Entomopathogenic Action of Wild Fungal Strains against Stored Product Beetle Pests
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection, Isolation, and Identification of Fungi
2.2. Insects
2.3. Bioassays
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harein, P.; Meronuck, R. Stored grain losses due to insects and molds and the importance of proper grain management. In Stored Product Management; Krischik, V., Cuperus, G., Galliart, D., Eds.; Oklahoma State University: Stillwater, OK, USA, 1995; pp. 29–31. [Google Scholar]
- Pathipati, U.R.; Kanuparthi, P.L. Silver Nanoparticles for Insect Control: Bioassays and Mechanisms. In Silver Nanomaterials for Agri-Food Applications; Abd-Elsalam, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 471–494. [Google Scholar] [CrossRef]
- Jakubas-Zawalska, J.; Asman, M.; Kłyś, M.; Solarz, K. Sensitization to Sitophilus granarius in Selected Suburban Population of South Poland. J. Stored. Prod. Res. 2016, 69, 1–6. [Google Scholar] [CrossRef]
- Srivastava, S.; Mishra, H.N. Ecofriendly Nonchemical/Nonthermal Methods for Disinfestation and Control of Pest/Fungal Infestation during Storage of Major Important Cereal Grains: A Review. Food Front. 2021, 2, 93–105. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the Fumigant Phosphine and Its Management in Insect Pests of Stored Products: A Global Perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harush, A.; Quinn, E.; Trostanetsky, A.; Rapaport, A.; Kostyukovsky, M.; Gottlieb, D. Integrated Pest Management for Stored Grain: Potential Natural Biological Control by a Parasitoid Wasp Community. Insects 2021, 12, 1038. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Biopesticide: An Environment Friendly Pest Management Strategy. J. Biofertil. Biopestic. 2015, 6, 127. [Google Scholar] [CrossRef]
- Butt, T.M.; Jackson, C.; Magan, N. Fungi as Biocontrol Agents. Progress, Problems and Potential; CABI Publishing: Wallingford, UK, 2001; 390p. [Google Scholar]
- Chandler, D.; Bailey, A.S.; Mark Tatchell, G.; Davidson, G.; Greaves, J.; Grant, W.P. The Development, Regulation and Use of Biopesticides for Integrated Pest Management. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Hunter, D.M. Mycopesticides as Part of Integrated Pest Management of Locusts and Grasshoppers. J. Orthoptera Res. 2005, 14, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Manivel, S.B.; Rajkumar, G.S. Mycopesticides: Fungal Based Pesticides for Sustainable Agriculture. In Fungi and Their Role in Sustainable Development: Current Perspective; Gehlot, P., Singh, J., Eds.; Springer: Singapore, 2018; pp. 183–203. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, J.; Ning, J.; Qin, P.; Zhou, J.; Zou, Z.; Wang, Y.; Jiang, H.; Ahmad, F.; Zhao, L.; et al. Differential Immune Responses of Monochamus alternatus against Symbiotic and Entomopathogenic Fungi. Sci. China Life Sci. 2017, 60, 902–910. [Google Scholar] [CrossRef] [Green Version]
- Batta, Y.A. Recent Advances in Formulation and Application of Entomopathogenic Fungi for Biocontrol of Stored-Grain. Insects 2016, 26, 1171–1183. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Athanassiou, C.G. Use of Entomopathogenic Fungi for the Control of Stored-Product Insects: Can Fungi Protect Durable Commodities? J. Pest Sci. 2017, 90, 839–854. [Google Scholar] [CrossRef]
