192. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Understanding the Physical and Biological Effects of Dust-Induced Insect Death. Ph.D. Thesis, Murdoch University, Perth, Australia, 2018. Available online: http://researchrepository.murdoch.edu.au/id/eprint/43088 (accessed on 11 March 2022).
- Showler, A.T.; Sétamou, M. Effects of kaolin particle film application on selected nontarget arthropod populations in cotton in the Lower Rio Grande Valley of Texas. Southwest Entomol. 2003, 29, 137–146. [Google Scholar]
- Bengochea, P.; Saelices, R.; Amor, F.; Adan, A.; Budia, F.; del Estal, P. Non-target effects of kaolin and coppers applied on olive trees for the predatory lacewing Chrysoperla carnea. Biocontrol Sci. Technol. 2014, 24, 625–640. [Google Scholar] [CrossRef]
- Marko, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H. The effect of kaolin treatments on phytophagous and predatory arthropods in the canopies of apple trees. J. Fruit Ornament. Plant Res. 2006, 14, 79–87. [Google Scholar]
- Benhadi-Marin, J.; Pereira, J.A.; Santos, S.A.P. Effects of kaolin particle films on the life span of an orb-weaver spider. Chemosphere 2016, 144, 918–924. [Google Scholar] [CrossRef]
- NCAMP (National Coalition Against the Misuse of Pesticides). Piperonyl butoxide (PBO). Chem. Factsheet 2006, 26, 17–20. [Google Scholar]
- Romero, A.; Potter, M.F.; Haynes, K.F. Evaluation of piperonyl butoxide as a deltamethrin synergist for pyrethroid-resistant bed bugs. J. Econ. Entomol. 2009, 102, 2310–2315. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Gunning, R.V.; Moores, G.D. The effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide-resistant Helicoverpa armigera (Lepidoptera: Noctuidae) and Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Pest Manag. Sci. 2006, 62, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Li, A.Y.; Davey, R.B.; Miller, R.J. Laboratory evaluation of verbutin as a synergist of acaricides against larvae of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Econ. Entomol. 2010, 103, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H. Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Syst. 1977, 8, 51–81. [Google Scholar] [CrossRef]
- White, A.; Gaff, H. Review: Applications of tick control technologies for blacklegged, lone star, and American dog ticks. J. Integr. Pest Manag. 2018, 9, 12. [Google Scholar] [CrossRef]
- Clymer, B.C.; Howell, D.; Hair, J.A. Environmental alteration in recreational areas by mechanical and chemical treatment as a means of lone star tick control. J. Econ. Entomol. 1970, 63, 504–509. [Google Scholar] [CrossRef]
- Piesman, J. Response of nymphal Ixodes scapularis, the primary tick vector of Lyme disease spirochetes in North America, to barriers derived from wood products or related home and garden items. J. Vector Ecol. 2006, 31, 412–417. [Google Scholar] [CrossRef]
- Stafford, K.C. Tick Management Handbook; an Integrated Guide for Homeowners, Pest Control Operators, and Public Health Officials for the Prevention of Tick-Associated Disease. 2007. Available online: Stacks.cdc.gov/view/cdc/11444 (accessed on 5 March 2022).
