Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Whitefly Abundance and Virus Incidence—Farmer Field Study
2.1.1. Plant Materials, Insecticide, Farmer Selection, and Field Planting
2.1.2. Data Collection on Whitefly Abundance, Cassava Virus Incidence, and Root Yield
2.2. Examination of Sampled Leaves for Whitefly Nymphs and Parasitism Rate
2.3. Probing Behaviour of Whiteflies on Flupyradifurone-Treated Cassava Plants
2.3.1. Whitefly Colony and Establishment of Flupyradifurone-Treated Plants
2.3.2. Electrical Penetration Graph (EPG) Technique
2.4. Data Analysis
3. Results
3.1. Whitefly Abundance, Cassava Mosaic, and Brown Streak Disease Incidence and Root Yield
3.2. Whitefly Nymphs and Parasitism Rate
3.3. Probing Behaviour of Whiteflies on Flupyradifurone Treated Cassava Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lapidot, M.; Legg, J.P.; Wintermantel, W.M.; Polston, J.E. Management of whitefly-transmitted viruses in open-field production systems. Adv. Virus Res. 2014, 90, 147–206. [Google Scholar] [CrossRef] [PubMed]
- Legg, J.P.; Shirima, R.; Tajebe, L.S.; Guastella, D.; Boniface, S.; Jeremiah, S.; Nsami, E.; Chikoti, P.; Rapisarda, C. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 2014, 70, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, A.C.; Smith, L.; Lapointe, S.L. Recent advances in cassava pest management. Annu. Rev. Entomol. 1999, 44, 343–370. [Google Scholar] [CrossRef]
- Bellotti, A.; Herrera Campo, B.V.; Hyman, G. Cassava production and pest management: Present and potential threats in a changing environment. Trop. Plant Biol. 2012, 5, 39–72. [Google Scholar] [CrossRef]
- Legg, J.P.; Owor, B.; Sseruwagi, P.; Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv. Virus Res. 2006, 67, 355–418. [Google Scholar] [CrossRef]
- Palumbo, J.C.; Horowitz, A.R.; Prabhaker, N. Insecticidal control and resistance management for Bemisia tabaci. Crop Prot. 2001, 20, 739–765. [Google Scholar] [CrossRef]
- Dinsdale, A.; Cook, L.; Riginos, C.; Buckley, Y.M.; De Barro, P. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 2010, 103, 196–208. [Google Scholar] [CrossRef]
- Legg, J.P.; Sseruwagi, P.; Boniface, S.; Okao-Okuja, G.; Shirima, R.; Bigirimana, S.; Gashaka, G.; Herrmann, H.-W.; Jeremiah, S.; Obiero, H.; et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 2014, 186, 61–75. [Google Scholar] [CrossRef]
- Wosula, E.N.; Chen, W.; Fei, Z.; Legg, J.P. Unravelling the genetic diversity among cassava Bemisia tabaci whiteflies using NextRAD sequencing. Genome Biol. Evol. 2017, 9, 2958–2973. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Nauen, R.; Jeschke, P.; Velten, R.; Beck, M.E.; Ebbinghaus-Kintscher, U.; Thielert, W.; Wolfel, K.; Haas, M.; Kunz, K.; Raupach, G. Flupyradifurone: A brief profile of a new butenolide insecticide. Pest Manag. Sci. 2014, 71, 850–862. [Google Scholar] [CrossRef]
- Smith, H.A.; Nagle, C.A.; MacVean, C.A.; McKenzie, C.L. Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) to imidacloprid, thiamethoxam, dinotefuran and flupyradifurone in south Florida. Insects 2016, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, B.R.; Smith, H.; Turechek, W.; Riley, D. A maximum dose bioassay to assess efficacy of key insecticides against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2021, 114, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Cremonez, P.S.; Perier, J.D.; Simmons, A.M.; Riley, D.G. Determining field insecticide efficacy on whiteflies with maximum dose bioassays. Insects 2023, 14, 510. [Google Scholar] [CrossRef]
