Phylogenetic Implications of Mitogenomic Sequences and Gene Rearrangements of Scale Insects (Hemiptera, Coccoidea)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Genomic DNA Extraction
2.2. Mitogenome Sequencing and Assembly
2.3. Gene Annotation and Bioinformatic Analysis
2.4. Phylogenetic Analysis
2.5. Gene Rearrangement Analysis
3. Results
3.1. General Features and Nucleotide Composition
3.2. Protein-Coding Genes
3.3. Transfer and Ribosomal RNA Genes
3.4. Gene Rearrangements Analysis
3.5. Phylogenetic Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ScaleNet: A Literature-Based Model of Scale Insect Biology and Systematics|Database|Oxford Academic. Available online: https://academic.oup.com/database/article/doi/10.1093/database/bav118/2630093 (accessed on 26 November 2022).
- Gullan, P.J.; Kosztarab, M. Adaptations in Scale Insects. Annu. Rev. Entomol. 1997, 42, 23–50. [Google Scholar] [CrossRef]
- Gullan, P.J.; Martin, J.H. Sternorrhyncha (jumping plant-lice, whiteflies, aphids, and scale Insects). In Encyclopedia of Insects; Academic Press: Cambridge, MA, USA, 2003; pp. 1079–1089. [Google Scholar]
- Cook, L.G.; Gullan, P.J.; Trueman, H.E. A Preliminary Phylogeny of the Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea) Based on Nuclear Small-Subunit Ribosomal DNA. Mol. Phylogenet. Evol. 2002, 25, 43–52. [Google Scholar] [CrossRef]
- Gullan, P.J.; Cook, L.G. Phylogeny and Higher Classification of the Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea). Zootaxa 2007, 1668, 413–425. [Google Scholar] [CrossRef]
- Boratyński, K.; Davies, R.G. Taxonomic Value of Male Coccoidea (Homoptera) with an Evaluation of Some Numerical Techniques. Biol. J. Linn. Soc. 1971, 3, 57–102. [Google Scholar] [CrossRef]
- Hodgson, C.J. Preliminary Phylogeny of Some Non-Margarodid Coccoidea (Hemiptera) Based on Adult Male Characters. Boll Zool Agrar. Bachic. 2002, 33, 129–137. [Google Scholar]
- Hodgson, C.J.; Foldi, I. Preliminary Phylogenetic Analysis of the Margarodidae Sensu Morrison and Related Taxa (Hemiptera: Coccoidea) Based on Adult Male Morphology. In Proceedings of the X International Symposium of Scale Insect Studies, Adana, Turkey, 19–23 April 2004; pp. 35–47. [Google Scholar]
- Hodgson, C.; Foldi, I. A Review of the Margarodidae Sensu Morrison (Hemiptera: Coccoidea) and Some Related Taxa Based on the Morphology of Adult Males. Zootaxa 2006, 1263, 1–250. [Google Scholar] [CrossRef]
- Hodgson, C.J.; Hardy, N.B. The Phylogeny of the Superfamily Coccoidea (Hemiptera: Sternorrhyncha) Based on the Morphology of Extant and Extinct Macropterous Males: Phylogeny of Coccoidea via Macropterous Males. Syst. Entomol. 2013, 38, 794–804. [Google Scholar] [CrossRef]
- Vea, I.M.; Grimaldi, D.A. Putting Scales into Evolutionary Time: The Divergence of Major Scale Insect Lineages (Hemiptera) Predates the Radiation of Modern Angiosperm Hosts. Sci. Rep. 2016, 6, 23487. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Niu, M.; Lu, Y.; Wei, J.; Zhang, H. Taxon-Specific Ultraconserved Element Probe Design for Phylogenetic Analyses of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea). Front. Ecol. Evol. 2022, 10, 984396. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Li, H.; Jiang, P.; Zhou, X.; Liu, J.; Sun, C.; Vogler, A.P.; Cai, W. Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models. Genome Biol. Evol. 2016, 8, 1411–1426. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Garzón-Orduña, I.J.; Winterton, S.L.; Yan, Y.; Aspöck, U.; Aspöck, H.; Yang, D. Mitochondrial Phylogenomics Illuminates the Evolutionary History of Neuropterida. Cladistics 2017, 33, 617–636. [Google Scholar] [CrossRef] [PubMed]