- Hochs, A.L.; Semtner, P.J.; Barker, R.W.; Hair, J.A. Preliminary observations on controlled burning for lone star tick (Acarina: Ixodidae) control in woodlots. J. Med. Entomol. 1972, 9, 446–451. [Google Scholar] [CrossRef]
- Cully, J.F. Lone star tick abundance, fire, and bison grazing in tallgrass prairie. Rangel. Ecol. Manag. J. Range Manag. Arch. 1999, 52, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Gleim, E.R.; Zemtsova, G.E.; Berghaus, R.D.; Levin, M.L.; Conner, M.; Yabsley, M.J. Frequent Prescribed Fires Can Reduce Risk of Tick-borne Diseases. Sci. Rep. 2019, 9, 9974. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.R.; Siefken, D.A.; Creekmore, L.H. Influence of annual and biennial prescribed burning during March on the abundance of Amblyomma americanum (Acari: Ixodidae) in central Georgia. J. Med. Entomol. 1994, 31, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Perret, J.-L.; Guerin, P.M.; Diehl, P.A.; Vlimant, M.; Gern, L. Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J. Exp. Biol. 2003, 206, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Souza, I.M.; Sánchez-Montes, S.; Romero-Salas, D.; Cruz-Romero, A.; Aguilar-Domínguez, M.; Pérez-Brígido, C.D.; Hermida-Lagunes, J.; Morales-Diaz, J.; Saelao, P.; Becker, I.; et al. Integrative taxonomic description of the chewing louse Tricholipeurus lipeuroides infesting Odocoileus virginianus veraecrucis white-tailed deer in Veracruz, Mexico. Parasitol. Res. 2020, 119, 3203–3209. [Google Scholar] [CrossRef]
- Daniels, T.J.; Fish, D. Effect of deer exclusion on the abundance of immature Ixodes scapularis (Acari: Ixodidae) parasitizing small and medium-sized mammals. J. Med. Entomol. 1995, 32, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Foley, A.M.; Goolsby, J.A.; Ortega-S, A., Jr.; Ortega-S, J.A.; de León, A.P.; Singh, N.K.; Schwartz, A.; Ellis, D.; Hewitt, D.G.; Campbell, T.A. Movement patterns of nilgai antelope in South Texas: Implications for cattle fever tick management. Prev. Vet. Med. 2017, 146, 166–172. [Google Scholar] [CrossRef]
- Showler, A.T.; Saelao, P.; de León, A.A.P. Biosurveillance and research needs involving area-wide systematic active sampling to enhance integrated cattle fever tick, Rhipicephalus (Boophilus) spp. (Ixodida: Ixodidae), eradication. J. Med. Entomol. 2021, 58, 1601–1609. [Google Scholar] [CrossRef]
Plant Species | Ixodid Species | Effects a | Citation |
---|---|---|---|
Acacia nilotica | Rhipicephalus microplus | Mortality | [68] |
(gum Arabic tree) | |||
Achyranthes aspera | Haemophysalis bispinosa | Mortality | [69] |
(chaff flower) | R. microplus | Mortality | [70] |
Acmella oleracea | R. microplus | Mortality, inhibits reproduction | [71] |
(paracress) | |||
Acorus calamus | R. microplus | Mortality, inhibits reproduction | [72] |
(sweet flag) | |||
Aegle marmelos | H. bispinosa, R. microplus | Mortality | [73] |
(Bengal quince) | |||
Ageratum conyzoides | Amblyomma cajennense | Repellency | [74] |
(Mexican tea) | |||
Allium sativaum | Rhipicephalus annulatus | Mortality, inhibits reproduction | [75] |
(garlic) | |||
Andrographis lineata | R. microplus | Mortality | [73] |
(striped false waterwillow) | |||
Andrographis paniculata | R. microplus | Mortality | [73] |
(green chiretta) | |||
Anisomeles malabarica | H. bispinosa | Mortality | [69] |
(Malabar catmint) | R. microplus | Mortality | [70] |
Annona muricata | R. microplus | Mortality, inhibits reproduction | [76] |
(soursop) | [77] | ||
