Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Collection
2.2. DNA Extraction, PCR Amplification and Sequencing
2.3. Mitogenome Annotation and Analyses
2.4. Phylogenetic Methods
3. Result
3.1. Mitogenome Features of Newly Sequenced Mantises
3.2. Gene Rearrangements
3.3. Intergenic Regions
3.4. Phylogenetic Analyses
4. Discussion
4.1. Gene Rearrangements and Rearrangement Mechanisms
4.2. Intergenic Regions
4.3. Phylogenetic Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otte, D.; Spearman, L.; Stiewe, M.B.D. Mantodea Species File Online. Version 5.0/5.0. Available online: http://Mantodea.SpeciesFile.org (accessed on 21 April 2022).
- Ehrmann, R. Mantodea: Gottesbeterinnen der Welt; Natur und Tier-Verlag: Münster, Germany, 2002. [Google Scholar]
- Beier, M. Mantiden von der Insel Rennell. Nat. Hist. Rennell Isl. Br. Solomon Isl. 1968, 5, 79–80. [Google Scholar]
- Svenson, G.J.; Whiting, M.F. Reconstructing the origins of praying mantises (Dictyoptera, Mantodea): The roles of Gondwanan vicariance and morphological convergence. Cladistics 2009, 25, 468–514. [Google Scholar] [CrossRef] [PubMed]
- Svenson, G.J.; Whiting, M.F. Phylogeny of Mantodea based on molecular data: Evolution of a charismatic predator. Syst. Entomol. 2004, 29, 359–370. [Google Scholar] [CrossRef]
- Xu, X.D.; Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Novel tRNA gene rearrangements in the mitochondrial genomes of praying mantises (Mantodea: Mantidae): Translocation, duplication and pseudogenization. Int. J. Biol. Macromol. 2021, 185, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, Y.; Zhang, Y. Characterization of the complete mitochondrial genome of the praying mantis Rhombodera longa (Mantodea: Mantidae) including a phylogenetic analysis. Mitochondrial DNA 2020, 5, 1582–1583. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.P.; Yu, D.N.; Storey, K.B.; Cheng, H.Y.; Zhang, J.Y. Higher tRNA gene duplication in mitogenomes of praying mantises (Dictyoptera, Mantodea) and the phylogeny within Mantodea. Int. J. Biol. Macromol. 2018, 111, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.P.; Yu, D.N.; Cheng, H.Y.; Zhang, J.Y. Data for praying mantis mitochondrial genomes and phylogenetic constructions within Mantodea. Data Brief 2018, 21, 1277–1285. [Google Scholar] [CrossRef]
- Song, N.; Li, H.; Song, F.; Cai, W. Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data. Sci. Rep. 2016, 6, 36175. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.P.; Cai, Y.Y.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae). PeerJ 2018, 6, e4595. [Google Scholar] [CrossRef] [Green Version]
- Boore, J.L. The use of genome-level characters for phylogenetic reconstruction. Trends Ecol. Evol. 2006, 21, 439–446. [Google Scholar] [CrossRef]
- Yager, D.D.; Svenson, G.J. Patterns of praying mantis auditory system evolution based on morphological, molecular, neurophysiological, and behavioural data. Biol. J. Linn. Soc. 2008, 94, 541–568. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.; Svenson, G.J. The Neotropical ‘polymorphic earless praying mantises’–Part I: Molecular phylogeny and revised higher-level systematics (Insecta: Mantodea, Acanthopoidea). Syst. Entomol. 2016, 41, 607–649. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.Y.; Liu, Q.P.; Ali, M.; Yuan, Z.; Smagghe, G.; Liu, T.X. Complete mitochondrial genomes of four species of praying mantises (Dictyoptera, Mantidae) with ribosomal second structure, evolutionary and phylogenetic analyses. PLoS ONE 2021, 16, e0254914. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.D.; Whiting, M.F. Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 2005, 21, 240–257. [Google Scholar] [CrossRef]