- Schöller, M.E.; Flinn, P.W.; Grieshop, M.J.; Zdárková, E. Biological control of stored product pests. In Insect Management for Food Storage and Processing, 2nd ed.; Heaps, J.W., Ed.; AACC International: Eagan, MN, USA, 2006; pp. 67–87. [Google Scholar]
- Subramanyam, B.; Hagstrum, D.W. Alternatives to Pesticides in Stored-Product IPM; Kluwer Academic Publishers: Boston, MA, USA, 2000; 437p. [Google Scholar]
- Phillips, T.W.; Throne, J.E. Biorational Approaches to Managing Stored-Product Insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar] [CrossRef]
- Rice, W.C.; Cogburn, R.R. Activity of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycota: Hyphomycetes) against Three Coleopteran Pests of Stored Grain. J. Econ. Entomol. 1999, 92, 691–694. [Google Scholar] [CrossRef]
- Lord, J.C. Desiccant Dusts Synergize the Effect of Beauveria bassiana (Hyphomycetes: Moniliales) on Stored-Grain Beetles. J. Econ. Entomol. 2001, 94, 367–372. [Google Scholar] [CrossRef]
- Batta, Y.A.; Abu Safieh, D.I. A study of treatment effect with Metarhizium anisopliae and four types of dusts on wheat grain infestation with red flour beetles (Tribolium castaneum Herbs, Coleoptera: Tenebrionidae). Islam. Univer. Gaza J. 2005, 13, 11–22. [Google Scholar]
- Athanassiou, C.G.; Steenberg, T. Insecticidal Effect of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in Combination with Three Diatomaceous Earth Formulations against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Biol. Control 2007, 40, 411–416. [Google Scholar] [CrossRef]
- Kepler, R.M.; Luangsa-Ard, J.J.; Hywel-Jones, N.L.; Quandt, C.A.; Sung, G.H.; Rehner, S.A.; Aime, M.C.; Henkel, T.W.; Sanjuan, T.; Zare, R.; et al. A Phylogenetically-Based Nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratos, N.G.; Athanassiou, C.G.; Aountala, M.M.; Kontodimas, D.C. Evaluation of the Entomopathogenic Fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for Control of Sitophilus oryzae. J. Food Prot. 2014, 77, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Mantzoukas, S.; Zikou, A.; Triantafillou, V.; Lagogiannis, I.; Eliopoulos, P.A. Interactions between Beauveria bassiana and Isaria fumosorosea and Their Hosts Sitophilus granarius (L.) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Insects 2019, 10, 362. [Google Scholar] [CrossRef]
- Khashaveh, A.; Ghosta, Y.; Safaralizadeh, M.H.; Ziaee, M. The Use of Entomopathogenic Fungus, Beauveria bassiana (Bals.) Vuill. in Assays with Storage Grain Beetles. J. Agr. Sci. Technol. 2011, 13, 35–43. [Google Scholar]
- Wakefield, M.E.; Cox, P.D.; Moore, D.; De Muro, M.A.; Bell, B.A. Mycopest: Results and perspectives. In Proceedings of the VI meeting of COST Action, Working Group IV, Biocontrol of Arthropod Pests in Stored Products, Locorotondo, Italy, 23–29 June 2005; Volume 842, pp. 17–27. [Google Scholar]
- Wakil, W.; Kavallieratos, N.G.; Ghazanfar, M.U.; Usman, M.; Habib, A.; El-Shafie, H.A. Efficacy of different entomopathogenic fungal isolates against four key stored-grain beetle species. J. Stored Prod. Res. 2021, 93, 101845. [Google Scholar] [CrossRef]
- Batta, Y.A. Control of the Lesser Grain Borer (Rhyzopertha dominica (F.), Coleoptera: Bostrichidae) by Treatments with Residual Formulations of Metarhizium anisopliae (Metschnikoff) Sorokin (Deuteromycotina: Hyphomycetes). J. Stored Prod. Res. 2005, 41, 221–229. [Google Scholar] [CrossRef]
- Stathers, T. Entomopathogenic fungi in grain storage-any lessons for Europe from elsewhere? In Proceedings of the VI meeting of COST Action, Working Group IV, Biocontrol of Arthropod Pests in Stored Products, Locorotondo, Italy, 23–29 June 2005; Volume 842, pp. 100–109. [Google Scholar]