Annona squamosa | Hyalomma anatolicum | Mortality, inhibits reproduction | [78] |
(soursop, custard) | H. bispinosa, R. microplus | Mortality | [76] |
Artemisia annua | R. microplus | Mortality | [79] |
(sweet wormwood) | |||
Azadirachta indica | Amblyomma americanum | Mortality, deterrence | [80] |
(neem) | A. americanum | inhibit reproduction | [81] |
Amblyomma hebraeum | Mortality | [82] | |
Hyalomma truncatum | |||
Rhipicephalus evertsi | |||
Dermacentor variabilis | Inhibit reproduction | [83] | |
R. microplus | Inhibit reproduction | [84] | |
Rhipicephalus sanguineus | |||
R. microplus | Mortality | [85] | |
R. microplus | Mortality | [76] | |
R. microplus | Mortality | [86] | |
R. microplus | Inhibit reproduction | [87] | |
R. microplus | Mortality, inhibit reproduction | [88] | |
Brunfelsia uniflora | R. microplus | Mortality | [89] |
(manacá) | |||
Buxus papillosa | R. microplus | Mortality | [68] |
(boxwood) | |||
Calea serrata | R. microplus | Mortality | [90] |
(snake herb) | R. sanguineus | ||
Callicarpa americana | A. cajennense | Repellency | [74] |
(beautyberry) | |||
Callitropis procera | R. microplus | Inhibits reproduction | [91] |
(silk cotton) | |||
Capsicum frutescens | R. microplus | Inhibits reproduction | [92] |
(tabasco pepper) | |||
Cassia auriculata | R. microplus | Mortality | [93] |
(matura tea tree) | |||
Cassia didymobotrya | Rhipicephalus appendiculatus | Repellency | [94] |
(candelabra tree) | |||
(golden shower) | |||
Chenopodium ambrosioides | A. cajennense | Repellency | [74] |
(Jesuit’s tea) | |||
Chrysanthemum | A. americanum | Mortality | [29] |
cinerariaefolium | A. americanum | Mortality | [32] |
(chrysanthemum) | R. sanguineus | Mortality | [95] |
Cissus adenocucaulis | R. appendiculatus | Repellency | [94] |
(pink cissus) | |||
Cocculus hirsutus | R. microplus | Mortality | [73] |
(broom creeper) | |||
Copaifera reticulate | R. microplus | Mortality | [96] |
(copaiba balsam) | |||
Cupressus nootkatensis | R. microplus | Mortality | [97] |
(Alaska yellow cedar) | |||
Cymbopogon citratus | R. microplus | Mortality | [98] |
(lemongrass) | R. microplus | Inhibition of egg laying | [84] |
R. microplus | Mortality | [85] | |
Dahlstedtia pentaphylla | R. microplus | Mortality | [99] |
(no common name) | R. microplus | Repellency | [100] |
Datura metel | R. microplus | Mortality, inhibits reproduction | [101] |
(Indian thornapple) | |||
Eucalyptus globoidea | Hyalomma marginatum | Repellency | [102] |
(southern blue gum) | |||
Eucalyptus spp. | R. microplus | Mortality | [103] |
Euphorbia cyparissias | Ixodes ricinus | Mortality | [104] |
(cypress spurge) | |||
Euphorbia prostrate | H. bispinosa | Mortality | [105] |
(prostrate spurge) | |||
Euphorbia hirta | R. appendiculatus | Repellency | [94] |
(asthma plant) | |||
Fumaria parviflora | R. microplus | Mortality | [68] |
(fineleaf fumitory) | |||
Gloriosa superba | H. bispinosa | Mortality | [69] |
(flame lily) | R. microplus | Mortality | [70] |
Gynandropsis gynandra | Amblyomma variegatum | Mortality | [106] |
(Shona cabbage) | Rhipicephalus appendiculatus | ||
Hypericyum polyanthemum | R. microplus | Mortality, inhibit reproduction | [107] |
(no common name) | |||
Jatropha curcas | R. annulatus | Mortality, inhibit reproduction | [108] |
(physic nut) | |||
Kigelia africana | R. appendiculatus | Repellency | [94] |
(sausage tree) | |||
Leucaena leucocephala | R. microplus | Mortality | [109] |
(leucaena) | |||
Lonchocarpus spp. | R. microplus | Mortality | [110] |