- Ware, J.L.; Litman, J.; Klass, K.D.; Spearman, L.A. Relationships among the major lineages of Dictyoptera: The effect of outgroup selection on dictyopteran tree topology. Syst. Entomol. 2008, 33, 429–450. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Huang, H.; Zhao, Y.; Zhou, Z. Mitochondrial genomes of 10 Mantidae species and their phylogenetic implications. Arch. Insect Biochem. Physiol. 2022, e21874. [Google Scholar] [CrossRef]
- Luo, J.; Jia, P.; Zhu, Y.; Cui, Y.; Li, S.; Yuan, D.; Luan, Y.X. The complete mitochondrial genome of Hymenopus coronatus (Mantodea: Hymenopodidae) from Xishuangbanna, China. All Life 2022, 15, 50–53. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef]
- Guan, J.Y.; Jia, Y.Y.; Zhang, Z.Y.; Cao, S.S.; Ma, J.L.; Zhang, J.Y.; Yu, D.N. The complete mitochondrial genome of Xanthomantis bimaculata (Mantodea: Iridopterygidae) and its phylogeny. Mitochondrial DNA Part B-Resour. 2020, 5, 3097–3099. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Long, J.; Yang, L.; Chen, X. Complete mitochondrial genome of the praying mantis Arria pallida (Zhang, 1987) (Mantodea: Haanidae). Mitochondrial DNA 2020, 5, 3343–3344. [Google Scholar] [CrossRef]
- Schwarz, C.J.; Roy, R. The systematics of Mantodea revisited: An updated classification incorporating multiple data sources (Insecta: Dictyoptera). Ann. Soc. Entomol. Fr. 2019, 55, 101–196. [Google Scholar] [CrossRef]
- Bernt, M.; Braband, A.; Schierwater, B.; Stadler, P.F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 2013, 69, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.D.; Jia, Y.Y.; Cao, S.S.; Zhang, Z.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of trnI rearrangement and their phylogenetic relationships. PeerJ 2020, 8, e9740. [Google Scholar] [CrossRef]
- Cameron, S.L.; Barker, S.C.; Whiting, M.F. Mitochondrial genomics and the new insect order Mantophasmatodea. Mol. Phylogenet. Evol. 2006, 38, 274–279. [Google Scholar] [CrossRef]
- Ye, F.; Lan, X.E.; Zhu, W.B.; You, P. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): Rearrangement, duplication, and reassignment of tRNA genes. Sci. Rep. 2016, 6, 25634. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.F.; Zhang, L.P.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 2016, 586, 115–122. [Google Scholar] [CrossRef]
- Yi, J.; Wu, H.; Liu, J.; Li, J.; Lu, Y.; Zhang, Y.; Cheng, Y.; Guo, Y.; Li, D.; An, Y. Novel gene rearrangement in the mitochondrial genome of Anastatus fulloi (Hymenoptera Chalcidoidea) and phylogenetic implications for Chalcidoidea. Sci. Rep. 2022, 12, 1351. [Google Scholar] [CrossRef]
- Ye, F.; Li, H.; Xie, Q. Mitochondrial genomes from two specialized subfamilies of reduviidae (Insecta: Hemiptera) reveal novel gene rearrangements of true bugs. Genes 2021, 12, 1134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhou, C.F.; Gai, Y.H.; Song, D.X.; Zhou, K.Y. The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. Gene 2008, 424, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, S.P.G.; Tong, Y.; Storey, K.; Yu, D.N.; Zhang, J.Y. The mitochondrial genomes of 18 new Pleurosticti (Coleoptera: Scarabaeidae) exhibit a