Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Making the Clip Cage
2.2. Using the Clip Cage
2.3. Plants and Aphids
2.4. Life Table Study
2.5. Mortality and Weight of Nymphs
2.6. Adult Fecundity and Honeydew Content
2.7. Escape Rate
2.8. Histological Staining
2.9. Statistical Analyses
3. Results
3.1. Effects of Clip Cages on the Antibiosis of Sitobion avenae
3.2. Clip Cages Facilitate Determination of Sitobion avenae Weight
3.3. Clip Cages Facilitate Honeydew Collection and Quantification
3.4. Clip Cages Promote the Study of Plant Phenotypes after Aphid Infestation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vela, J.; Montiel, E.E.; Mora, P.; Lorite, P.; Palomeque, T. Aphids and ants, mutualistic species, share a mariner element with an unusual location on aphid chromosomes. Genes 2021, 12, 1966. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Zhao, H.; Wang, X.; Kang, Z. Prevalent pest management strategies for grain aphids: Opportunities and challenges. Front. Plant Sci. 2022, 12, 790919. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Lu, Z.; Yan, L.; Zeng, W.; Shen, Z.; Yu, M.; Bu, L.; Cui, G.; Niu, L.; Wang, Z. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach. J. Exp. Bot. 2022, 73, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.C.; Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Curr. Opin. Insect Sci. 2018, 26, 17–24. [Google Scholar] [CrossRef]
- Goggin, F.L.; Fischer, H.D. Reactive oxygen species in plant interactions with aphids. Front. Plant Sci. 2022, 12, 811105. [Google Scholar] [CrossRef]
- Silva-Sanzana, C.; Estevez, J.M.; Blanco-Herrera, F. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. J. Exp. Bot. 2020, 71, 3854–3864. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Acetamiprid resistance and fitness costs of melon aphid, Aphis gossypii: An age-stage, two-sex life table study. Pestic. Biochem. Physiol. 2021, 171, 104729. [Google Scholar] [CrossRef]
- Chi, H.; You, M.S.; Atlıhan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.J.; Fu, J.W.; Xu, Y.Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lee, C.C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 805–813. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lee, C.C.; Chi, H. Correction: Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 1936. [Google Scholar] [CrossRef]
- Sun, M.; Lü, B.; Lyu, Z.Y.; Zhang, Y.; Zhai, Y.F.; Chen, H.; Zheng, L.; Yu, Y. Comparison of diapause and non-diapause induced Orius sauteri (Hemiptera: Anthocoridae) based on a two-sex life table in the laboratory. J. Asia-Pacif. Entomol. 2017, 20, 1301–1306. [Google Scholar] [CrossRef]
- Hedayati, M.; Sadeghi, A.; Maroufpoor, M.; Ghobari, H.; Güncan, A. Transgenerational sublethal effects of abamectin and pyridaben on demographic traits of Phytonemus pallidus (Banks) (Acari: Tarsonemidae). Ecotoxicology 2019, 28, 467–477. [Google Scholar] [CrossRef]
- Kanle Satishchandra, N.; Vaddi, S.; Naik, S.O.; Chakravarthy, A.K.; Atlihan, R. Effect of temperature and CO2 on population growth of south american tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato. J. Econ. Entomol. 2018, 111, 1614–1624. [Google Scholar] [CrossRef]
- Yu, J.Z.; Chen, B.H.; Güncan, A.; Atlihan, R.; Gökçe, A.; Smith, C.L.; Gümüs, E.; Chi, H. Demography and mass-rearing Harmonia dimidiata (Coleoptera: Coccinellidae) using Aphis gossypii (Hemiptera: Aphididae) and eggs of Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 2018, 111, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Güncan, A.; Gümüs, E. Influence of different hazelnut cultivars on some demographic characteristics of the filbert aphid (Hemiptera: Aphididae). J. Econ. Entomol. 2017, 110, 1856–1862. [Google Scholar] [CrossRef]