- Kômoto, N.; Yukuhiro, K.; Tomita, S. Novel Gene Rearrangements in the Mitochondrial Genome of a Webspinner, Aposthonia Japonica (Insecta: Embioptera). Genome 2012, 55, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, H.; Winterton, S.L.; Liu, Z. Ancestral Gene Organization in the Mitochondrial Genome of Thyridosmylus Langii (McLachlan, 1870) (Neuroptera: Osmylidae) and Implications for Lacewing Evolution. PLoS ONE 2013, 8, e62943. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.; Babbucci, M.; Pauletto, M.; Riginella, E.; Patarnello, T.; Negrisolo, E. The Highly Rearranged Mitochondrial Genomes of the Crabs Maja Crispata and Maja Squinado (Majidae) and Gene Order Evolution in Brachyura. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.H.; Gan, H.M.; Lee, Y.P.; Linton, S.; Grandjean, F.; Bartholomei-Santos, M.L.; Miller, A.D.; Austin, C.M. ORDER within the Chaos: Insights into Phylogenetic Relationships within the Anomura (Crustacea: Decapoda) from Mitochondrial Sequences and Gene Order Rearrangements. Mol. Phylogenet. Evol. 2018, 127, 320–331. [Google Scholar] [CrossRef]
- Song, F.; Li, H.; Liu, G.-H.; Wang, W.; James, P.; Colwell, D.D.; Tran, A.; Gong, S.; Cai, W.; Shao, R. Mitochondrial Genome Fragmentation Unites the Parasitic Lice of Eutherian Mammals. Syst. Biol. 2018, 68, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Lu, C.; Huang, X. The First Mitochondrial Genome of Scale Insects (Hemiptera: Coccoidea). Mitochondrial DNA Part B 2019, 4, 2094–2095. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Huang, X.; Deng, J. The Challenge of Coccidae (Hemiptera: Coccoidea) Mitochondrial Genomes: The Case of Saissetia Coffeae with Novel Truncated TRNAs and Gene Rearrangements. Int. J. Biol. Macromol. 2020, 158, 854–864. [Google Scholar] [CrossRef]
- Liu, H.-L.; Chen, Q.-D.; Chen, S.; Pu, D.-Q.; Chen, Z.-T.; Liu, Y.-Y.; Liu, X. The Highly Rearranged Mitochondrial Genomes of Three Economically Important Scale Insects and the Mitochondrial Phylogeny of Coccoidea (Hemiptera: Sternorrhyncha). PeerJ 2020, 8, e9932. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, X.; Li, H.; Wu, S. The Mitogenome of the Scale Insect Didesmococcus Koreanus Borchsenius, 1955 (Coccoidea: Coccidae). Mitochondrial DNA Part B 2021, 6, 1298–1299. [Google Scholar] [CrossRef]
- Deng, J.; Wang, G.; Lu, C.; Zhang, J.T.; Huang, X. Sequencing and Analysis of the Complete Mitochondrial Genome of Aclerda Takahashii (Hemiptera: Aclerdidae). Acta Entomol. Sin. 2022, 65, 451–459. [Google Scholar]
- Xu, H.; Wu, S. Parasitized Wasp Mitogenomes Mistaken for Scale Insect Host Mitogenome Sequences. Entomotaxonomia 2022, 44, 24–29. [Google Scholar]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo Assembler for Single-Cell and Metagenomic Sequencing Data with Highly Uneven Depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Buckley, T.R.; Frati, F.; Stewart, J.B.; Beckenbach, A.T. Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 545–579. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved Annotation of Protein-Coding Genes Boundaries in Metazoan Mitochondrial Genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN: A Program to Detect TRNA Genes in Metazoan Mitochondrial Nucleotide Sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Talavera, G.; Castresana, J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Kück, P.; Meid, S.A.; Groß, C.; Wägele, J.W.; Misof, B. AliGROOVE—Visualization of Heterogeneous Sequence Divergence within Multiple Sequence Alignments and Detection of Inflated Branch Support. BMC Bioinformatics 2014, 15, 294. [Google Scholar] [CrossRef] [PubMed]
