A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of Galleria mellonella and Causes Its Resistance to Bacillus thuringiensis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Experimental Design
2.2. 16S rDNA Metabarcoding
2.3. Changes in CFU Counts in the Midgut of G. mellonella F18
2.4. Identification of Bacteria and Their In Vitro Sensitivity to the Antibiotic
2.5. Sample Preparation and Enzyme Activity Measurements
2.6. pH of the Midgut Contents and Electron Microscopy of the Midguts
2.7. Vital Signs
2.8. Preparing Bacteria and Performing Bioassay
2.9. Statistics
3. Results
3.1. Bacteriobiome
3.2. CFU Counts and Identification of Bacteria
3.3. Enzymatic Activities in Midgut Tissues
3.4. pH of the Midgut Contents and Ultra-thin Sections
3.5. Vital Signs of the F18 Generation G. mellonella
3.6. Influence of Amikacin on Bt Growth
3.7. Sensitivity of G. mellonella F18 to Bt
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Maguire, R.; Kunc, M.; Hyrsl, P.; Kavanagh, K. Caffeine administration alters the behavior and development of Galleria mellonella larvae. Neurotoxicol. Teratol. 2017, 64, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schal, C.; Pan, X.; Huang, Y.; Zhang, F. Effects of antibiotics on the dynamic balance of bacteria and fungi in the gut of the german cockroach. J. Econ. Entomol. 2020, 113, 2666–2678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, H.; He, J.; Muhammad, A.; Zhang, F.; Lu, X. Features and colonization strategies of Enterococcus faecalis in the gut of Bombyx mori. Front. Microbiol. 2022, 13, 921330. [Google Scholar] [CrossRef] [PubMed]
- Weiland, S.O.; Detcharoen, M.; Schlick-Steiner, B.C.; Steinet, F.M. Analyses of locomotion, wing morphology, and microbiome in Drosophila nigrosparsa after recovery from antibiotics. Microbiologyopen 2022, 11, e1291. [Google Scholar] [CrossRef]
- Blanquart, F.; Lehtinen, S.; Lipsitch, M.; Fraser, C. The evolution of antibiotic resistance in a structured host population. J. R. Soc. Interface 2018, 15, 20180040. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021, 20, 257–269. [Google Scholar] [CrossRef]
- Noman, M.S.; Shi, G.; Liu, L.J.; Li, Z.H. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae). Insect Sci. 2021, 28, 363–376. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Guo, Z.; Liu, X.; Wang, P.; Yuan, X.; Li, Y. Antibiotic treatment reduced the gut microbiota diversity, prolonged the larval development period and lessened adult fecundity of Grapholita molesta (Lepidoptera: Tortricidae). Insects 2022, 13, 838. [Google Scholar] [CrossRef]
- Jose, P.A.; Ben-Yosef, M.; Jurkevitch, E.; Yuval, B. Symbiotic bacteria affect oviposition behavior in the olive fruit fly Bactrocera oleae. J. Insect Physiol. 2019, 117, 103917. [Google Scholar] [CrossRef]
- Kryukov, V.Y.; Kosman, E.; Tomilova, O.; Polenogova, O.; Rotskaya, U.; Tyurin, M.; Alikina, T.; Yaroslavtseva, O.; Kabilov, M.; Glupov, V. Interplay between fungal infection and bacterial associates in the wax moth Galleria mellonella under different temperature conditions. J. Fungi 2020, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Polenogova, O.V.; Kabilov, M.R.; Tyurin, M.V.; Rotskaya, U.N.; Krivopalov, A.V.; Morozova, V.V.; Mozhaitseva, K.; Kryukova, N.A.; Alikina, T.; Kryukov, V.Y.; et al. Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Sci. Rep. 2019, 9, 4012. [Google Scholar] [CrossRef] [PubMed]
- Polenogova, O.V.; Noskov, Y.A.; Yaroslavtseva, O.N.; Kryukova, N.A.; Alikina, T.; Klementeva, T.N.; Andrejeva, J.; Khodyrev, V.P.; Kabilov, M.R.; Kryukov, V.Y.; et al. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE 2021, 16, e0248704. [Google Scholar] [CrossRef] [PubMed]
