Comparison of the Germination Conditions of Two Large-Spore Microsporidia Using Potassium and Sodium Ion Solutions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microsporidia
2.2. Measurement of Germination Rates
2.3. Statistical Analysis
3. Results
3.1. Germination Rates in DW
3.2. Germination Rates in Physiological Salt Solution
3.3. Germination Rates in KOH Solution
3.4. Germination Rates in KCl + H2O2 Solution
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhat, S.A.; Bashir, I.; Kamili, A.S. Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera-Bombycidae): A review. Afr. J. Agric. Res. 2009, 4, 1519–1523. [Google Scholar]
- Wittner, M.; Weiss, L.M. The Microsporidia and Microsporidiosis; American Society for Microbiology Press: Washington, DC, USA, 1999; p. 553. [Google Scholar]
- Cali, A.; Becnel, J.J.; Takvorian, P.M. Microsporidia. In Handbook of the Protists; Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O., Eds.; Springer International Publishing: Berlin, Germany, 2007; pp. 1559–1618. [Google Scholar]
- Goertz, D.; Solter, L.F.; Linde, A. Horizontal and vertical transmission of a Nosema sp. (Microsporidia) from Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 2007, 95, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.E. Vectors and vertical transmission: An epidemiologic perspective. Ann. N. Y. Acad. Sci. 1975, 266, 173–194. [Google Scholar] [CrossRef]
- Nakamura, H.; Hatakeyama, Y.; Arai, R.; Imura, Y.; Takahashi, M.; Iwano, H. Germination properties of spores on entomopathogenic microsporidia, Trachipleistophora haruka isolated from Spodoptera litura. J. Insect Biotechnol. Sericol. 2019, 88, 27–30. [Google Scholar]
- Xu, Y.; Weiss, L.M. The microsporidian polar tube: A highly specialised invasion organelle. Int. J. Parasitol. 2005, 35, 941–953. [Google Scholar] [CrossRef]
- Han, B.; Takvorian, P.M.; Weiss, L.M. Invasion of host cells by microsporidia. Front. Microbiol. 2020, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Undeen, A.H.; Avery, S.W. Germination of experimentally nontransmissible Microsporidia. J. Invertebr. Pathol. 1984, 43, 299–301. [Google Scholar] [CrossRef]
- Undeen, A.H.; Epsky, N.D. In vitro and in vivo germination of Nosema locustae (Microspora: Nosematidae) spores. J. Invertebr. Pathol. 1990, 56, 371–379. [Google Scholar] [CrossRef]
- Hashimoto, K.; Sasaki, Y.; Takinami, K. Conditions for extrusion of the polar filament of the spore of Plistophora anguillarum, a microsporidian parasite in Anguilla japonica. Bull. Jpn. Soc. Sci. Fish 1976, 42, 837–845, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Shigano, T.; Hatakeyama, Y.; Nishimoto, N.; Watanabe, M.; Yamamoto, Y.; Wijonarko, A.; Ohbayashi, T.; Iwano, H. Variety and diversity of microsporidia isolated from the common cutworm Spodoptera litura in Chichijima, Ogasawara Islands. J. Insect Biotechnol. Sericol. 2015, 84, 69–73. [Google Scholar]
- Nakamura, H.; Kurimoto, N.; Imura, Y.; Hatakeyama, Y. The first isolation of microsporidia from dragonflies in Japan. Jpn. J. Appl. Entomol. Zool. 2021, 65, 29–34, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Imura, Y.; Hatakeyama, Y.; Takahashi, M.; Ohbayashi, T.; Mizobe, S.; Iwano, H. A novel approach using microsporidia to estimate the flight route of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2019, 54, 185–192. [Google Scholar] [CrossRef]
- Iwano, H.; Ishihara, R. Temperature and effects of chemical stimuli to hatch of Nosema bombycis spores. J. Sericult. Sci. Jpn. 1979, 48, 142–146, (In Japanese with English Summary). [Google Scholar]