- Lartillot, N.; Rodrigue, N.; Stubbs, D.; Richer, J. PhyloBayes MPI: Phylogenetic Reconstruction with Infinite Mixtures of Profiles in a Parallel Environment. Syst. Biol. 2013, 62, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shao, R.; Song, N.; Song, F.; Jiang, P.; Li, Z.; Cai, W. Higher-Level Phylogeny of Paraneopteran Insects Inferred from Mitochondrial Genome Sequences. Sci. Rep. 2015, 5, 8527. [Google Scholar] [CrossRef]
- Li, H.; Leavengood, J.M.; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.; Cai, W. Mitochondrial Phylogenomics of Hemiptera Reveals Adaptive Innovations Driving the Diversification of True Bugs. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171223. [Google Scholar] [CrossRef] [PubMed]
- Perseke, M.; Fritzsch, G.; Ramsch, K.; Bernt, M.; Merkle, D.; Middendorf, M.; Bernhard, D.; Stadler, P.F.; Schlegel, M. Evolution of Mitochondrial Gene Orders in Echinoderms. Mol. Phylogenet. Evol. 2008, 47, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Hershberg, R.; Petrov, D.A. Selection on Codon Bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but Not the Same: The Causes and Consequences of Codon Bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef]
- Nei, M.; Gojobori, T. Simple Methods for Estimating the Numbers of Synonymous and Nonsynonymous Nucleotide Substitutions. Mol. Biol. Evol. 1986, 3, 418–426. [Google Scholar]
- Hurst, L.D. The Ka/Ks Ratio: Diagnosing the Form of Sequence Evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.P.; Dietrich, C.H.; Friedrich, F.; Beutel, R.G.; Wipfler, B.; Peters, R.S.; Allen, J.M.; Petersen, M.; Donath, A.; Walden, K.K.O.; et al. Phylogenomics and the Evolution of Hemipteroid Insects. Proc. Natl. Acad. Sci. USA 2018, 115, 12775–12780. [Google Scholar] [CrossRef]
- Drohojowska, J.; Szwedo, J.; Żyła, D.; Huang, D.-Y.; Müller, P. Fossils Reshape the Sternorrhyncha Evolutionary Tree (Insecta, Hemiptera). Sci. Rep. 2020, 10, 11390. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R. Phylogeny and Classification of the Margarodidae and Related Groups (Homoptera: Coccoidea). In Proceedings of the 10th International Symposium of Central European Entomofaunistics, Budapest, Hungary, 15–20 August 1984; pp. 321–324. [Google Scholar]
- Hodgson, C.J. 1.1.3.4. Classification of the coccidae and related coccoid families. In World Crop Pests; Elsevier: Amsterdam, The Netherlands, 1997; Volume 7, pp. 157–201. ISBN 978-0-444-89303-1. [Google Scholar]
- Fernald, M.E. A Catalogue of the Coccidae of the World. Bull. Hatch Agric. Exp. Stn. Mass. Agric. Coll. 1903, 88, 1–360. [Google Scholar]
- Balachowsky, A.S. Essai Sur La Classification Des Cochenilles: Homoptera Coccoidea. Ann. Grignon Ecole Natl. Agric. Ser. 3 1943, 3, 34–48. [Google Scholar]
- Choi, J.; Lee, S. Molecular Phylogeny of the Family Coccidae (Hemiptera, Coccomorpha), with a Discussion of Their Waxy Ovisacs. Syst. Entomol. 2020, 45, 396–414. [Google Scholar] [CrossRef]
Family | Species | Locatlity | Date | Collector | Voucher Number |
---|---|---|---|---|---|