- Dubovskiy, I.M.; Grizanova, E.V.; Whitten, M.M.A.; Mukherjee, K.; Greig, C.; Alikina, T.; Kabilov, M.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 2016, 7, 860–870. [Google Scholar] [CrossRef]
- Regev, A.; Keller, M.; Strizhov, N.; Sneh, B.; Prudovsky, E.; Chet, I.; Ginzberg, I.; Koncz-Kalman, Z.; Koncz, C.; Schell, J.; et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol. 1996, 62, 3581–3586. [Google Scholar] [CrossRef]
- Liu, Y.J.; Shen, Z.; Yu, J.; Li, Z.; Liu, X.; Xu, H. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. Pest Manag. Sci. 2020, 76, 1353–1362. [Google Scholar] [CrossRef]
- Gong, Q.; Cao, L.J.; Sun, L.N.; Chen, J.C.; Gong, Y.J.; Pu, D.Q.; Huang, Q.; Hoffmann, A.A.; Wei, S.J. Similar gut bacterial microbiota in two fruit-feeding moth pests collected from different host species and locations. Insects 2020, 11, 840. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, T.; Deng, J.; Zhou, X.; Wu, Z.; Su, Q.; Zhang, L.; Long, Y.; Yang, Y. Positive effects of the tea catechin (-)- epigallocatechin-3-gallate on gut bacteria and fitness of Ectropis obliqua Prout (Lepidoptera: Geometridae). Sci. Rep. 2019, 9, 5021. [Google Scholar] [CrossRef]
- Caccia, S.; Di Lelio, I.; La Storia, A.; Marinelli, A.; Varricchio, P.; Franzetti, E.; Banyuls, N.; Tettamanti, G.; Casartelli, M.; Giordana, B.; et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 9486–9491. [Google Scholar] [CrossRef]
- Xia, X.; Sun, B.; Gurr, G.M.; Vasseur, L.; Xue, M.; You, M. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front. Microbiol. 2018, 9, 25. [Google Scholar] [CrossRef]
- Allegra, E.; Titball, R.W.; Carter, J.; Champion, O.L. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 2018, 198, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Ignasiak, K.; Maxwell, A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res. Notes 2017, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Sugeçti, S.; Tunçsoy, B.; Büyükgüzel, E.; Özalp, P.; Büyükgüzel, K. Ecotoxicological effects of dietary titanium dioxide nanoparticles on metabolic and biochemical parameters of model organism Galleria mellonella (Lepidoptera: Pyralidae). J. Environ. Sci. Health C 2021, 39, 423–434. [Google Scholar] [CrossRef]
- Duman, E.E.; Gwokyalya, R.; Altuntas, H.; Kutrup, B. Screening the immunotoxicity of different food preservative agents on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Drug Chem. Toxicol. 2022, 46, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Coates, C.J.; Lim, J.; Harman, K.; Rowley, A.F.; Griffiths, D.J.; Emery, H.; Layton, W. The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biol. Toxicol. 2019, 35, 219–232. [Google Scholar] [CrossRef]
- Cools, F.; Torfs, E.; Aizawa, J.; Vanhoutte, B.; Maes, L.; Caljon, G.; Delputte, P.; Cappoen, D.; Cos, P. Optimization and characterization of a Galleria mellonella larval infection model for virulence studies and the evaluation of therapeutics against Streptococcus pneumonia. Front. Microbiol. 2019, 10, 311. [Google Scholar] [CrossRef]
- Champion, O.L.; Wagley, S.; Titball, R.W. Galleria mellonella as a model host for microbiological and toxin research. Virulence 2016, 7, 840–845. [Google Scholar] [CrossRef]
- Stephens, J.M. A strain of Streptococcus faecalis Andrewes and Horder producing mortality in larvae of Galleria mellonella (Linnaeus). J. Insect Pathol. 1962, 4, 267. [Google Scholar]
- Johnston, P.R.; Rolff, J. Host and Symbiont jointly control gut microbiota during complete metamorphosis. PloS Pathog. 2015, 11, e1005246. [Google Scholar] [CrossRef]
- Krams, I.; Kecko, S.; Inashkina, I.; Trakimas, G.; Krams, R.; Elferts, D.; Elferts, D.; Vrublevska, J.; Jõers, P.; Rantala, M.J.; et al. Food quality affects the expression of antimicrobial peptide genes upon simulated parasite attack in the larvae of greater wax moth. Entomol. Exp. Appl. 2017, 165, 129–137. [Google Scholar] [CrossRef]