- Iwano, H.; Ishihara, R. Inhibitory effect of several chemicals against the hatch of Nosema bombycis spores. J. Sericult. Sci. Jpn. 1981, 50, 276–281, (In Japanese with English Summary). [Google Scholar]
- Fujiwara, T. Microsporidia from silkworm moths in egg-production sericulture. J. Seric. Sci. Jpn. 1985, 54, 108–111, (In Japanese with English Summary). [Google Scholar]
- Kawarabata, T. Biology of microsporidians infecting the silkworm, Bombyx mori, in Japan. J. Insect Biotechnol. Sericol. 2003, 72, 1–32. [Google Scholar]
- Dissanaike, A.S. Emergence of the sporoplasm in Nosema helminthorum. Nature 1955, 175, 1002–1003. [Google Scholar] [CrossRef]
- Undeen, A.H. A proposed mechanism for the germination of microsporidian (Protozoa: Microspora) spores. J. Theor. Biol. 1990, 142, 223–235. [Google Scholar] [CrossRef]
- Frixione, E.; Ruiz, L.; Santillán, M.; de Vargas, L.V.; Tejero, J.M.; Undeen, A.H. Dynamics of polar filament discharge and sporoplasm expulsion by microsporidian spores. Cell Motil. Cytoskeleton. 1992, 22, 38–50. [Google Scholar] [CrossRef]
- Malone, L.A. Factors controlling in vitro hatching of Vairimorpha plodiae (Microspora) spores and their infectivity to Plodia interpunctella, Heliothis virescens, and Pieris brassicae. J. Invertebr. Pathol. 1984, 44, 192–197. [Google Scholar] [CrossRef]
- Liu, H.; Chen, B.; Hu, S.; Liang, X.; Lu, X.; Shao, Y. Quantitative proteomic analysis of germination of Nosema bombycis spores under extremely alkaline conditions. Front. Microbiol. 2016, 7, 1459. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, D.C.; Masschelein, G.; Vandergeynst, F.; de Brabander, H.F.; Jacobs, F.J. In vitro germination of Nosema apis (Microspora: Nosematidae) spores and its effect on their αα-trehalose/d-glucose ratio. J. Invertebr. Pathol. 1993, 62, 220–225. [Google Scholar] [CrossRef]
- Whitlock, V.H.; Johnson, S. Stimuli for the in vitro germination and inhibition of Nosema locusta (Microspora: Nosematidae) spores. J. Invertebr. Pathol. 1990, 56, 57–62. [Google Scholar] [CrossRef]
- Cali, A.; Takvorian, P.M. Developmental morphology and life cycles of the Microsporidia. In MICROSPORIDIA: Pathogens of Opportunity; Weiss, L.M., Becnel, J.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; pp. 71–134. [Google Scholar]
- Undeen, A.H. The germination of Vavraia culicis spores. J. Protozool. 1983, 30, 274–277. [Google Scholar] [CrossRef]
- Malone, L.A. In vitro spore hatching of two microsporidia, Nosema costelytrae and Vavraia oncoperae, from New Zealand pasture insects. J. Invertebr. Pathol. 1990, 55, 441–443. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Becnel, J.; Weiss, L.M.; Keeling, P.J.; Didier, E.S.; Williams, B.P.; Bjornson, S.; Kent, M.; Freeman, M.A.; Brown, M.J.F.; et al. Microsporidia—Emergent pathogens in the global food chain. Trends Parasitol. 2016, 32, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Imura, Y.; Nakamura, H.; Nozawa, M.; Hatakeyama, Y. Latest status of silkworm-associated microsporidians via pébrine inspection revealed by phylogenetic analyses. J. Insect Biotechnol. Sericol. 2020, 89, 63–71. [Google Scholar]
Strain | Trachipleistophora sp. FOA-2014-10 | Vavraia sp. YGSL-2015-13 |
---|---|---|
Abbreviation | FOA | YGSL |
Spore size (µm) | 4.42 ± 0.28 × 2.35 ± 0.14 | 5.36 ± 0.40 × 2.91 ± 0.20 |
Isolation host | Orthetrum albistylum speciosum | Spodoptera litura |
Capture area | Kanagawa, Japan | Yamaguchi, Japan |
Capture year | 2014 | 2015 |
Reference | Nakamura et al. [13] | Imura et al. [14] |
