Spatial Distribution and Long-Term Persistence of Wolbachia-Infected Aedes aegypti in the Mentari Court, Malaysia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Geospatial Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S.B. Is dengue vaccine protection possible? Clin. Infect. Dis. 2022, 74, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Rasli, R.; Cheong, Y.L.; Khairuddin Che Ibrahim, M.; Fikri, S.F.F.; Norzali, R.N.; Nazarudin, N.A.; Hamdan, N.F.; Muhamed, K.A.; Hafisool, A.A.; Azmi, R.A.; et al. Insecticide resistance in dengue vectors from hotspots in Selangor, Malaysia. PLoS Negl. Trop. Dis. 2021, 15, e0009205. [Google Scholar] [CrossRef]
- Amelia-Yap, Z.H.; Chen, C.D.; Sofian-Azirun, M.; Low, V.L. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasites Vectors 2018, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- LePage, D.; Bordenstein, S.R. Wolbachia: Can we save lives with a great pandemic? Trends Parasitol. 2013, 29, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.C.; Consortium, P.W.-S. Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics. Medrxiv 2021. preprint. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Beebe, N.W.; Pagendam, D.; Trewin, B.J.; Boomer, A.; Bradford, M.; Ford, A.; Liddington, C.; Bondarenco, A.; De Barro, P.J.; Gilchrist, J.; et al. Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia. Proc. Natl. Acad. Sci. USA 2021, 118, e2106828118. [Google Scholar] [CrossRef]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S.; et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.A. Facilitating Wolbachia invasions. Austral. Entomol. 2014, 53, 125–132. [Google Scholar] [CrossRef]
- Schmidt, T.L.; Barton, N.H.; Rašić, G.; Turley, A.P.; Montgomery, B.L.; Iturbe-Ormaetxe, I.; Cook, P.E.; Ryan, P.A.; Ritchie, S.A.; Hoffmann, A.A.; et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 2017, 15, e2001894. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.B.; Riback, T.I.S.; Sylvestre, G.; Costa, G.; Peixoto, J.; Dias, F.B.S.; Tanamas, S.K.; Simmons, C.P.; Dufault, S.M.; Ryan, P.A.; et al. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other aedes-borne diseases in Niterói, brazil: A quasi-experimental study. PLoS Negl. Trop. Dis. 2021, 15, e0009556. [Google Scholar] [CrossRef] [PubMed]
- Tantowijoyo, W.; Andari, B.; Arguni, E.; Budiwati, N.; Nurhayati, I.; Fitriana, I.; Ernesia, I.; Daniwijaya, E.W.; Supriyati, E.; Yusdiana, D.H.; et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 2020, 14, e0008157. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Nguyen, H.L.; Nguyen, T.Y.; Vu, S.N.; Tran, N.D.; Le, T.N.; Vien, Q.M.; Bui, T.C.; Le, H.T.; Kutcher, S.; et al. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasites Vectors 2015, 8, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazni, W.A.; Hoffmann, A.A.; NoorAfizah, A.; Cheong, Y.L.; Mancini, M.V.; Golding, N.; Kamarul, G.M.R.; Arif, M.A.K.; Thohir, H.; NurSyamimi, H.; et al. Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control. Curr. Biol. 2019, 29, 4241–4248.e5. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.A.; Turelli, M.; Hoffmann, A.A. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 2019, 53, 93. [Google Scholar] [CrossRef]
- Turelli, M.; Barton, N.H. Deploying dengue-suppressing Wolbachia: Robust models predict slow but effective spatial spread in Aedes aegypti. Theor. Popul. Biol. 2017, 115, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.A.; White, V.L.; Callahan, A.G.; Godfray, C.H.J.; Hoffmann, A.A.; Ritchie, S.A. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. J. Appl. Ecol. 2016, 53, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.A.; Godfray, H.C.J. Modelling the spread of Wolbachia in spatially heterogeneous environments. J. R. Soc. Interface 2012, 9, 3045–3054. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.A.; Mancini, M.-V.; Ant, T.H.; Martinez, J.; Kamarul, G.M.R.; Nazni, W.A.; Hoffmann, A.A.; Sinkins, S.P. Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2021, 376, 20190809. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.M.; Chua, T.H.; Sulaiman, W.-Y.; Joanne, S.; Lim, Y.A.