- Allonsius, C.N.; Van Beeck, W.; De Boeck, I.; Wittouck, S.; Lebeer, S. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim. Microbiome 2019, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Gooch, H.C.; Kiu, R.; Rudder, S.; Baker, D.J.; Hall, L.J.; Maxwell, A. Enterococcus innesii sp. nov., isolated from the wax moth Galleria mellonella. Int. J. Syst. Evol. Microbiol. 2021, 71, 005168. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.J.; Moran, N.A. Links between metamorphosis and symbiosis in holometabolous insects. Philos. Trans. R. Soc. B 2019, 374, 20190068. [Google Scholar] [CrossRef]
- Indiragandhi, P.; Anandham, R.; Madhaiyan, M.; Sa, T.M. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 2008, 56, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Buchon, N.; Broderick, N.A.; Chakrabarti, S.; Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 2009, 23, 2333–2344. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, B.; Sun, C.; Ishida, K.; Hertweck, C.; Boland, W. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem. Biol. 2017, 24, 66–75. [Google Scholar] [CrossRef]
- Broderic, N.A.; Raffa, K.F.; Handelsman, J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 2006, 103, 15196–15199. [Google Scholar] [CrossRef]
- Mason, K.L.; Stepien, T.A.; Blum, J.E.; Holt, J.F.; Labbe, N.H.; Rush, J.S.; Raffa, K.F.; Handelsman, J. From commensal to pathogen: Translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2011, 2, e00065-11. [Google Scholar] [CrossRef]
- Raymond, B.; Johnston, P.R.; Wright, D.J.; Ellis, R.J.; Crickmore, N.; Bonsall, M.B. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environ. Microbiol. 2009, 11, 2556–2563. [Google Scholar] [CrossRef]
- Kryukova, N.A.; Mozhaytseva, K.A.; Rotskaya, U.N.; Glupov, V.V. Galleria mellonella larvae fat body disruption (Lepidoptera: Pyralidae) caused by the venom of Habrobracon brevicornis (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 2020, 106, E21746. [Google Scholar] [CrossRef]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Melekhina, E.N.; Belykh, E.S.; Markarova, M.Y.; Taskaeva, A.A.; Rasova, E.E.; Baturina, O.A.; Kabilov, M.R.; Velegzhaninov, I.O. Soil microbiota and microarthropod communities in oil contaminated sites in the European Subarctic. Sci. Rep. 2021, 11, 19620. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 2018, 6, e4652. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Chertkova, E.; Kabilov, M.R.; Yaroslavtseva, O.; Polenogova, O.; Kosman, E.; Sidorenko, D.; Alikina, T.; Noskov, Y.; Krivopalov, A.; Glupov, V.V.; et al. Links between soil bacteriobiomes and fungistasis toward fungi infecting the Colorado potato beetle. Microorganisms 2023, 11, 943. [Google Scholar] [CrossRef]
- Elpidina, E.N.; Vinokurov, K.S.; Gromenko, V.A.; Rudenskaya, Y.A.; Dunaevsky, Y.E.; Zhuzhikov, D.P. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch. Insect Biochem. Physiol. 2001, 48, 206–216. [Google Scholar] [CrossRef]
- Gatehouse, J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol. 2002, 156, 145–169. [Google Scholar] [CrossRef]
- Anson, M.L. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol. 1938, 22, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Noskov, Y.A.; Polenogova, O.V.; Yaroslavtseva, O.N.; Belevich, O.E.; Yurchenko, Y.A.; Chertkova, E.A.; Kryukova, N.A.; Kryukov, V.Y.; Glupov, V.V. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae. PeerJ 2019, 7, e7931. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Nicell, J.A.; Wright, H. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme Microb. Technol. 1997, 21, 302–310. [Google Scholar] [CrossRef]