Strain | Trachipleistophora sp. OSL-2012-10 | Nosema bombycis NIS-001 |
Abbreviation | OSL | NIS-001 |
Spore size (µm) | 4.54 ± 0.38 × 2.66 ± 0.22 | 3.6 × 2.2 |
Isolation host | Spodoptera litura | Bombyx mori |
Capture area | Tokyo (Ogasawara), Japan | — |
Capture year | 2012 | — |
Reference | Shigano et al. [12]; Nakamura et al. [6] | Fujiwara [17] |
Strain | Condition | Germination Rates (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
4 °C | 25 °C | ||||||||
1st | 2nd | 3rd | Mean | 1st | 2nd | 3rd | Mean | ||
Trachipleistophora sp. | DW | 0.0 (±0.9) | 0.0 (±1.3) | 6.1 (±0.4) | 2.0 (±2.0) | 8.3 (±3.9) | 1.3 (±0.9) | 2.8 (±1.3) | 4.1 (±2.1) |
FOA-2014-10 | NaCl | 4.7 (±1.9) | 1.1 (±1.1) | 3.0 (±0.6) | 2.9 (±1.0) | 52.9 (±2.3) | 28.6 (±1.3) | 22.2 (±1.6) | 34.6 (±9.4) |
KOH | 1.8 (±0.8) | 0.6 (±0.6) | 3.2 (±1.0) | 1.9 (±0.8) | 18.9 (±3.1) | 6.4 (±0.7) | 5.4 (±0.5) | 10.2 (±4.3) | |
KCl + H2O2 | 70.3 (±1.1) | 70.3 (±0.4) | 70.3 (±0.2) | 70.3 (±0.0) | 76.7 (±2.3) | 79.2 (±2.1) | 77.2 (±2.9) | 77.7 (±0.8) | |
Vavraia sp. | DW | 0.0 (±7.9) | 5.5 (±6.3) | 2.2 (±2.3) | 2.6 (±1.6) | 20.5 (±5.7) | 28.1 (±2.1) | 18.0 (±4.2) | 22.2 (±3.0) |
YGSL-2015-13 | NaCl | 9.5 (±2.7) | 10.1 (±4.7) | 0.0 (±4.1) | 6.5 (±3.3) | 55.6 (±5.1) | 50.2 (±6.7) | 38.8 (±5.2) | 48.2 (±5.0) |
KOH | 59.3 (±1.6) | 66.7 (±2.4) | 58.8 (±3.4) | 61.6 (±2.6) | 61.3 (±0.9) | 59.2 (±4.3) | 49.0 (±0.8) | 56.5 (±3.8) | |
KCl + H2O2 | 57.6 (±0.8) | 63.6 (±5.7) | 56.7 (±2.6) | 59.3 (±2.2) | 48.6 (±2.5) | 55.9 (±2.7) | 45.6 (±2.2) | 50.0 (±3.1) | |
Trachipleistophora sp. | DW | 20.2 (±0.8) | 0.0 (±5.2) | 14.0 (±2.3) | 11.4 (±6.0) | 20.3 (±3.1) | 15.1 (±1.5) | 0.0 (±2.7) | 11.8 (±6.1) |
OSL-2012-10 | NaCl | 20.5 (±0.7) | 15.3 (±1.7) | 7.0 (±2.4) | 14.3 (±3.9) | 31.9 (±4.1) | 30.6 (±5.8) | 30.4 (±3.6) | 31.0 (±0.5) |
KOH | 46.4 (±2.5) | 17.9 (±3.6) | 37.0 (±1.2) | 33.8 (±8.4) | 36.5 (±2.1) | 41.6 (±1.6) | 44.0 (±4.6) | 40.7 (±2.2) | |
KCl + H2O2 | 36.4 (±3.3) | 31.8 (±8.6) | 34.1 (±2.9) | 34.1 (±1.3) | 36.6 (±3.0) | 38.3 (±4.7) | 38.0 (±2.2) | 37.6 (±0.5) | |
N. bombycis | DW | 5.9 (±1.1) | 0 (±1.4) | 1.7 (±1.7) | 2.5 (±1.8) | 2.2 (±2.1) | 3.9 (±2.1) | 0 (±0.3) | 2.1 (±1.1) |
NIS-001 | NaCl | 6.9 (±1.2) | 3.5 (±0.5) | 5.9 (±0.6) | 5.4 (±1.0) | 1.2 (±1.2) | 3.6 (±1.4) | 0 (±0.5) | 1.6 (±1.1) |
KOH | 88.7 (±1.5) | 72.8 (±2.6) | 77.2 (±2.0) | 79.6 (±4.7) | 79.5 (±3.0) | 86.3 (±0.9) | 83.8 (±3.5) | 83.2 (±2.0) | |
KCl + H2O2 | 70.6 (±2.3) | 93.3 (±1.2) | 88.0 (±1.8) | 84.0 (±6.9) | 55.3 (±4.2) | 91.8 (±1.2) | 85.8 (±0.5) | 77.6 (±11.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imura, Y.; Nakamura, H.; Arai, R.; Hatakeyama, Y. Comparison of the Germination Conditions of Two Large-Spore Microsporidia Using Potassium and Sodium Ion Solutions. Insects 2023, 14, 185. https://doi.org/10.3390/insects14020185
Imura Y, Nakamura H, Arai R, Hatakeyama Y. Comparison of the Germination Conditions of Two Large-Spore Microsporidia Using Potassium and Sodium Ion Solutions. Insects. 2023; 14(2):185. https://doi.org/10.3390/insects14020185
Chicago/Turabian StyleImura, Yuji, Haruka Nakamura, Reina Arai, and Yoshinori Hatakeyama. 2023. "Comparison of the Germination Conditions of Two Large-Spore Microsporidia Using Potassium and Sodium Ion Solutions" Insects 14, no. 2: 185. https://doi.org/10.3390/insects14020185
APA StyleImura, Y., Nakamura, H., Arai, R., & Hatakeyama, Y. (2023). Comparison of the Germination Conditions of Two Large-Spore Microsporidia Using Potassium and Sodium Ion Solutions. Insects, 14(2), 185. https://doi.org/10.3390/insects14020185