(rotenone) | |||
Lysiloma latisiliquum | R. microplus | Mortality | [109] |
(false tamarind) | |||
Magonia pubescens | R. microplus | Mortality | [111] |
(no common name) | |||
Mammea siamensis | R. microplus | Mortality | [112] |
(salapee) | |||
Matricaria chamomilla | R. annulatus | Mortality, inhibit reproduction | [113] |
(German chamomile) | |||
Melia azadirach | A. cajennense | Mortality | [74] |
(chinaberry) | R. microplus | Mortality | [114] |
R. microplus | Mortality | [115] | |
R. microplus | Mortality, inhibit reproduction | [116] | |
R. microplus | Inhibit reproduction | [117] | |
Melinus minutiflora | R. appendiculatus | Repellency | [118] |
(molasses grass) | R. microplus | Repellency | [119] |
Memora nodosa | A. cajennense | Repellency | [74] |
(no common name) | |||
Mentha piperita | A. hebraeum | Repellency | [120] |
(peppermint) | |||
Mentha pulegium | A. cajennense | Repellency | [74] |
(pennyroyal) | |||
Neorautanenia mitis | R. appendiculatus | Inhibits reproduction | [121] |
(gemsbokboontjie) | |||
Nigella sativa | Ixodes scapularis | Repellency | [122] |
(black cumin) | R. annulatus | Mortality | [123] |
Palicourea marcgravii | R. microplus | Mortality | [124] |
(no common name) | |||
Pelargonium graveolens | A. americanum | Repellency | [125] |
(sweet-scented geranium) | |||
Petiveria alliacea | R. microplus | Mortality | [126] |
(anamu) | R. microplus | Mortality, inhibit egg laying and hatch | [127] |
Piper adancum | R. microplus | Mortality, inhibits reproduction | [128] |
(spiked pepper) | R. microplus | Mortality, inhibits reproduction | [129] |
Piper tuberculatum | R. microplus | Mortality, inhibits reproduction | [130] |
(cordoncillo) | R. microplus | Mortality | [131] |
Piscidia piscipula | R. microplus | Mortality | [109] |
(Jamaican dogwood) | |||
Psidium guajava | H. bispinosa | Mortality | [69] |
(guava) | R. microplus | Mortality | [70] |
Rhinocanthus nasutus | H. bispinosa, R. microplus | Mortality | [93] |
(snake jasmine) | |||
Ricinus communis | R. microplus | Mortality | [132] |
(castor bean) | R. microplus | Mortality | [70] |
R. sanguineus | Mortality | [133] | |
Ruta graveolens | Amblyomma cajennense | Repellency | [74] |
(common rue) | |||
Senna italica | H. marginatum | Mortality | [134] |
(Port Royal senna) | |||
Solanum trilobatum | H. bispinosa | Mortality | [69] |
(thoothuvalai) | R. microplus | Mortality | [70] |
Spiranthera odoratissima | A. cajennense | Repellency | [74] |
(no common name) | |||
Stemona curtisii | R. microplus | Mortality | [112] |
(yan ling) | |||
Stylosanthes humilis | R. microplus | Repellency | [135] |
and S. hamata | R. microplus | Mortality | [136] |
(Townsville stylo and | |||
Caribbean stylo) | |||
Szygium malaccensis | R. microplus | Mortality | [85] |
(Malay apple) | R. microplus | Mortality | [76] |
Tageta patula | R. sanguineus | Mortality, inhibits reproduction | [137] |
(French marigold) | |||
Tamarindus indica | R. microplus | Mortality | [138] |
Tephrosia vogelii | R. appendiculatus | Mortality | [139] |
(fish poison bean) | R. appendiculatus | Mortality | [140] |
Ixodids (spp. not reported) | Mortality | [141] | |
Thymus vulgaris | A. americanum | Mortality | [31] |
(thyme) | R. annulatus | Mortality | [123] |
R. microplus | Mortality | [142] | |
R. sanguineus | Mortality | [143] | |
Tropaeolum majus | R. microplus | Inhibits reproduction | [144] |
(nasturtium) | |||
Vachellia pennatula | R. microplus | Mortality | [109] |
(fern-leaf acacia) | |||