- Wong, G.W.; McHugh, T.M.; Weber, R.; Goeddel, D.V. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation. Proc. Natl. Acad. Sci. USA 1991, 88, 4372–4376. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Polenogova, O.V.; Noskov, Y.A.; Artemchenko, A.A.; Zhangissina, S.; Klementeva, T.N.; Yaroslavtseva, O.N.; Khodyrev, V.P.; Kruykova, N.A.; Glupov, V.V. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. Pest Manag. Sci. 2022, 78, 3823–3835. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef]
- Grau, T.; Vilcinskas, A.; Joop, G. Probiotic Enterococcus mundtii isolate protects the model insect Tribolium castaneum against Bacillus thuringiensis. Front. Microbiol. 2017, 8, 1261. [Google Scholar] [CrossRef]
- Huang, S.; Han, C.; Ma, Z.; Zhou, J.; Zhang, J.; Huang, L. Identification and characterization of a pyridoxal 5’-phosphate phosphatase in the silkworm (Bombyx mori). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2017, 205, 39–45. [Google Scholar] [CrossRef]
- Unban, K.; Klongklaew, A.; Kodchasee, P.; Pamueangmun, P.; Shetty, K.; Khanongnuch, C. Enterococci as dominant xylose utilizing lactic acid bacteria in eri silkworm midgut and the potential use of Enterococcus hirae as probiotic for eri culture. Insects 2022, 13, 136. [Google Scholar] [CrossRef]
- Li, G.; Xia, X.; Zhao, S.; Shi, M.; Liu, F.; Zhu, Y. The physiological and toxicological effects of antibiotics on an interspecies insect model. Chemosphere 2020, 248, 126019. [Google Scholar] [CrossRef]
- Klemens, J.J.; Meech, R.P.; Hughes, L.F.; Somani, S.; Campbell, K.C. Antioxidant enzyme levels inversely covary with hearing loss after amikacin treatment. J. Am. Acad. Audiol. 2003, 14, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Bas, E.; Van De Water, T.; Gupta, C.; Dinh, J.; Vu, L.; Martínez-Soriano, F.; Láinez, J.; Marco, J. Efficacy of three drugs for protecting against gentamicin-induced hair cell and hearing losses. Br. J. Pharmacol. 2012, 166, 1888–1904. [Google Scholar] [CrossRef]
- Büyükgüzel, E.; Kalender, Y. Galleria mellonella (L.) survivorship, development and protein content in response to dietary antibiotics. J. Entomol. Sci. 2008, 43, 27–40. [Google Scholar] [CrossRef]
- Keleş, V.; Büyükgüzel, K.; Büyükgüzel, E. The effect of streptomycin on survival, development, and some biochemical aspects of Drosophila melanogaster. Turk. J. Zool. 2021, 45, 432–441. [Google Scholar] [CrossRef]
- Hu, B.; Hu, S.; Huang, H.; Wei, Q.; Ren, M.; Huang, S.; Tian, X.; Su, J. Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pestic. Biochem. Physiol. 2019, 155, 58–71. [Google Scholar] [CrossRef]
- Chu, C.C.; Spencer, J.L.; Curzi, M.J.; Zavala, J.A.; Seufferheld, M.J. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. PNAS USA 2013, 110, 11917–11922. [Google Scholar] [CrossRef] [PubMed]
- Yuksekdag, Z.; Ahlatci, N.S.; Hajikhani, R.; Darilmaz, D.O.; Beyatli, Y. Safety and metabolic characteristics of 17 Enterococcus faecium isolates. Arch. Microbiol. 2021, 203, 5683–5694. [Google Scholar] [CrossRef]
- Pilon, A.M.; Olivera, M.G.A.; Guedes, R.N.C. Protein digestibility, protease activity and post-embrionic development of the velvetbean caterpillar (Anticarsia gemmatalis) exposed to the trypsin-inhibitor benzamidine. Pestic. Biochem. Physiol. 2006, 86, 23–29. [Google Scholar] [CrossRef]
- Pilon, A.M.; Olivera, M.G.A.; Pilon, F.M.; Guedes, R.N.C.; Olivera, J.A.; Fazollo, A. Adaptacao da lagarta da soja Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) ao inhibitor de protease benzamidine. Rev. Ceres. 2009, 56, 744–748. [Google Scholar]
- Scott, I.M.; Thaler, J.S.; Scott, J.G. Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defense in tomato. J. Chem. Ecol. 2010, 36, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Meriño-Cabrera, Y.; Zanucio, J.C.; da Silva, R.S.; Solis-Vargas, M.; Cordeiro, G.; Rainha, F.R.; Campos, W.G.; Picanço, M.C.; de Almeida Oliveira, M.G. Biochemical response between insects and plants: An investigation of enzyme activity in the digestive system of Leucoptera coffeella (Lepidoptera: Lyonetiidae) and leaves of Coffea arabica (Rubiaceae) after herbivory. Ann. Appl. Biol. 2018, 172, 236–243. [Google Scholar] [CrossRef]