Cerococcidae | Antecerococcus theydoni (Hall, 1935) | Longlin County, Guangxi, China | 5 May 2017 | Jiangtao Zhang & Ming Zhao | BFU2017050503 |
Coccidae | Ceroplastes japonicus Green, 1921 | Mingguang, Anhui, China | 6 October 2015 | Hu Li | BFU2015100601 |
Eriococcidae | Apiomorpha munita (Schrader, 1863) | Red Rock Gorge, Tuggeranong, Australia | 22 January 2012 | Xiaobei Wang | BFU2012012212 |
Acanthococcus coriaceus (Maskell, 1893) | Dutton Park, Queensland, Australia | 19 July 2013 | Xiaobei Wang | BFU2013071900 | |
Kerriidae | Albotachaedina sinensis Zhang, 1992 | Tea Horse ancient town, Pu’er, Yunnan, China | 19 June 2017 | Xu Wang | BFU2017061904 |
Aclerdidae | Nipponaclerda biwakoensis (Kuwana, 1907) | Haidian, Beijing, China | 20 January 2018 | San-an Wu | BFU2018012001 |
Suborder | Superfamily/Family | Species | GenBank Accession Number |
---|---|---|---|
Auchenorrhyncha | Cercopidae | Callitettix braconoides | NC_025497 |
Cicadidae | Platypleura kaempferi | KY039114 | |
Cicadellidae | Japanagallia spinosa | NC_035685 | |
Membracidae | Lycorma delicatula | NC_012835 | |
Sternorrhyncha | Aleyrodidea | Aleurocanthus camelliae | KU761949 |
Aleurochiton aceris | NC_006160 | ||
Aleurodicus dugesii | NC_005939 | ||
Bemisia afer | NC_024056 | ||
Neomaskellia andropogonis | NC_006159 | ||
Tetraleurodes acaciae | NC_006292 | ||
Trialeurodes vaporariorum | NC_006280 | ||
Aphidoidea | Acyrthosiphon pisum | NC_011594 | |
Aphis craccivora | NC_031387 | ||
Aphis gossypii | NC_024581 | ||
Cavariella salicicola | NC_022682 | ||
Cervaphis quercus | NC_024926 | ||
Diuraphis noxia | NC_022727 | ||
Eriosoma lanigerum | NC_033352 | ||
Hormaphis betulae | NC_029495 | ||
Melaphis rhois | NC_036065 | ||
Mindarus keteleerifoliae | NC_033410 | ||
Myzus persicae | NC_029727 | ||
Schizaphis graminum | NC_006158 | ||
Schlechtendalia chinensis | NC_032386 | ||
Sitobion avenae | NC_024683 | ||
Coccoidea | Acanthococcus coriaceus | OP351525 | |
Aclerda takahashii | MW8395575 | ||
Albotachaedina sinensis | OP351521 | ||
Antecerococcus theydoni | OP351522 | ||
Apiomorpha munita | OP351523 | ||
Ceroplastes floridensis | OK040657 | ||
Ceroplastes japonicus | OP351524 | ||
Didesmococcus koreanus | MW302211 | ||
Nipponaclerda biwakoensis | OP351526 | ||
Parasaissetia nigra | OK040656 | ||
Phenacoccus manihoti | MZ958983 | ||
Saissetia coffeae | MN863803 | ||
Psylloidea | Cacopsylla coccinea | NC_027087 | |
Diaphorina citri | NC_030214 | ||
Paratrioza sinica | NC_024577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liu, X.; Wang, P.; Li, H.; Wu, S.-a. Phylogenetic Implications of Mitogenomic Sequences and Gene Rearrangements of Scale Insects (Hemiptera, Coccoidea). Insects 2023, 14, 257. https://doi.org/10.3390/insects14030257
Xu H, Liu X, Wang P, Li H, Wu S-a. Phylogenetic Implications of Mitogenomic Sequences and Gene Rearrangements of Scale Insects (Hemiptera, Coccoidea). Insects. 2023; 14(3):257. https://doi.org/10.3390/insects14030257
Chicago/Turabian StyleXu, Han, Xiaochen Liu, Pei Wang, Hu Li, and San-an Wu. 2023. "Phylogenetic Implications of Mitogenomic Sequences and Gene Rearrangements of Scale Insects (Hemiptera, Coccoidea)" Insects 14, no. 3: 257. https://doi.org/10.3390/insects14030257
APA StyleXu, H., Liu, X., Wang, P., Li, H., & Wu, S. -a. (2023). Phylogenetic Implications of Mitogenomic Sequences and Gene Rearrangements of Scale Insects (Hemiptera, Coccoidea). Insects, 14(3), 257. https://doi.org/10.3390/insects14030257