- Roditakis, E.; Stravrakaki, M.; Grispou, M.; Achimastou, A.; Van Waeter-muelen, X.; Nauen, R.; Tsagkarakou, A. Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and Tomato yellow leaf curl virus (TYLCV) in tomato. Pest Manag. Sci. 2017, 73, 1574–1584. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Zhang, J.; Che, W.; Feng, H.; Luo, C. Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype). Pest Manag. Sci. 2020, 76, 4286–4292. [Google Scholar] [CrossRef] [PubMed]
- Hesselbach, H.; Scheiner, R. The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology 2019, 28, 354–366. [Google Scholar] [CrossRef]
- Hoffmann, M.P.; Wright, M.G.; Pitcher, S.A.; Gardner, J. Inoculative releases of Trichogramma ostriniae for suppression of Ostrinia nubilalis (European corn borer) in sweet corn: Field biology and population dynamics. Biol. Control 2002, 25, 249–258. [Google Scholar] [CrossRef]
- Guastella, D.; Lulah, H.; Tajebe, L.S.; Cavalieri, V.; Evans, G.A.; Pedata, P.A.; Rapisarda, C.; Legg, J.P. Survey on whiteflies and their parasitoids in cassava mosaic pandemic areas of Tanzania using morphological and molecular techniques. Pest Manag. Sci. 2015, 71, 383–394. [Google Scholar] [CrossRef]
- Gerling, D.; Alomar, Ò.; Arnò, J. Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot. 2001, 20, 779–799. [Google Scholar] [CrossRef]
- Otim, M.; Legg, J.; Kyamanywa, S.; Polaszek, A.; Gerling, D. Occurrence and activity of Bemisia tabaci parasitoids on cassava in different agro-ecologies in Uganda. Biocontrol 2005, 50, 87–95. [Google Scholar] [CrossRef]
- Asiimwe, P.; Ecaat, J.S.; Otim, M.; Gerling, D.; Kyamanywa, S.; Legg, J.P. Life-table analysis of mortality factors affecting populations of Bemisia tabaci on cassava in Uganda. Entomol. Exp. Appl. 2007, 122, 37–44. [Google Scholar] [CrossRef]
- Kalyebi, A.; Macfadyen, S.; Hulthen, A.; Ocitti, P.; Jacomb, F.; Tay, W.T.; Colvin, J.; De Barro, P. Within-season changes in land-use impact pest abundance in smallholder African cassava production systems. Insects 2021, 12, 269. [Google Scholar] [CrossRef]
- Tize, I.; Nukenine, E.N.; Kuate, A.F.; Fotio, A.D.; Nanga, S.N.; Ajebesone, F.N.; Kulakow, P.; Kumar, P.L.; Fiaboe, K.K.M.; Hanna, R. Parasitism of the whitefly Bemisia tabaci by aphelinid parasitoids on cassava across five agro-ecological zones of Cameroon. Crop Prot. 2023, 168, 106241. [Google Scholar] [CrossRef]
- Romba, R.; Gnankine, O.; Drabo, S.F.; Tiendrebeogo, F.; Henri, H.; Mouton, L.; Vavre, F. Abundance of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and its parasitoids on vegetables and cassava plants in Burkina Faso (West Africa). Ecol. Evol. 2018, 8, 6091–6103. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, S.E. Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Prot. 2001, 20, 835–852. [Google Scholar] [CrossRef]