- Harrison, R.L.; Bonning, B.C. Proteases as insecticidal agents. Toxins 2010, 2, 935–953. [Google Scholar] [CrossRef]
- Chikate, Y.R.; Tamhane, V.A.; Joshi, R.S.; Gupta, V.S.; Giri, A.P. Differential protease activity augments polyphagy in Helicoverpa armigera. Insect Mol. Biol. 2013, 22, 258–272. [Google Scholar] [CrossRef]
- Sarate, P.J.; Tamhane, V.A.; Kotkar, H.M.; Ratnakaran, N.; Susan, N.; Gupta, V.S.; Giri, A.P. Developmental and digestive flexibilities in the midgut of a polyphagous pest, the cotton bollworm, Helicoverpa armigera. J. Insect Sci. 2012, 12, 42. [Google Scholar] [CrossRef]
- Klementeva, T.N.; Polenogova, O.V.; Glupov, V.V. Effect of an antibiotic on gut microbiota and activity of digestive and antioxidant enzymes of Galleria mellonella. Eur. J. Entomol. 2022, 25, 265–271. [Google Scholar] [CrossRef]
- Oppert, B.; Kramer, K.J.; Beeman, R.W.; Johnson, D.; McGaughey, W.H. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 1997, 272, 23473–23476. [Google Scholar] [CrossRef] [PubMed]
- Lightwood, D.J.; Ellar, D.J.; Jarrett, P. Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac δ-endotoxin. Appl. Environ. Microbiol. 2000, 66, 5174–5181. [Google Scholar] [CrossRef]
- Palmer, K.L.; Godfrey, P.; Griggs, A.; Kos, V.N.; Zucker, J.; Desjardins, C.; Cerqueira, G.; Gevers, D.; Walker, S.; Wortman, J.; et al. Comparative genomics of enterococci: Variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 2012, 3, e00318-11. [Google Scholar] [CrossRef]
- Repizo, G.D.; Espariz, M.; Blancato, V.S.; Suárez, C.A.; Esteban, L.; Magni, C. Genomic comparative analysis of the environmental Enterococcus mundtii against enterococcal representative species. BMC Genom. 2014, 15, 489. [Google Scholar] [CrossRef] [PubMed]
- Sillanpaa, J.; Nallapareddy, S.R.; Prakash, V.P.; Qin, X.; Hook, M.; Weinstock, G.M.; Murray, B.E. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 2008, 154, 3199–3211. [Google Scholar] [CrossRef] [PubMed]
- Granger, M.; van Reenen, C.A.A.; Dicks, L.M.T. Effect of gastro-intestinal conditions on the growth of Enterococcus mundtii ST4SA, and production of bacteriocin ST4SA recorded by real-time PCR. Int. J. Food Microbiol. 2008, 123, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, T.; The, B.S.; Murali, A.; Schmidth-Heck, W.; Schlenker, Y.; Vogel, H.; Boland, W. Transcriptomics reveal the survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis. J. Chem. Ecol. 2021, 47, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.G.; Son, J.S.; Chung, J.H.; Lee, S.; Kim, J.S.; Ryu, C.M. Population dynamics of intestinal Enterococcus modulate Galleria mellonella metamorphosis. Microbiol. Spectr. 2023, 11, e0278022. [Google Scholar] [CrossRef]
Diversity | Quantitative Parameters | Diet of the Insect Group | p-Value < 0.05 (Mann–Whitney U-Test) | |
---|---|---|---|---|
Typical | with Antibiotic | |||
Shannon_10 | Median | 0.14 | 0.4 | 0.2 |
Lower and upper quartiles | 0.11–0.19 | 0.34–0.51 | ||
Chao1 | Median | 11.5 | 25.4 | 0.03 |
Lower and upper quartiles | 5.5–18.0 | 18.88–31.0 |
Taxons | Quantitative Parameters | Diet of the Insect Group | p-Value < 0.05 (Mann–Whitney U-Test) | |
---|---|---|---|---|
Typical | with Antibiotic | |||
Firmicutes | Median | 99.19 | 96.44 | 0.06 |
Lower and upper quartiles | 98.14–99.94 | 93.52–97.01 | ||
OTU_2 (Enterococcus faecalis) | Median | 92.5 | 0 | 0.02 |
Lower and upper quartiles | 88.83–95.57 | 0 | ||
OTU_6506 (Enterococcus mundtii) | Median | 0.89 | 65.75 | 0.03 |