Vitex agnus castus | Amblyomma spp. | Repellency, detach from host | [145] |
(lilac chastetree) | I. ricinus, R. sanguineus | ||
Vitex negundo | H. bispinosa, R. microplus | Mortality | [93] |
(Chinese chastetree) | |||
Withania somnifera | R. microplus | Inhibits reproduction | [146,147] |
(poison gooseberry) |
Plant Species | Ixodid Species | Effects a | Citation |
---|---|---|---|
Achillea millefolium | Ixodes ricinus | Repellency | [148] |
(yarrow) | |||
Agathis ovata | Rhipicephalus microplus | Mortality | [149] |
(mountain kauri) | |||
Ageratum houstonianum | Rhipicephalus lunulatius | Mortality | [150,151] |
(bluemink) | |||
Alpinia zerumbet | R. microplus | Mortality | [152] |
(shell ginger) | |||
Amyris balsamifera | Amblyomma americanum, | Repellency | [153] |
(amyris) | Ixodes scapularis | ||
Annona squamosal | Hyalomma anatolicum | Mortality, inhibits reproduction | [154] |
(soursop, custard) | R. microplus | ||
Artemisia annua | Rhipicephalus annulatus | Mortality | [155] |
(sweet wormwood) | |||
Artemisia herba-alba | I. ricinus | Repellency | [156] |
(white wormwood) | |||
Azadirachta indica | Amblyomma variegatum | Mortality | [157] |
(neem) | Hyalomma. anatolicum | ||
excavatum | Mortality, inhibits reproduction | [158] | |
Hyalomma dromedarii | Mortality, growth regulation | [159] | |
R. microplus | Mortality, inhibits reproduction | [160] | |
Baccharis dracunculifolia | R. microplus | Mortality | [161] |
(alecrim-do-campo) | |||
Calea serrate | R. microplus | Mortality | [162] |
(snake herb) | |||
Calendula officinalis | I. ricinus | Repellency | [156] |
(pot marigold) | |||
Callitris sulcata | R. microplus | Mortality | [149] |
(sapin de camboui) | |||
Calocedrus decurrens | I. scapularis | Mortality | [163] |
(incense cedar) | |||
Carapa guianensis | R. microplus | Mortality | [164] |
(andiroba) | R. microplus | Mortality, inhibits reproduction | [165] |
Rhipicephalus sanguineus | Inhibits reproduction | [166] | |
R. sanguineus | Mortality, inhibits reproduction | [167] | |
Chamaecyparis lawsoniana | I. scapularis | Mortality | [163] |
(Port Orford cedar) | |||
Chamaecyparis nootkatensis | I. scapularis | Mortality | [97] |
(Alaska yellow cedar) | I. scapularis | Mortality | [168] |
I. scapularis | Repellency | [169] | |
Citrus limonum | R. microplus | Mortality | [170] |
(citrus lemon) | |||
Citrus maxima | R. microplus | Mortality | [171] |
Citrus reticulata | R. microplus | Mortality | [112] |
(mandarin orange) | |||
Conyza dioscoridis | I. ricinus | Repellency | [156] |
(ploughman’s spikenard) | |||
Curcuma longa | R. microplus | Mortality | [112] |
(turmeric) | |||
Cuminum cyminum | R. microplus | Mortality | [172] |
(cumin) | |||
Cunila angustifoli | R. microplus | Mortality | [173] |
(no common name) | |||
Cunila incana | R. microplus | Mortality | [173] |
(no common name) | |||
Cunila spicata | R. microplus | Mortality | [173] |
(no common name) | |||
Curcuma zedoaria | Dermacentor nitens | Mortality | [174] |
(zedoary) | |||
Cymbopogon citratus | R. microplus | Inhibits reproduction | [175] |
(lemon grass) | |||
Cymbopogon martinii | R. microplus | Mortality | [130] |
(gingergrass) | |||
Cymbopogon nardus | A. cajennense, Anocentor | Mortality | [176] |
(citronella grass) | nitens | ||
Cymbopogon schoenanthus | R. microplus | Mortality | [130] |
(camel grass) | |||
Cymbopogon winterianus | Haemophysalis longicornis | Mortality | [177] |
(Java citronella) | R. microplus | Mortality, inhibits reproduction | [178] |