- Meikle, W.G.; Cherry, A.J.; Holst, N.; Hounna, B.; Markham, R.H. The effects of an entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin (Hyphomycetes), on Prostephanus truncatus (Horn) (Col.: Bostrichidae), Sitophilus zeamais Motschulsky (Col.: Curculionidae), and grain losses in stored maize in the Benin Republic. J. Invertebr. Pathol. 2001, 77, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Rumbos, C.I.; Sakka, M.; Potin, O.; Storm, C.; Dillon, A.B. Delivering Beauveria bassiana with electrostatic powder for the control of stored-product beetles. Pest Manag. Sci. 2017, 73, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Wakil, W.; Kavallieratos, N.G.; Nika, E.P.; Qayyum, M.A.; Yaseen, T.; Ghazanfar, M.U.; Yasin, M. Combinations of Beauveria bassiana and spinetoram for the management of four important stored-product pests: Laboratory and field trials. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Wakil, W.; Kavallieratos, N.G.; Ghazanfar, M.U.; Usman, M. Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. Environ. Sci. Pollut. Res. 2022, 29, 34912–34929. [Google Scholar] [CrossRef]
- Broumandnia, F.; Rajabpour, A. Efficacies of Some Isolates of Lecanicillium lecanii to Control Tribolium castaneum (Col., Tenebrionidae). J. Plant Dis. Prot. 2020, 127, 625–631. [Google Scholar] [CrossRef]
- Arakere, U.C.; Jagannath, S.; Krishnamurthy, S.; Chowdappa, S.; Konappa, N. Microbial Bio-Pesticide as Sustainable Solution for Management of Pests: Achievements and Prospects. In Biopesticides: Volume 2: Advances in Bio-Inoculants; Rakshit, A., Singh Meena, V., Abhilash, P.C., Sarma, B.K., Singh, H.B., Fraceto, L., Parihar, M., Kumar Singh, A., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2022; pp. 183–200. [Google Scholar] [CrossRef]
- Dal Bello, G.; Padin, S.; López Lastra, C.; Fabrizio, M. Laboratory Evaluation of Chemical-Biological Control of the Rice Weevil (Sitophilus oryzae L.) in Stored Grains. J. Stored Prod. Res. 2000, 37, 77–84. [Google Scholar] [CrossRef]
- Ahmed, B.I. Potentials of Entomopathogenic Fungi in Controlling the Menace of Maize Weevil Sitophilus zeamais Motsch (Coleoptera: Curculionidae) on Stored Maize Grain. Arch. Phytopath. Plant Prot. 2010, 43, 107–115. [Google Scholar] [CrossRef]
- Sabbour, M.M. Efficacy of Some Microbial Control Agents and Inorganic Insecticides against Red Flour Beetle Tribolium castaneum and Confused Flour Beetle, Tribolium confusum (Coleoptera: Tenebrionidae) Integrated Protection of Stored Products. IOBC-WPRS Bull. 2014, 98, 193–201. [Google Scholar]
- Woo, R.M.; Park, M.G.; Choi, J.Y.; Park, D.H.; Kim, J.Y.; Wang, M.; Kim, H.J.; Woo, S.D.; Kim, J.S.; Je, Y.H. Insecticidal and Insect Growth Regulatory Activities of Secondary Metabolites from Entomopathogenic Fungi, Lecanicillium attenuatum. J. Appl. Entomol. 2020, 144, 655–663. [Google Scholar] [CrossRef]
- Kuchár, M.; Glare, T.R.; Hampton, J.G.; Dickie, I.A.; Christey, M.C. Virulence of the Plant-Associated Endophytic Fungus Lecanicillium muscarium to Diamondback Moth Larvae. N. Z. Plant Prot. 2019, 72, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Moyo, D.; Ishikura, S.; Rakotondrafara, A.; Clayton, M.; Kinoshita, R.; Tani, M.; Koike, M.; Aiuchi, D. Behavioral Change of Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) Infected by Lecanicillium muscarium (Hypocreales: Cordycipitaceae). Appl. Entomol. Zool. 2021, 56, 327–336. [Google Scholar] [CrossRef]