novel trnQ-NCR-trnI-trnM gene rearrangement and clarify phylogenetic relationships of subfamilies within Scarabaeidae. Insects 2021, 12, 1025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Q.; Lu, C.; Deng, J.; Huang, X. The first complete mitochondrial genome of Lachninae species and comparative genomics provide new insights into the evolution of gene rearrangement and the repeat region. Insects 2021, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, Y.; Chen, B. Novel gene rearrangement in the complete mitochondrial genome of Telenomus remus (Hymenoptera: Scelionidae). Mitochondrial DNA Part B-Resour. 2021, 6, 3435–3437. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, H.; Feng, Z.; Li, B.; Zhou, W.; Song, F.; Li, H.; Zhang, L.; Cai, W. Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). Int. J. Biol. Macromol. 2020, 149, 1207–1212. [Google Scholar] [CrossRef]
- Zhang, L.P.; Ma, Y.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. The mitochondrial genomes of Statilia maculata and S.nemoralis (Mantidae: Mantinae) with different duplications of trnR genes. Int. J. Biol. Macromol. 2019, 121, 839–845. [Google Scholar] [CrossRef]
- Thao, M.L.; Baumann, L.; Baumann, P. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol. Biol. 2004, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.R.; Kim, M.J.; Park, J.S.; Choi, Y.S.; Thapa, R.; Lee, K.Y.; Kim, I. Complete mitochondrial genome of the dwarf honeybee, Apis florea (Hymenoptera: Apidae). Mitochondrial DNA 2013, 24, 208–210. [Google Scholar] [CrossRef]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef]
- Iniguez, L.P.; Hernandez, G. The evolutionary relationship between alternative splicing and gene duplication. Front. Genet. 2017, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.L.; Ye, F. Comparative mitogenomic analyses of praying Mantises (Dictyoptera, Mantodea): Origin and evolution of unusual intergenic gaps. Int. J. Biol. Sci. 2017, 13, 367–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Chen, Q.P.; Ayivi, S.P.G.; Guan, J.Y.; Yu, D.N.; Zhang, J.Y. Three complete mitochondrial genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and their phylogeny. Insects 2021, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.Y.; Shen, S.Q.; Zhang, Z.Y.; Xu, X.D.; Yu, D.N.; Zhang, J.Y. Comparative mitogenomes of two Coreamachilis species (Microcoryphia: Machilidae) along with phylogenetic analyses of Microcoryphia. Insects 2021, 12, 795. [Google Scholar] [CrossRef]
- Abou Shaara, H.F.; Abbas, A.S.; Al Kahtani, S.N.; Taha, E.K.A.; Khan, K.A.; Jamal, Z.A.; Alotaibi, M.A.; Ahmad, B.; Khan, N.A.; Qamer, S.; et al. Exploring the non-coding regions in the mtDNA of some honey bee species and subspecies. Saudi J. Biol. Sci. 2021, 28, 204–209. [Google Scholar] [CrossRef]
- Wang, J.; Dai, X.Y.; Xu, X.D.; Zhang, Z.Y.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genomes of five longicorn beetles (Coleoptera: Cerambycidae) and phylogenetic relationships within Cerambycidae. PeerJ 2019, 7, e7633. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Lei, Z.; Li, W.; Zhang, W.; Zhou, C. Comparative mitogenomic analysis of Heptageniid mayflies (Insecta: Ephemeroptera): Conserved intergenic spacer and tRNA gene duplication. Insects 2021, 12, 170. [Google Scholar] [CrossRef]
- Boore, J.L. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In Comparative Genomics; Springer: Dordrecht, The Netherlands, 2000; pp. 133–147. [Google Scholar]