- Farrokhi, M.; Gharekhani, G.; Iranipour, S.; Hassanpour, M. Host plant-herbivore-predator interactions in Chrysoperla carnea (Neuroptera: Chrysopidae) and Myzus persicae (Homoptera: Aphididae) on four plant species under laboratory conditions. J. Econ. Entomol. 2017, 110, 2342–2350. [Google Scholar] [CrossRef]
- Gao, H.H.; Xu, N.; Chen, H.; Liu, Q.; Pu, Q.Y.; Qin, D.Y.; Zhai, Y.F.; Yu, Y. Impact of selected fungi from an artificial diet on the growth and development of Drosophila suzukii (Diptera: Drosophilidae). J. Asia-Pacif. Entomol. 2017, 20, 141–149. [Google Scholar] [CrossRef]
- Peng, L.; Zou, M.; Ren, N.; Xie, M.; Vasseur, L.; Yang, Y.; He, W.; Yang, G.; Gurr, G.M.; Hou, Y.; et al. Generation-based life table analysis reveals manifold effects of inbreeding on the population fitness in Plutella xylostella. Sci. Rep. 2015, 5, 12749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogan, M.; Bajwa, W.I. Integrated pest management: A global reality? An. Soc. Entomol. Brasil 1999, 28, 1–25. [Google Scholar] [CrossRef]
- Joshi, K.; Baumgardner, J.L.; MacPhail, M.; Acharya, S.R.; Blotevogel, E.; Dayan, F.E.; Nachappa, P.; Nalam, V.J. The source of Rag5-mediated resistance to soybean aphids is located in the stem. Front. Plant Sci. 2021, 12, 689986. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Shi, J.; Shi, F.; Xu, H.; He, K.; Wang, Z. Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. J. Exp. Bot. 2020, 71, 2713–2722. [Google Scholar] [CrossRef]
- Valmorbida, I.; Muraro, D.S.; Hodgsona, E.W.; O’Neala, M.E. Soybean aphid (Hemiptera: Aphididae) response to lambda-cyhalothrin varies with its virulence status to aphid-resistant soybean. Pest Manag. Sci. 2020, 76, 1464–1471. [Google Scholar] [CrossRef]
- Han, Z.; Tan, X.; Wang, Y.; Xu, Q.; Zhang, Y.; Harwood, J.D.; Chen, J. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. Pest Manag. Sci. 2019, 75, 3252–3259. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, M.; Huang, Y.; Yang, Z.; Su, S.; Chen, M. Characterisation of imidacloprid resistance in the bird cherry-oat aphid, Rhopalosiphum padi, a serious pest on wheat crops. Pest Manag. Sci. 2018, 74, 1457–1465. [Google Scholar] [CrossRef]
- Akköprü, E.P.; Atlıhan, R.; Okut, H.; Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 2015, 108, 378–387. [Google Scholar] [CrossRef]
- Schop, S.; Kloth, K.J.; Raaijmakers, E.; van der Vlugt, R.A.A. The effect of mature plant resistance in sugar beet (Beta vulgaris spp. vulgaris) on survival, fecundity and behaviour of green peach aphids (Myzus persicae). Bull. Entomol. Res. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Romeis, J.; Meissle, M. No interactions of stacked Bt maize with the non-target aphid Rhopalosiphum padi and the spider mite Tetranychus urticae. Front. Plant Sci. 2018, 9, 39. [Google Scholar] [CrossRef]
- Varsani, S.; Grover, S.; Zhou, S.; Koch, K.G.; Huang, P.C.; Kolomiets, M.V.; Williams, W.P.; Heng-Moss, T.; Sarath, G.; Luthe, D.S.; et al. 12-oxo-phytodienoic acid acts as a regulator of maize defense against corn leaf aphid. Plant Physiol. 2019, 179, 1402–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meihls, L.N.; Handrick, V.; Glauser, G.; Barbier, H.; Kaur, H.; Haribal, M.M.; Lipka, A.E.; Gershenzon, J.; Buckler, E.S.; Erb, M.; et al. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 2013, 25, 2341–2355. [Google Scholar] [CrossRef] [PubMed]
- Kloth, K.J.; Abreu, I.N.; Delhomme, N.; Petřík, I.; Villard, C.; Ström, C.; Amini, F.; Novák, O.; Moritz, T.; Albrectsen, B.R. PECTIN ACETYLESTERASE9 affects the transcriptome and metabolome and delays aphid feeding. Plant Physiol. 2019, 184, 1704–1720. [Google Scholar] [CrossRef]
- Carreras Navarro, E.; Lam, S.K.; Trębicki, P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. 2020, 11, 605337. [Google Scholar] [CrossRef] [PubMed]
- Taravati, S.; Mannion, C. Effect of aggregation and cage setting on some life-history parameters of Aleurodicus Rugioperculatus (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2016, 109, 249–254. [Google Scholar] [CrossRef] [PubMed]