- Cuthbertson, A.G.S.; Walters, K.F.A. Pathogenicity of the Entomopathogenic Fungus, Lecanicillium muscarium, against the sweetpotato whitefly Bemisia tabaci under Laboratory and Glasshouse Conditions. Mycopathologia 2005, 160, 315–319. [Google Scholar] [CrossRef]
- Mitina, G.V.; Stepanycheva, E.A.; Choglokova, A.A.; Cherepanova, M.A. Features of Behavioral Reactions of the Peach Aphid Myzus persicae (Sulzer, 1776) (Hemiptera, Aphididae) to Volatile Organic Compounds of Entomopathogenic Fungi of the Genus Lecanicillium. Entomol. Rev. 2021, 101, 1015–1023. [Google Scholar] [CrossRef]
- Asensio, L.; Lopez-Llorca, L.V.; López-Jiménez, J.A. Use of Light, Scanning Electron Microscopy and Bioassays to Evaluate Parasitism by Entomopathogenic Fungi of the Red Scale Insect of Palms (Phoenicococcus marlatti Ckll., 1899). Micron 2005, 36, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Pazyuk, I.; Choglokova, A.; Mitina, G. Effect of Entomopathogenic Fungi of the Genus Lecanicillium on Behavioral Reactions and Average Per-Day Fecundity of the Predatory Bug Orius laevigatus Fieber (Heteroptera, Anthocoridae). BIO Web. Conf. 2022, 43, 02003. [Google Scholar] [CrossRef]
- Abdel-Baky, N.F. Cladosporium Spp. An Entomopathogenic Fungus for Controlling Whiteflies and Aphids in Egypt. Pak. J. Biol. Sci. 2000, 3, 1662–1667. [Google Scholar] [CrossRef]
- Eken, C.; Hayat, R. Preliminary Evaluation of Cladosporium cladosporioides (Fresen.) de Vries in Laboratory Conditions, as a Potential Candidate for Biocontrol of Tetranychus urticae Koch. World J. Microbiol. Biotechnol. 2009, 25, 489–492. [Google Scholar] [CrossRef]
- Habibullah Bahar, M.; Backhouse, D.; Gregg, P.C.; Mensah, R. Biocontrol Science and Technology Efficacy of a Cladosporium sp. Fungus against Helicoverpa armigera (Lepidoptera: Noctuidae), Other Insect Pests and Beneficial Insects of Cotton. Biocontrol. Sci. Technol. 2011, 21, 1387–1397. [Google Scholar] [CrossRef]
- Shaker, N.; Ahmed, G.M.M.; Ibrahim, H.; El-sawy, M.M.; Mostafa, M.; Ismail, H. Secondary Metabolites of the Entomopathogenic Fungus, Cladosporium cladosporioides and Its Relation to Toxicity of Cotton Aphid, Aphis gossypii (Glov.). Int. J. 2019, 5, 115–120. [Google Scholar]
- Arunthirumeni, M.; Vinitha, G.; Shivakumar, M.S. Antifeedant and Larvicidal Activity of Bioactive Compounds Isolated from Entomopathogenic Fungi Penicillium sp. for the Control of Agricultural and Medically Important Insect Pest (Spodoptera litura and Culex quinquefasciatus). Parasitol. Int. 2023, 92, 102688. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Al-Keridis, L. Application of Penicillium sp. as Entomopathogenic Fungi to Control the Red Rust Beetle Tribolium castaneum (Hbst.) (Coleoptera:Tenebrionidae). Biosci. Biotechnol. Res. Asia 2015, 12, 7–12. [Google Scholar] [CrossRef]
- da Costa, G.L.; de Oliveira, P.C. Penicillium Species in Mosquitoes from Two Brazilian Regions. J. Basic Microbiol. 1998, 38, 343–347. [Google Scholar] [CrossRef]
- Malassigné, S.; Moro, C.V.; Luis, P. Mosquito Mycobiota: An Overview of Non-Entomopathogenic Fungal Interactions. Pathogens 2020, 9, 564. [Google Scholar] [CrossRef]
- Maketon, M.; Amnuaykanjanasin, A.; Kaysorngup, A. A Rapid Knockdown Effect of Penicillium citrinum for Control of the Mosquito Culex quinquefasciatus in Thailand. World J. Microbiol. Biotechnol. 2014, 30, 727–736. [Google Scholar] [CrossRef]