- Li, Y.T.; Xin, Z.Z.; Tang, Y.Y.; Yang, T.T.; Tang, B.P.; Sun, Y.; Zhang, D.Z.; Zhou, C.L.; Liu, Q.N.; Yu, X.M. Comparative Mitochondrial Genome Analyses of Sesarmid and Other Brachyuran Crabs Reveal Gene Rearrangements and Phylogeny. Front. Genet. 2020, 11, 1127. [Google Scholar] [CrossRef]
- Simon, C.; Buckley, T.R.; Frati, F.; Stewart, J.B.; Beckenbach, A.T. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, S. Primer premier 5. Biotech. Softw. Internet Rep. 2000, 1, 270–272. [Google Scholar] [CrossRef]
- Burland, T.G. DNASTAR’s lasergene sequence analysis software. In Bioinformatics Methods and Protocols; Humana Press: Totowa, NJ, USA, 2000; Volume 132, pp. 71–91. [Google Scholar]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Kerpedjiev, P.; Hammer, S.; Hofacker, I.L. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 2015, 31, 3377–3379. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.Y.; Zhang, L.P.; Xu, X.D.; Dai, X.Y.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. The complete mitochondrial genome of Mantis religiosa (Mantodea: Mantidae) from Canada and its phylogeny. Mitochondrial DNA Part B-Resour. 2019, 4, 3797–3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.P.; Cai, Y.Y.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. The complete mitochondrial genome of Psychomantis borneensis (Mantodea: Hymenopodidae). Mitochondrial DNA 2018, 3, 42–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Liu, J.; Cui, Y.; Dong, P.; Zhu, Y. Mitochondrial genome of one kind of giant Asian mantis, Hierodula formosana (Mantodea: Mantidae). Mitochondrial DNA 2017, 28, 11–12. [Google Scholar] [CrossRef]
- Wang, T.; Yu, P.; Ma, Y.; Cheng, H.; Zhang, J. The complete mitochondrial genome of Leptomantella. albella (Mantodea: Iridopterygidae). Mitochondrial DNA 2016, 27, 465–466. [Google Scholar] [CrossRef]
- Wang, S.; Hou, F.; Cao, J.; Peng, C.; Guo, J. The complete mitochondrial genome of the Statilia maculate (Mantodea: Mantidae). Mitochondrial DNA Part B-Resour. 2016, 1, 860–861. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, C.; Brune, A. The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (Cornitermes sp., Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, and Termes hospes). Mitochondrial DNA 2014, 27, 3903–3904. [Google Scholar] [CrossRef]
- Wei, S.J.; Ni, J.F.; Yu, M.L.; Shi, B.C. The complete mitochondrial genome of Macrotermes barneyi Light (Isoptera: Termitidae). Mitochondrial DNA 2012, 23, 426–428. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Xuan, W.J.; Zhao, J.L.; Zhu, C.D.; Jiang, G.F. The complete mitochondrial genome of the cockroach Eupolyphaga sinensis (Blattaria: Polyphagidae) and the phylogenetic relationships within the Dictyoptera. Mol. Biol. Rep. 2009, 37, 3509–3516. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Dowton, M.; Castro, L.; Austin, A. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: The examination of genome ‘morphology’. Invertebr. Syst. 2002, 16, 345–356. [Google Scholar] [CrossRef]
- Xu, X.D.; Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Cai, Y.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Insight into the phylogenetic relationships among three subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with low-temperature selection pressure analyses using mitogenomes. Insects 2021, 12, 656. [Google Scholar] [CrossRef]