- MacGillivray, M.E.; Anderson, G.B. Three useful insect cages. Can Entomol. 1957, 89, 43–46. [Google Scholar] [CrossRef]
- Baudry, X.; Doury, G.; Couty, A.; Fourdrain, Y.; van Havermaet, R.; Lateur, M.; Ameline, A. Antagonist effects of the leek Allium porrum as a companion plant on aphid host plant colonization. Sci. Rep. 2021, 11, 4032. [Google Scholar] [CrossRef]
- Escudero-Martinez, C.M.; Morris, J.A.; Hedley, P.E.; Bos, J.I.B. Barley transcriptome analyses upon interaction with different aphid species identify thionins contributing to resistance. Plant Cell Environ. 2017, 40, 2628–2643. [Google Scholar] [CrossRef]
- Özsisli, T.; Prischmann-Voldseth, D.A. Beyond focal pests: Impact of a neonicotinoid seed treatment and resistant soybean lines on a non-target arthropod. Insects 2016, 7, 64. [Google Scholar] [CrossRef]
- Li, Q.; Fu, Y.; Liu, X.; Sun, J.; Hou, M.; Zhang, Y.; Chen, J. Activation of wheat defense response by Buchnera aphidicola-derived small chaperone protein GroES in wheat aphid saliva. J. Agric. Food Chem. 2022, 70, 1058–1067. [Google Scholar] [CrossRef]
- Zhang, Z.; Lan, H.; Cao, H.; Hu, X.; Fan, Y.; Song, Y.; Wu, L.; Liu, T.X. Impacts of constitutive and induced benzoxazinoids levels on wheat resistance to the grain aphid (Sitobion avenae). Metabolites 2021, 11, 783. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Förster, C.; Robert, C.A.M.; Züst, T.; Hu, L.; Machado, R.A.R.; Berset, J.D.; Handrick, V.; Knauer, T.; Hensel, G.; et al. Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Sci. Adv. 2018, 4, eaat6797. [Google Scholar] [CrossRef]
- Zhuang, H.; Li, J.; Song, J.; Hettenhausen, C.; Schuman, M.C.; Sun, G.; Zhang, C.; Li, J.; Song, D.; Wu, J. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol. 2018, 218, 1586–1596. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Fu, Y.; Francis, F.; Chen, J. Plant-mediated interactions between two cereal aphid species: Promotion of aphid performance and attraction of more parasitoids by infestation of wheat with phytotoxic aphid Schizaphis graminum. J. Agric. Food Chem. 2019, 67, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, Y.; Fan, J.; Li, Q.; Francis, F.; Chen, J. Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. BMC Plant Biol. 2019, 19, 574. [Google Scholar] [CrossRef]
- Tzin, V.; Fernandez-Pozo, N.; Richter, A.; Schmelz, E.A.; Schoettner, M.; Schäfer, M.; Ahern, K.R.; Meihls, L.N.; Kaur, H.; Huffaker, A.; et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015, 169, 1727–1743. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Wang, Q.; Liu, X.; Li, Q.; Chen, J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genom. 2020, 21, 339. [Google Scholar] [CrossRef]
- Noble, M.D. A simplified clip cage for aphid investigations. Can Entomol. 1958, 90, 760. [Google Scholar] [CrossRef]
- Haas, J.; Lozano, E.R.; Poppy, G.M. A simple, light clip-cage for experiments with aphids. Agric. For. Entomol. 2018, 20, 589–592. [Google Scholar] [CrossRef]
- Saberski, E.T.; Diamond, J.D.; Henneman, N.F.; Levitis, D.A. Post-reproductive parthenogenetic pea aphids (Acyrthosiphon pisum) are visually identifiable and disproportionately positioned distally to clonal colonies. PeerJ 2016, 4, e2631. [Google Scholar] [CrossRef]
- Jones, D.R.; Deverall, B.J. The effect of the Lr20 resistance gene in wheat on the development of leaf rust, Puccinia recondita. Physiol. Plant Pathol. 1977, 10, 275–284. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, K.; de Sain, M.; Weide, R.; Gouget, A.; Klamer, S.; Canut, H.; Govers, F. The lectin receptor kinase LecRK-I.9 is a novel phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 2011, 7, e1001327. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2022. Available online: http://140.120.197.173/ecology/products.htm (accessed on 18 March 2022).