- Idrees, A.; Qadir, Z.A.; Akutse, K.S.; Afzal, A.; Hussain, M.; Islam, W.; Waqas, M.S.; Bamisile, B.S.; Li, J. Effectiveness of Entomopathogenic Fungi on Immature Stages and Feeding Performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects 2021, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, G. Biocontrol Science and Technology Review on Safety of the Entomopathogenic Fungi Beauveria Bassiana and Beauveria Brongniartii. Biocontrol. Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Kitsiou, F.; Natsiopoulos, D.; Eliopoulos, P.A. Entomopathogenic Fungi: Interactions and Applications. Encyclopedia 2022, 2, 646–656. [Google Scholar] [CrossRef]
Fungal Species | Isolate Number | Isolate Site (Latitude, Longitude) | Insect Bait |
---|---|---|---|
Cladosporium puyae Bensch, Crous and U. Braun (Cladosporiales: Cladosporiaceae) | CP1a | Dasyllio 1 (38.248686, 21.747233) | S. granarius |
Condenascus tortuosus (Udagawa and Y. Sugiy.) X. Wei Wang and Houbraken (Sordariales: Chaetomiaceae) | Cta | Dasyllio 8 (38.247116, 21.744431), Elos 4 (38.280985, 21.749813) | S. granarius, T. confusum |
Lecanicillium dimorphum (J.D. Chen) Zare and W. Gams (Hypocreales: Cordycipitaceae) | Lda | Dasyllio 3 (38.249872, 21.748449) | S. granarius |
Penicillium brevicompactum Dierckx (Eurotiales: Aspergillaceae) | Pba | Elos 2 (38.281121, 21.747073) | S. granarius |
Penicillium chrysogenum Thom (Eurotiales: Aspergillaceae) | Pca | Elos 3 (38.280382, 21.750789), Dasyllio 9 (38.246973, 21.744602) | T. confusum |
Penicillium citrinum Thom (Eurotiales: Aspergillaceae) | PcIa | Elos 3 (38.280382, 21.750789), | S. granarius |
Penicillium goetzii J.D. Rogers, Frisvad, Houbraken and Samson (Eurotiales: Aspergillaceae) | Pg | Dasyllio 5 (38.249276, 21.746061) | S. granarius |
Penicillium murcianum C. Ramírez and A.T. Martínez (Eurotiales: Aspergillaceae) | Pma | Dasyllio 10 (38.247201, 21.744944) | T. confusum |
Penicillium rubefaciens Quintanilla (Eurotiales: Aspergillaceae) | Pra | Dasyllio 11 (38.246636, 21.744328) | T. confusum |
Penicillium thomii Maire (Eurotiales: Aspergillaceae) | Pta | Dasyllio 4 (38.249504, 21.745850) | S. granarius |
Insect Species | Isolate | Slope | Intercept | LT50 (95% CL) | χ2 | R2 |
---|---|---|---|---|---|---|
S. granarius | CP1a | 1.231 | 2.951 | 46.001 (18.294–115.673) | 0.724 | 0.923 |
Cta | 1.583 | 2.780 | 25.259 (12.676–50.331) | 0.855 | 0.991 | |
Lda | 2.370 | 2.330 | 13.383 (8.506–21.055) | 0.834 | 0.990 | |
Pba | 1.672 | 2.578 | 28.082 (14.424–54.672) | 0.861 | 0.993 | |
Pca | 2.750 | 1.676 | 16.170 (10.838–24.125) | 0.957 | 1.000 | |
PcIa | 2.640 | 1.572 | 19.876 (12.975–30.449) | 0.559 | 0.964 | |
Pg | 2.399 | 2.325 | 13.034 (8.327–20.402) | 0.970 | 1.000 | |
Pma | 1.315 | 2.882 | 40.768 (17.267–96.256) | 0.879 | 0.992 | |
Pra | 2.116 | 2.263 | 19.632 (11.714–32.902) | 0.605 | 0.956 | |
Pta | 2.874 | 1.226 | 20.577 (13.793–30.697 | 0.786 | 0.994 | |
S. oryzae | CP1a | 2.733 | 1.023 | 28.499 (18.070–44.949) | 0.819 | 0.996 |
Cta | 1.737 | 2.526 | 25.145 (13.326–47.466) | 0.548 | 0.922 | |
Lda | 2.129 | 2.808 | 10.727 (6.487–17.737) | 0.512 | 0.861 | |
Pba | 2.592 | 1.359 | 25.358 (16.053–40.358) | 0.576 | 0.970 | |
Pca | 2.144 | 1.803 | 30.984 (17.770–54.024) | 0.801 | 0.992 | |
PcIa | 1.568 | 2.621 | 32.913 (16.019–67.624) | 0.997 | 1.000 | |
Pg | 3.050 | 1.042 | 19.847 (13.599–28.964) | 0.776 | 0.994 | |
Pma | 1.737 | 2.526 | 25.145 (13.326–47.466) | 0.548 | 0.922 | |
Pra | 2.215 | 2.554 | 12.718 (7.850–20.606) | 0.942 | 0.999 | |