- Bailey, S.F.; Rodrigue, N.; Kassen, R. The effect of selection environment on the probability of parallel evolution. Mol. Biol. Evol. 2015, 32, 1436–1448. [Google Scholar] [CrossRef] [Green Version]
- Foote, A.D.; Liu, Y.; Thomas, G.W.; Vinař, T.; Alföldi, J.; Deng, J.; Dugan, S.; van Elk, C.E.; Hunter, M.E.; Joshi, V. Convergent evolution of the genomes of marine mammals. Nat. Genet. 2015, 47, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Liu, Y. The complete mitochondrial genome of praying mantises Phyllothelys breve (Mantodea: Mantidae) and phylogenetic analysis. Mitochondrial DNA 2020, 5, 1259–1260. [Google Scholar] [CrossRef] [Green Version]
- Rand, D.M. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol. Evol. 1994, 9, 125–131. [Google Scholar] [CrossRef]
- Zhang, D.X.; Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
- Roberti, M.; Polosa, P.L.; Bruni, F.; Musicco, C.; Gadaleta, M.N.; Cantatore, P. DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Res. 2003, 31, 1597–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | A + T (%) | AT-Skew | GC-Skew | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mito | PCGs | rRNAs | Contral Region | Mito | PCGs-H | PCGs-L | rRNAs | Contral Region | Mito | PCGs-H | PCGs-L | rRNAs | Contral Region | |
Humbertiella nada | 70.1 | 69.6 | 72.8 | 73.8 | 0.010 | −0.109 | −0.203 | −0.008 | −0.031 | −0.261 | −0.222 | 0.282 | 0.414 | −0.273 |
Theopompa milligratulata | 71.2 | 71.3 | 74.5 | 65.1 | 0.052 | −0.065 | −0.224 | −0.047 | 0.085 | −0.223 | −0.244 | 0.287 | 0.371 | −0.063 |
Spilomantis occipitalis | 76.0 | 77.1 | 80.7 | 80.2 | 0.055 | −0.075 | −0.228 | −0.098 | 0.011 | −0.151 | −0.068 | 0.224 | 0.340 | −0.233 |
Haania vitalisi | 78.6 | 78.0 | 80.8 | / | 0.048 | −0.076 | −0.216 | −0.074 | / | −0.220 | −0.159 | 0.296 | 0.333 | / |
Sinomiopteryx grahami | 78.3 | 78.1 | 80.3 | 79.6 | 0.029 | −0.084 | −0.204 | −0.055 | 0.031 | −0.201 | −0.136 | 0.268 | 0.393 | −0.168 |
Pseudovates chlorophaea | 76.8 | 76.8 | 79.4 | / | 0.034 | −0.101 | −0.239 | −0.060 | / | −0.169 | −0.093 | 0.288 | 0.374 | / |
Heterochaeta sp. JZ-2017 | 75.4 | 75.3 | 77.4 | 80.6 | 0.026 | −0.098 | −0.216 | −0.028 | 0.059 | −0.253 | −0.211 | 0.327 | 0.385 | −0.228 |
Cheddikulama straminea | 75.9 | 75.9 | 77.4 | 77.7 | 0.035 | −0.091 | −0.219 | −0.069 | 0.003 | −0.212 | −0.145 | 0.300 | 0.379 | −0.184 |
Carrikerella sp. | 74.2 | 73.9 | 76.1 | 75.9 | 0.021 | −0.101 | −0.196 | −0.062 | −0.007 | −0.292 | −0.240 | 0.350 | 0.470 | −0.260 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-J.; Cai, L.-N.; Zhao, Y.-Y.; Cheng, H.-Y.; Storey, K.B.; Yu, D.-N.; Zhang, J.-Y. Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea). Insects 2022, 13, 564. https://doi.org/10.3390/insects13070564
Lin Y-J, Cai L-N, Zhao Y-Y, Cheng H-Y, Storey KB, Yu D-N, Zhang J-Y. Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea). Insects. 2022; 13(7):564. https://doi.org/10.3390/insects13070564
Chicago/Turabian StyleLin, Yi-Jie, Ling-Na Cai, Yu-Yang Zhao, Hong-Yi Cheng, Kenneth B. Storey, Dan-Na Yu, and Jia-Yong Zhang. 2022. "Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea)" Insects 13, no. 7: 564. https://doi.org/10.3390/insects13070564
APA StyleLin, Y. -J., Cai, L. -N., Zhao, Y. -Y., Cheng, H. -Y., Storey, K. B., Yu, D. -N., & Zhang, J. -Y. (2022). Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea). Insects, 13(7), 564. https://doi.org/10.3390/insects13070564