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Huang, Y.B.; Chi, H. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an invalidation of the jackknife technique. J. Appl. Entomol. 2013, 137, 327–339. [Google Scholar] [CrossRef]
- Lal, M.A.; Kathpalia, R.; Sisodia, R.; Shakya, R. Biotic stress. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, M.A., Eds.; Springer: Singapore, 2018; pp. 1029–1095. [Google Scholar]
- Crafts-Brandner, S.J.; Chu, C.C. Insect clip cages rapidly alter photosynthetic traits of leaves. Crop Sci. 1999, 39, 1896–1899. [Google Scholar] [CrossRef]
- Moore, J.P.; Taylor, J.E.; Paul, N.D.; Whittaker, J.B. The use of clip cages to restrain insects reduces leaf expansion systemically in Rumex obtusifolius. Ecol. Entomol. 2003, 28, 239–242. [Google Scholar] [CrossRef]
- Nalam, V.; Louis, J.; Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Sci. 2019, 279, 96–107. [Google Scholar] [CrossRef]
- Chen, X.; Fan, Y.; Zhang, W.; Tian, Z.; Liu, J.; Zhao, K. Soybean aphid, Aphis glycines (Hemiptera: Aphididae), developmental and reproductive capacity on white clover, Trifolium repens (Rosales: Leguminosae), in northeast China. Appl. Entomol. Zool. 2017, 52, 491–495. [Google Scholar] [CrossRef]
- Mowry, T.M.A. Method for confining small insects to plant surfaces. J. Agr. Entomol. 1993, 10, 181–184. [Google Scholar]
- Sparks, T.C.; Riley, D.G.; Simmons, A.M.; Guo, L. Comparison of toxicological bioassays for whiteflies. Insects 2020, 11, 789. [Google Scholar] [CrossRef]
- Sadras, V.; Vázquez, C.; Garzo, E.; Moreno, A.; Medina, S.; Taylor, J.; Fereres, A. The role of plant labile carbohydrates and nitrogen on wheat-aphid relations. Sci. Rep. 2021, 11, 12529. [Google Scholar] [CrossRef] [PubMed]
Biological Parameters | Whole Cage | Clip Cage | 95% CI of Difference ‡ | p-Value | ||
---|---|---|---|---|---|---|
n | Mean ± SE † | n | Mean ± SE † | |||
First instar nymph (N1, days) | 58 | 2.000 ± 0.073 | 67 | 1.821 ± 0.073 | (−0.003, 0.362) ns | 0.053 |
Second instar nymph (N2, days) | 58 | 1.586 ± 0.073 | 67 | 1.701 ± 0.067 | (−0.042, 0.276) ns | 0.153 |
Third instar nymph (N3, days) | 58 | 1.776 ± 0.060 | 67 | 1.851 ± 0.057 | (−0.081, 0.231) ns | 0.348 |
Fourth instar nymph (N4, days) | 58 | 1.534 ± 0.066 | 67 | 1.701 ± 0.060 | (−0.010, 0.343) ns | 0.063 |
Pre-adult duration (days) | 58 | 6.897 ± 0.119 | 67 | 7.075 ± 0.104 | (−0.112, 0.476) ns | 0.239 |
Adult longevity (days) | 58 | 38.655 ± 0.955 | 67 | 40.567 ± 0.868 | (−0.813, 4.607) ns | 0.166 |
Total longevity (days) | 58 | 45.552 ± 0.948 | 67 | 47.642 ± 0.864 | (−0.606, 4.766) ns | 0.126 |