Lower and upper quartiles | 0–0.9 | 57.16–70.36 | ||
OTU_1865 (Enterococcus devriesei/ E. xiangfangensis) | Median | 4.08 | 20.07 | 0.19 |
Lower and upper quartiles | 0–6.39 | 0–34.34 | ||
OTU_36 (unc. Bacillus) | Median | 0.95 | 1.91 | 0.34 |
Lower and upper quartiles | 0–1.08 | 1.27–5.57 | ||
OTU_25 (unc. Staphylococcus) | Median | 0 | 1.33 | 0.4 |
Lower and upper quartiles | 0–0.29 | 0–4.08 | ||
Proteobacteria | Median | 0.58 | 2.37 | 0.20 |
Lower and upper quartiles | 0.06–0.61 | 0.27–2.43 | ||
OTU_11 (unc. Melaminivora) | Median | 0 | 0 | 1.00 |
Lower and upper quartiles | 0–0.47 | 0–0.73 | ||
Actinobacteria | Median | 0.47 | 2.00 | 0.06 |
Lower and upper quartiles | 0–0.77 | 1.51–2.32 | ||
Others | Median | 0 | 1.4 | 0.19 |
Lower and upper quartiles | 0–0.09 | 1.29–1.72 |
Diet of the Insect Group | Isolate Number | Nearest Isolate from GenBank | Identity (%) | OTU Number | GenBank Accession Number |
---|---|---|---|---|---|
Typical diet | N121 | Enterococcus faecalis (DACBQW010000003) | 100 | OTU_2 | OR018313 |
N221 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018314 | |
N1021 | Enterococcus faecalis (DACBQW010000003) | 100 | OTU_2 | OR018315 | |
N1321 | Enterococcus faecalis (DACBQW010000003) | 99.93 | OTU_2 | OR018316 | |
N1721 | Enterococcus faecalis (DACBQW010000003) | 100 | OTU_2 | OR018317 | |
N1821 | Enterococcus faecalis (DACBQW010000003) | 100 | OTU_2 | OR018318 | |
N2121 | Enterococcus faecalis (DACBQW010000003) | 100 | OTU_2 | OR018319 | |
Diet with antibiotic | A1121 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018320 |
A1621 | Enterococcus mundtii (WXPA01000019) | 100 | OTU_6506 | OR018321 | |
A2021 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018322 | |
A2521 | Enterococcus mundtii (WXPA01000019) | 100 | OTU_6506 | OR018323 | |
A121 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018324 | |
A521 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018325 | |
A921 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018326 | |
A1421 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018327 | |
A1721 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018328 | |
A2221 | Enterococcus innesii (JAHHEN010000001) | 100 | OTU_1865 | OR018329 |
Vital Signs | Diet of the Insect Group | p-Value < 0.001 (t-Test) | |
---|---|---|---|
Typical | with Antibiotic | ||
Mass of pupae, mg | 0.15 ± 0.0025 | 0.13 ± 0.0026 | 0.000 |
Number of eggs in the oviposition | 155.33 ± 13.4 | 189.65 ± 23.55 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polenogova, O.V.; Klementeva, T.N.; Kabilov, M.R.; Alikina, T.Y.; Krivopalov, A.V.; Kruykova, N.A.; Glupov, V.V. A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of Galleria mellonella and Causes Its Resistance to Bacillus thuringiensis. Insects 2023, 14, 889. https://doi.org/10.3390/insects14110889
Polenogova OV, Klementeva TN, Kabilov MR, Alikina TY, Krivopalov AV, Kruykova NA, Glupov VV. A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of Galleria mellonella and Causes Its Resistance to Bacillus thuringiensis. Insects. 2023; 14(11):889. https://doi.org/10.3390/insects14110889
Chicago/Turabian StylePolenogova, Olga V., Tatyana N. Klementeva, Marsel R. Kabilov, Tatyana Y. Alikina, Anton V. Krivopalov, Natalya A. Kruykova, and Viktor V. Glupov. 2023. "A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of Galleria mellonella and Causes Its Resistance to Bacillus thuringiensis" Insects 14, no. 11: 889. https://doi.org/10.3390/insects14110889
APA StylePolenogova, O. V., Klementeva, T. N., Kabilov, M. R., Alikina, T. Y., Krivopalov, A. V., Kruykova, N. A., & Glupov, V. V. (2023). A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of Galleria mellonella and Causes Its Resistance to Bacillus thuringiensis. Insects, 14(11), 889. https://doi.org/10.3390/insects14110889