- Torres, J.B.; Bueno, A.D.F. Conservation biological control using selective insecticides–a valuable tool for IPM. Biol. Control 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Walker, G.P. A beginner’s guide to electronic monitoring of homopteran probing behaviour. In Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding Behavior; Walker, G.P., Backus, E.A., Eds.; Thomas Say Publications in Entomology; Entomological Society of America: Lanham, MD, USA, 2000; pp. 14–40. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Nombela, G.; Muñiz, M. Analysis by DC–EPG of the resistance to Bemisia tabaci on an Mi-tomato line. Entomol. Exp. Appl. 2001, 99, 295–302. [Google Scholar] [CrossRef]
- Rodríguez-López, M.J.; Garzo, E.; Bonani, J.P.; Fereres, A.; Fernández-Muñoz, R.; Moriones, E. Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 2011, 101, 1191–1201. [Google Scholar] [CrossRef]
- Liu, B.; Yan, F.; Chu, D.; Pan, H.; Jiao, X.; Xie, W.; Wu, Q.; Wang, S.; Xu, B.; Zhou, X.; et al. Difference in feeding behaviors of two invasive whiteflies on host plants with different suitability: Implication for competitive displacement. Int. J. Biol. Sci. 2012, 8, 697. [Google Scholar] [CrossRef]
- Civolani, S.; Cassanelli, S.; Chicca, M.; Rison, J.L.; Bassi, A.; Alvarez, J.M.; Annan, I.B.; Parrella, G.; Giorgini, M.; Fano, E.A. An EPG study of the probing behavior of adult Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) following exposure to cyantraniliprole. J. Econ. Entomol. 2014, 107, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Prado Maluta, N.K.; Garzo, E.; Moreno, A.; Navas-Castillo, J.; Fiallo-Olive, E.; Spotti Lopes, J.R.; Fereres, A. Stylet penetration activities of the whitefly Bemisia tabaci associated with inoculation of the crinivirus Tomato chlorosis virus. J. Gen. Virol. 2017, 98, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Milenovic, M.; Wosula, E.N.; Rapisarda, C.; Legg, J.P. Impact of host plant species and whitefly species on feeding behavior of Bemisia tabaci. Front. Plant Sci. 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Issa, K.A.; Wosula, E.N.; Stephano, F.; Legg, J.P. Evaluation of the Efficacy of Flupyradifurone against Bemisia tabaci on Cassava in Tanzania. Insects 2022, 13, 920. [Google Scholar] [CrossRef]
- Garzo, E.; Moreno, A.; Plaza, M.; Fereres, A. Feeding behavior and virus-transmission ability of insect vectors exposed to systemic insecticides. Plants 2020, 9, 895. [Google Scholar] [CrossRef]
- Maluta, N.K.P.; Lopes, J.R.S.; Fiallo-Olivé, E.; Navas-Castillo, J.; Lourenção, A.L. Foliar spraying of tomato plants with systemic insecticides: Effects on feeding behavior, mortality and oviposition of Bemisia tabaci (Hemiptera: Aleyrodidae) and inoculation efficiency of Tomato chlorosis virus. Insects 2020, 11, 559. [Google Scholar] [CrossRef]
- Maluta, N.K.P.; Lopes, J.R.S.; Fiallo-Olivé, E.; Navas-Castillo, J.; Lourenção, A.L. Foliar application of systemic insecticides disrupts feeding behavior of the whitefly Bemisia tabaci MEAM1 and the transmission of tomato chlorosis virus in potato plants. J. Pest Sci. 2021, 94, 1265–1276. [Google Scholar] [CrossRef]
- Kijazi, A.L.; Reason, C.J.C. Analysis of the 2006 floods over northern Tanzania. Int. J. Climatol. 2009, 29, 955–970. [Google Scholar] [CrossRef]
- Thresh, J.M.; Cooter, R.J. Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol. 2005, 54, 587–614. [Google Scholar] [CrossRef]