Adult pre-oviposition period (APOP, days) | 58 | 0.793 ± 0.053 | 67 | 0.821 ± 0.047 | (−0.117, 0.173) ns | 0.709 |
Total pre-oviposition period (TPOP, days) | 58 | 7.690 ± 0.125 | 67 | 7.896 ± 0.099 | (−0.099, 0.517) ns | 0.191 |
Oviposition days (days) | 58 | 16.086 ± 0.206 | 67 | 15.806 ± 0.228 | (−0.336, 0.896) ns | 0.374 |
Fecundity (offspring/female) | 58 | 55.983 ± 1.442 | 67 | 53.284 ± 1.544 | (−0.821, 6.174) ns | 0.132 |
Demographic Parameters | Whole Cage † | Clip Cage † | 95% CI of Difference ‡ | p-Value |
---|---|---|---|---|
Net reproductive rate (R0) | 55.983 ± 2.641 | 53.284 ± 1.544 | (−0.522, 10.567) ns | 0.089 |
Finite rate of increase (λ, days−1) | 1.376 ± 0.009 | 1.362 ± 0.006 | (−0.016, 0.025) ns | 0.687 |
Intrinsic rate of increase (r, day−1) | 0.319 ± 0.007 | 0.309 ± 0.005 | (−0.012, 0.018) ns | 0.686 |
Mean generation time (T, days) | 12.607 ± 0.156 | 12.871 ± 0.130 | (−0.192, 0.564) ns | 0.343 |
Doubling time (DT, days) | 2.171 ± 0.051 | 2.244 ± 0.034 | (−0.085, 0.139) ns | 0.679 |
Gross reproduction rate (GRR) | 55.993 ± 1.442 | 53.290 ± 1.544 | (−0.816, 6.179) ns | 0.131 |
Stage ¶ | Duration (Day) | Time Spent in Whole Cage Group † (Min) | Time Spent in Clip Cage Group † (Min) | Time Saved ‡ (Min) | p-Value § |
---|---|---|---|---|---|
Entire | 58 | 104.990 ± 8.302 | 26.467 ± 2.129 | 78.525 ± 9.071 | <0.001 ** |
I | 7 | 31.940 ± 5.284 | 11.493 ± 1.897 | 20.448 ± 3.967 | 0.007 ** |
II | 21 | 67.784 ± 3.777 | 45.149 ± 2.466 | 22.635 ± 5.303 | 0.001 ** |
III | 5 | 98.458 ± 5.668 | 29.747 ± 2.354 | 68.711 ± 6.256 | 0.002 ** |
IV | 25 | 144.460 ± 11.296 | 16.981 ± 0.918 | 127.480 ± 10.560 | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, X.; Bai, S.; Luo, Y.; Yu, J.; Guo, H.; Wang, C.; Zhang, H.; Chen, C.; Liu, X.; Ji, W. Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum. Insects 2022, 13, 777. https://doi.org/10.3390/insects13090777
Kou X, Bai S, Luo Y, Yu J, Guo H, Wang C, Zhang H, Chen C, Liu X, Ji W. Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum. Insects. 2022; 13(9):777. https://doi.org/10.3390/insects13090777
Chicago/Turabian StyleKou, Xudan, Shichao Bai, Yufeng Luo, Jiuyang Yu, Huan Guo, Chao Wang, Hong Zhang, Chunhuan Chen, Xinlun Liu, and Wanquan Ji. 2022. "Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum" Insects 13, no. 9: 777. https://doi.org/10.3390/insects13090777
APA StyleKou, X., Bai, S., Luo, Y., Yu, J., Guo, H., Wang, C., Zhang, H., Chen, C., Liu, X., & Ji, W. (2022). Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum. Insects, 13(9), 777. https://doi.org/10.3390/insects13090777