R. microplus | Mortality, inhibits reproduction | [160] | |
Drimys brasiliensis | R. microplus, R. sanguineus | Mortality | [90] |
(Tasmanian pepper leaf) | |||
Eucalyptus citriodora | A. cajennense, A. nitens | Mortality | [176] |
(lemon-scented gum) | I. ricinus | Repellency/deterrence | [179] |
Gynandropsis gynandra | Rhipicephalus appendiculatus | Repellency | [180] |
(Shona cabbage) | |||
Hesperozygis ringens | R. microplus | Inhibits reproduction | [181] |
(espanta-pulga) | |||
Hyptis suaveolens | A. cajennense | Repellency | [74] |
(horehound) | |||
Illicium verum | D. nitens | Mortality | [174] |
(star anise) | |||
Juniperus occidentalis | I. scapularis | Mortality | [163] |
(western juniper) | |||
Juniperus virginiana | I. scapularis | Mortality | [97] |
(eastern red cedar) | |||
Lippia gracilis | R. microplus | Mortality | [182] |
(alecrimda-chapada) | |||
Lippia graveolens | R. microplus | Mortality | [183] |
(Mexican oregano) | |||
Lippia sidoides | Dermacentor nitens | Mortality, inhibits reproduction | [184] |
(pepper rosmarin) | R. microplus | ||
Lippia triplinervis | R. microplus | Mortality, inhibits reproduction | [185] |
(no common name) | |||
Melaleuca alternifolia | I. ricinus | Mortality | [186] |
(narrow-leaved paperbark) | |||
Mentha piperita | Amblyomma hebraeum | Repellency | [187] |
(peppermint) | |||
Mentha spicata | A. hebraeum | Repellency | [187] |
(spearmint) | I. ricinus | Repellency | [188] |
Nepeta cataria | R. appendiculatus | Repellency | [189] |
(catnip) | |||
Ocimum basilicum | I. ricinus | Repellency | [188] |
(basil) | |||
Ocimum suave | R. appendiculatus | Mortality | [190] |
(clove basil) | |||
Origanum bilgeri | R. turanicus | Mortality | [191] |
(no common name) | |||
Origanum majorana | I. ricinus | Repellency | [188] |
(majoram) | |||
Origanum minutiflorum | Rhipicephalus turanicus | Mortality | [192] |
(Spartan oregano) | |||
Origanum onites | R. turanicus | Mortality | [193] |
(Greek oregano) | |||
Origanum vulgare | A. americanum | Repellency | [194] |
(oregano) | |||
Pimenta dioica | R. microplus | Mortality | [172] |
(allspice) | |||
Piper mikanianum | R. microplus | Mortality | [128] |
(pariparoba) | |||
Piper tuberculatum | R. microplus | Mortality | [164] |
(cordoncillo) | |||
Rosmarinus officinalis | I. ricinus | Repellency | [188] |
(rosemary) | I. scapularis | Mortality | [195] |
R. microplus | Mortality | [172] | |
Tetradenia riparia | R. microplus | Mortality, inhibits reproduction | [196] |
(ginger bush) | |||
Thymus sipyleus | R. turanicus | Mortality | [197] |
(no common name) | |||
Zanthoxylum limonella | R. microplus | Mortality | [112] |
(prickly ash) | |||
Zataria multiflora | R. annulatus | Mortality | [155] |
(za’atar) | |||
Zingber officinale | R. microplus | Mortality | [164] |
(Canton ginger) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Showler, A.T.; Saelao, P. Integrative Alternative Tactics for Ixodid Control. Insects 2022, 13, 302. https://doi.org/10.3390/insects13030302
Showler AT, Saelao P. Integrative Alternative Tactics for Ixodid Control. Insects. 2022; 13(3):302. https://doi.org/10.3390/insects13030302
Chicago/Turabian StyleShowler, Allan T., and Perot Saelao. 2022. "Integrative Alternative Tactics for Ixodid Control" Insects 13, no. 3: 302. https://doi.org/10.3390/insects13030302
APA StyleShowler, A. T., & Saelao, P. (2022). Integrative Alternative Tactics for Ixodid Control. Insects, 13(3), 302. https://doi.org/10.3390/insects13030302