- Gondwe, F.M.T.; Mahungu, N.M.; Hillocks, R.J.; Raya, M.D.; Moyo, C.C.; Soko, M.M.; Chipungu, F.B.; Benesi, I.R.M. Economic losses experienced by small-scale farmers in Malawi due to cassava brown streak virus disease. In Proceedings of the ‘Development of a Co-Ordinated Plan of African Action for CBSD Research in Eastern and Southern Africa’—Proceedings of a Workshop held at the Whitesands Hotel, Mombasa, Keya, 27–30 October 2002; DFID Crop Protection Programme: Aylesford, UK, 2003; pp. 28–35. [Google Scholar]
- Shirima, R.R.; Maeda, D.G.; Kanju, E.E.; Tumwegamire, S.; Ceasar, G.; Mushi, E.; Sichalwe, C.; Mtunda, K.; Mkamilo, G.; Legg, J.P. Assessing the degeneration of cassava under high-virus inoculum conditions in coastal Tanzania. Plant Dis. 2019, 103, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.A.; Giurcanu, M.C. New insecticides for management of tomato yellow leaf curl, a virus vectored by the silverleaf whitefly, Bemisia tabaci. J. Insect Sci. 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Castle, S.; Palumbo, J.; Merten, P.; Cowden, C.; Prabhaker, N. Effects of foliar and systemic insecticides on whitefly transmission and incidence of Cucurbit yellow stunting disorder virus. Pest Manag. Sci. 2017, 73, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.A.; Nagle, C.A. Combining novel modes of action for early-season management of Bemisia tabaci (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Fla. Entomol. 2014, 97, 1750–1765. Available online: https://www.jstor.org/stable/24364138 (accessed on 10 September 2023). [CrossRef]
- Maruthi, M.N.; Hillocks, R.J.; Mtunda, K.; Raya, M.D.; Muhanna, M.; Kiozia, H.; Rekha, A.R.; Colvin, J.; Thresh, J.M. Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). J. Phytopathol. 2005, 15, 307–312. [Google Scholar] [CrossRef]
- Maruthi, M.N.; Jeremiah, S.C.; Mohammed, I.U.; Legg, J.P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 2017, 165, 707–717. [Google Scholar] [CrossRef]
- Dubern, J. Transmission of African cassava mosaic geminivirus by the whitefly (Bemisia tabaci). Trop. Sci. 1994, 34, 82–91. [Google Scholar]
- Omongo, C.A.; Opio, S.M.; Bayiyana, I.; Otim, M.H.; Omara, T.; Wamani, S.; Ocitti, P.; Bua, A.; Macfadyen, S.; Colvin, J. African cassava whitefly and viral disease management through timed application of imidacloprid. Crop Prot. 2022, 158, 106015. [Google Scholar] [CrossRef]
- Fernández, M.D.M.; Medina, P.; Fereres, A.; Smagghe, G.; Viñuela, E. Are mummies and adults of Eretmocerus mundus (Hymenoptera: Aphelinidae) compatible with modern insecticides? J. Econ. Entomol. 2015, 108, 2268–2277. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef]
- Drobnjaković, T.; Marčić, D. Effects of spirotetramat insecticide on life history traits and population growth of Encarsia formosa (Hymenoptera: Aphelinidae). Biocontrol Sci. Technol. 2021, 31, 604–618. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, L.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Ji, J.; Niu, L.; Luo, J.; Cui, J. Exposure to flupyradifurone affect health of biocontrol parasitoid Binodoxys communis (Hymenoptera: Braconidae) via disrupting detoxification metabolism and lipid synthesis. Ecotoxicol. Environ. Saf. 2023, 255, 114785. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dai, P.; Yang, X.; Ruan, C.C.; Biondi, A.; Desneux, N.; Zang, L.S. Selectivity of novel and traditional insecticides used for management of whiteflies on the parasitoid Encarsia formosa. Pest Manag. Sci. 2019, 75, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Bordini, I.; Ellsworth, P.C.; Naranjo, S.E.; Fournier, A. Novel insecticides and generalist predators support conservation biological control in cotton. Biol. Control 2021, 154, 104502. [Google Scholar] [CrossRef]