Pta | 4.421 | −0.936 | 21.998 (16.400–29.507) | 0.740 | 0.996 | |
S. zeamais | CP1a | 0.741 | 3.297 | 197.304 (39.290–990.825) | 0.765 | 0.916 |
Cta | 2.511 | 1.491 | 24.972 (15.662–39.816) | 0.823 | 0.995 | |
Lda | 1.594 | 3.035 | 16.974 (8.751–32.924) | 0.747 | 0.963 | |
Pba | 1.504 | 0.326 | 14.390 (7.159–28.925) | 0.486 | 0.808 | |
Pca | 3.205 | 0.898 | 19.045 (13.290–27.292) | 0.892 | 0.999 | |
PcIa | 1.474 | 3.263 | 15.075 (7.390–30.751) | 0.366 | 0.713 | |
Pg | 3.050 | 1.042 | 19.847 (13.599–28.964) | 0.776 | 0.994 | |
Pma | 1.737 | 2.526 | 25.145 (13.326–47.466) | 0.548 | 0.922 | |
Pra | 1.897 | 2.538 | 19.838 (11.212–35.101) | 0.530 | 0.922 | |
Pta | 1.345 | 3.041 | 28.558 (12.726–64.087) | 0.759 | 0.965 | |
R. dominica | CP1a | 3.296 | 0.559 | 22.235 (15.416–32.070) | 0.715 | 0.992 |
Cta | 3.299 | 0.760 | 19.257 (13.539–27.388) | 0.607 | 0.981 | |
Lda | 2.754 | 2.032 | 11.968 (8.057–17.777) | 0.648 | 0.959 | |
Pba | 2.702 | 1.339 | 22.617 (14.718–34.756) | 0.731 | 0.990 | |
Pca | 3.205 | 0.898 | 19.045 (13.290–27.292) | 0.892 | 0.999 | |
PcIa | 1.799 | 2.749 | 17.815 (9.838–32.261) | 0.653 | 0.947 | |
Pg | 2.528 | 1.953 | 16.041 (10.425–24.682) | 0.960 | 1.000 | |
Pma | 2.399 | 2.096 | 16.240 (10.331–25.527) | 0.695 | 0.976 | |
Pra | 2.368 | 2.101 | 16.749 (10.587–26.499) | 0.852 | 0.994 | |
Pta | 1.637 | 2.396 | 38.895 (19.000–79.622) | 0.748 | 0.977 | |
T. granarium | CP1a | 2.355 | 1.892 | 20.834 (12.969–33.468) | 0.469 | 0.933 |
Cta | 2.146 | 2.022 | 24.831 (14.390–41.308) | 0.569 | 0.957 | |
Lda | 2.227 | 2.791 | 9.812 (6.040–15.940) | 0.886 | 0.991 | |
Pba | 2.592 | 1.359 | 25.358 (16.053–40.058) | 0.576 | 0.970 | |
Pca | 2.207 | 2.251 | 17.609 (10.773–28.773) | 0.741 | 0.981 | |
PcIa | 1.249 | 3.798 | 9.164 (3.955–21.236) | 0.937 | 0.993 | |
Pg | 2.368 | 2.101 | 16.749 (10.587–26.499) | 0.852 | 0.994 | |
Pma | 2.197 | 2.796 | 10.077 (6.171–16.455) | 0.770 | 0.967 | |
Pra | 1.717 | 3.015 | 14.328 (7.749–26.491) | 0.647 | 0.927 | |
Pta | 2.739 | 1.447 | 19.812 (13.108–29.945) | 0.757 | 0.990 |
Source | df | S. granarius | S. oryzae | S. zeamais | R. dominica | T. granarium | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
Fungal isolate | 30, 959 | 5.23 | <0.001 | 6.48 | <0.001 | 2.38 | <0.001 | 8.38 | <0.001 | 3.88 | <0.001 |
Exposure time | 2, 959 | 10.43 | <0.001 | 12.38 | <0.001 | 10.11 | <0.001 | 30.12 | <0.001 | 7.12 | <0.001 |
Fungal isolate × Exposure time | 60, 959 | 4.43 | <0.001 | 3.83 | <0.001 | 4.13 | <0.001 | 7.84 | <0.001 | 2.34 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzoukas, S.; Lagogiannis, I.; Kitsiou, F.; Eliopoulos, P.A. Entomopathogenic Action of Wild Fungal Strains against Stored Product Beetle Pests. Insects 2023, 14, 91. https://doi.org/10.3390/insects14010091
Mantzoukas S, Lagogiannis I, Kitsiou F, Eliopoulos PA. Entomopathogenic Action of Wild Fungal Strains against Stored Product Beetle Pests. Insects. 2023; 14(1):91. https://doi.org/10.3390/insects14010091
Chicago/Turabian StyleMantzoukas, Spiridon, Ioannis Lagogiannis, Foteini Kitsiou, and Panagiotis A. Eliopoulos. 2023. "Entomopathogenic Action of Wild Fungal Strains against Stored Product Beetle Pests" Insects 14, no. 1: 91. https://doi.org/10.3390/insects14010091
APA StyleMantzoukas, S., Lagogiannis, I., Kitsiou, F., & Eliopoulos, P. A. (2023). Entomopathogenic Action of Wild Fungal Strains against Stored Product Beetle Pests. Insects, 14(1), 91. https://doi.org/10.3390/insects14010091