- Tabebordbar, F.; Shishehbor, P.; Ziaee, M.; Sohrabi, F. Lethal and sublethal effects of two new insecticides spirotetramat and flupyradifurone in comparison to conventional insecticide deltamethrin on Trichogramma evanescens (Hymenoptera: Trichogrammatidae). J. Asia Pac. Entomol. 2020, 23, 1114–1119. [Google Scholar] [CrossRef]
- Togni, P.H.; Venzon, M.; Souza, L.M.; Santos, J.P.; Sujii, E.R. Biodiversity provides whitefly biological control based on farm management. J. Pest Sci. 2019, 92, 393–403. [Google Scholar] [CrossRef]
- Simmons, A.M.; Jackson, D.M. Evaluation of foliar-applied insecticides on abundance of parasitoids of Bemisia argentifolii (Homoptera: Aleyrodidae) in vegetables. J. Entomol. Sci. 2000, 35, 1–8. [Google Scholar] [CrossRef]
- Macfadyen, S.; Craze, P.G.; Polaszek, A.; van Achterberg, K.; Memmott, J. Parasitoid diversity reduces the variability in pest control services across time on farms. Proc. R. Soc. B Biol. Sci. 2011, 278, 3387–3394. [Google Scholar] [CrossRef]
- He, Y.; Zhao, J.; Zheng, Y.; Weng, Q.; Biondi, A.; Desneux, N.; Wu, K. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 2013, 9, 246. [Google Scholar] [CrossRef]
- Liu, B.; Preisser, E.L.; Jiao, X.; Xu, W.; Zhang, Y. Lethal and sublethal effects of flupyradifurone on Bemisia tabaci MED (Hemiptera: Aleyrodidae) feeding behavior and TYLCV transmission in tomato. J. Econ. Entomol. 2021, 114, 1072–1080. [Google Scholar] [CrossRef]
- Polston, J.E.; Sherwood, T. Pymetrozine interferes with transmission of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci. Phytoparasitica 2003, 31, 490–498. [Google Scholar] [CrossRef]
- Castle, S.; Palumbo, J.; Prabhaker, N. Newer insecticides for plant virus disease management. Virus Res. 2009, 14, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Fargette, D.; Fauquet, C.; Grenier, E.; Thresh, J.M. The spread of African cassava mosaic virus into and within cassava fields. J. Phytopathol. 1990, 130, 289–302. [Google Scholar] [CrossRef]
- Sseruwagi, P.; Otim-Nape, G.W.; Osiru, D.S.; Thresh, J.M. Influence of NPK fertiliser on populations of the whitefly vector and incidence of cassava mosaic virus disease. Afr. Crop Sci. J. 2003, 11, 171–179. [Google Scholar] [CrossRef]
Disease | MAP | Flupyradifurone | Control | χ2 Value | p Value |
---|---|---|---|---|---|
CMD | 1MAP | - | - | - | - |
2MAP | 2.96 | 3.14 | 2.22 | 0.1367 | |
3MAP | 2.80 | 3.11 | 14.84 | 0.0001 | |
4MAP | 2.92 | 3.10 | 7.23 | 0.0071 | |
5MAP | 2.92 | 3.10 | 7.25 | 0.0071 | |
6MAP | 2.91 | 3.12 | 10.00 | 0.0016 | |
CBSD | 1MAP | - | - | - | - |
2MAP | 2.65 | 2.69 | 1.04 | 0.3071 | |
3MAP | 2.50 | 2.46 | 0.98 | 0.3222 | |
4MAP | 2.71 | 2.74 | 0.48 | 0.4889 | |
5MAP | 2.85 | 2.93 | 8.41 | 0.0037 | |
6MAP | 2.89 | 2.96 | 10.94 | 0.0009 |
Parameter | Flupyradifurone | Control | p Value |
---|---|---|---|
Cutting sprouting % | 90.1 ± 3.0 a | 87.8 ± 3.1 a | 0.6046 |
Stem height in cm | 124.3 ± 6.6 b | 84.6 ± 5.0 a | <0.0001 |
Number of stems/plant | 2.9 ± 0.3 a | 2.4 ± 0.2 a | 0.1170 |
Number of roots/plant | 4.7 ± 0.2 b | 3.4 ± 0.1 a | <0.0001 |
Root yield in g/plant | 1150.6 ± 42.5 b | 769.5 ± 34.1 a | <0.0001 |
Whitefly Stage | Control | Flupyradifurone | p Value |
---|---|---|---|
Egg | 1510.8 ± 374.4 b | 686.5 ± 154.9 a | 0.0144 |
1st stage nymphs | 533.9 ± 111.1 b | 278.6 ± 65.9 a | 0.0490 |
2nd stage nymphs | 44.4 ± 7.0 a | 37.1 ± 11.4 a | 0.5412 |
3rd stage nymphs | 39.0 ± 7.5 a | 39.2 ± 8.1 a | 0.9813 |
4th stage nymphs | 41.2 ± 8.8 b | 20.8 ± 3.4 a | 0.0260 |
Pupa | 24.2 ± 4.5a | 16.0 ± 3.4 a | 0.1586 |
Parasitoids | |||
Encarsia sophia | 14.9 ± 4.4 a | 7.6 ± 2.1 a | 0.1544 |
Encarsia lutea | 2.3 ± 1.4 a | 1.6 ± 1.2 a | 0.6154 |
Eretmocerus spp. | 17.0 ± 3.6 b | 6.4 ± 2.0 a | 0.0216 |
Percent parasitism | |||
Encarsia sophia | 23.5 ± 4.4 a | 18.1 ± 3.7 a | 0.9931 |
Encarsia lutea | 3.8 ± 1.7 a | 3.1 ± 1.9 a | 0.4952 |
Eretmocerus spp. | 26.7 ± 4.1 a | 18.0 ± 3.6 a | 0.4119 |
Total parasitism | 54.0 ± 4.8 a | 39.2 ± 5.2 a | 0.0552 |
Parameter | Control | Flupyradifurone | p Value |
---|---|---|---|
Time to 1st probe from start of EPG | 3.5 ± 1.6 a | 8.9 ± 2.8 a | 0.4026 |
Duration to 1st probe | 54.6 ± 32.7 a | 10.9 ± 3.2 | 0.5899 |
Time from start of EPG to 1st E | 262.4 ± 42.6 a | 495.2 ± 47.7 b | 0.0103 |
Time from 1st probe to 1st E | 258.8 ± 43.3 a | 486.3 ± 48.0 b | 0.0205 |
Total duration of G | 59.5 ± 10.7 a | 92.1 ± 27.2 a | 0.9294 |
Total duration of E1 | 6.3 ± 3.2 a | 1.5 ± 0.3 a | 0.4077 |
Total duration of E2 | 283.1 ± 43.7 a | 158.4 ± 59.1 a | 0.0759 |
Total duration of C | 183.8 ± 19.5 b | 119.7 ± 16.8 a | 0.0124 |
Total duration of np | 160.1 ± 38.2 a | 350.9 ± 40.0 b | 0.0105 |
Total duration of pd * | 189.7 ± 35.1 b | 99.6 ± 26.4 a | 0.0399 |
Total duration of F | 53.3 ± 6.5 a | 104.8 ± 19.9 a | 0.6563 |
Mean duration of G | 31.0 ± 7.8 a | 37.3 ± 11.8 a | 0.7387 |
Mean duration of E1 * | 83.3 ± 31.6 a | 55.9 ± 10.6 a | 0.6442 |
Mean duration of E2 | 141.2 ± 33.3 a | 71.7 ± 28.8 a | 0.1444 |
Mean duration of C | 9.9 ± 0.9 a | 8.7 ± 1.1 a | 0.4524 |
Mean duration of np | 8.3 ± 2.1 a | 42.0 ± 11.5 b | 0.0005 |
Mean duration of pd * | 6.3 ± 0.4 a | 5.9 ± 0.5 a | 0.5011 |
Mean duration of F | 19.9 ± 1.9 a | 30.3 ± 5.5 a | 0.7135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caspary, R.; Wosula, E.N.; Issa, K.A.; Amour, M.; Legg, J.P. Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava. Insects 2023, 14, 796. https://doi.org/10.3390/insects14100796
Caspary R, Wosula EN, Issa KA, Amour M, Legg JP. Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava. Insects. 2023; 14(10):796. https://doi.org/10.3390/insects14100796
Chicago/Turabian StyleCaspary, Ruben, Everlyne N. Wosula, Khamis A. Issa, Massoud Amour, and James P. Legg. 2023. "Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava" Insects 14, no. 10: 796. https://doi.org/10.3390/insects14100796
APA StyleCaspary, R., Wosula, E. N., Issa, K. A., Amour, M., & Legg, J. P. (2023). Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava. Insects, 14(10), 796. https://doi.org/10.3390/insects14100796