-L.; Sekaran, S.D.; Chinna, K.; Venugopalan, B.; Vythilingam, I. A new paradigm for Aedes spp. surveillance using gravid ovipositing sticky trap and NS1 antigen test kit. Parasites. Vectors 2017, 10, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, D.S.; Meitika, Y.; Ernesia, I.; et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Jasper, M.; Schmidt, T.L.; Ahmad, N.W.; Sinkins, S.P.; Hoffmann, A.A. A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Mol. Ecol. Resour. 2019, 19, 1254–1264. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.W.; Chen, C.D.; Lee, H.L.; Izzul, A.A.; Asri-Isa, M.; Zulfadli, M.; Sofian-Azirun, M. Vertical distribution of Aedes mosquitoes in multiple storey buildings in Selangor and Kuala Lumpur, Malaysia. Trop. Biomed. 2013, 30, 36–45. [Google Scholar]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–459. [Google Scholar] [CrossRef]
- Tantowijoyo, W.; Arguni, E.; Johnson, P.; Budiwati, N.; Nurhayati, P.I.; Fitriana, I.; Wardana, S.; Ardiansyah, H.; Turley, A.P.; Ryan, P.; et al. Spatial and temporal variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta area of Java, Indonesia, with implications for Wolbachia releases. J. Med. Entomol. 2016, 53, 188–198. [Google Scholar] [CrossRef]
- Farjana, T.; Tuno, N.; Higa, Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med. Vet. Entomol. 2012, 26, 210–217. [Google Scholar] [CrossRef]
- Lima-Camara, T.N.; Codeço, C.T.; Honório, N.A.; Bruno, R.V.; Peixoto, A.A.; Lounibos, L.P. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females. Mem. Inst. Oswaldo Cruz 2013, 108 (Suppl. S1), 18–25. [Google Scholar] [CrossRef]
- Tantowijoyo, W.; Tanamas, S.K.; Nurhayati, I.; Setyawan, S.; Budiwati, N.; Fitriana, I.; Ernesia, I.; Wardana, D.S.; Supriyati, E.; Arguni, E. Aedes aegypti abundance and insecticide resistance profiles in the applying Wolbachia to eliminate dengue trial. PLoS Negl. Trop. Dis. 2022, 16, e0010284. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Goundar, A.A.; Long, S.A.; Johnson, P.H.; Ritchie, S.A. Invasion of Wolbachia at the residential block level is associated with local abundance of Stegomyia aegypti, yellow fever mosquito, populations and property attributes. Med. Vet. Entomol. 2014, 28, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Roslan, M.A.; Shafie, A.; Ngui, R.; Lim, Y.A.L.; Sulaiman, W.Y.W. Vertical infestation of the dengue vectors Aedes aegypti and Aedes albopictus in apartments in Kuala Lumpur, Malaysia. J. Am. Mosq. Control Assoc. 2013, 29, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.L.; Rohani, A.; Khadri, M.S.; Nazni, W.A.; Rozilawati, H.; Nurulhusna, A.H.; AH, N.A.; Roziah, A.; Rosilawati, R.; Teh, C.H. Dengue vector control in Malaysia-challenges and recent advances. IIUM Med. J. Malays. 2015, 14, 11–16. [Google Scholar] [CrossRef]
- Nazni, W.A.; Teoh, G.N.; Oreenaiza, N.; Farah, H.; Suhana, O.; Chandru, A.; Khairul, M.; Asuad, A.; Azman, M.; Topek, O. Field effectiveness of Auto-dissemination trap with Pyriproxifen against container-breeding Aedes in high-rise condominia. Southeast Asian J. Trop. Med. Public Health 2020, 51, 937–952. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, Y.L.; Nazni, W.A.; Lee, H.L.; NoorAfizah, A.; MohdKhairuddin, I.C.; Kamarul, G.M.R.; Nizam, N.M.N.; Arif, M.A.K.; NurZatilAqmar, Z.M.; Irwan, S.M.; et al. Spatial Distribution and Long-Term Persistence of Wolbachia-Infected Aedes aegypti in the Mentari Court, Malaysia. Insects 2023, 14, 373. https://doi.org/10.3390/insects14040373
Cheong YL, Nazni WA, Lee HL, NoorAfizah A, MohdKhairuddin IC, Kamarul GMR, Nizam NMN, Arif MAK, NurZatilAqmar ZM, Irwan SM, et al. Spatial Distribution and Long-Term Persistence of Wolbachia-Infected Aedes aegypti in the Mentari Court, Malaysia. Insects. 2023; 14(4):373. https://doi.org/10.3390/insects14040373
Chicago/Turabian StyleCheong, Yoon Ling, Wasi A. Nazni, Han Lim Lee, Ahmad NoorAfizah, Ibrahim C. MohdKhairuddin, Ghazali M. R. Kamarul, Nasir M. N. Nizam, Mohd A. K. Arif, Zabari M. NurZatilAqmar, Saidin M. Irwan, and et al. 2023. "Spatial Distribution and Long-Term Persistence of Wolbachia-Infected Aedes aegypti in the Mentari Court, Malaysia" Insects 14, no. 4: 373. https://doi.org/10.3390/insects14040373
APA StyleCheong, Y. L., Nazni, W. A., Lee, H. L., NoorAfizah, A., MohdKhairuddin, I. C., Kamarul, G. M. R., Nizam, N. M. N., Arif, M. A. K., NurZatilAqmar, Z. M., Irwan, S. M., Khadijah, K., Paid, Y. M., Topek, O., Hasnor, A. H., AbuBakar, R., Singh Gill, B., Fadzilah, K., Tahir, A., Sinkins, S. P., & Hoffmann, A. A. (2023). Spatial Distribution and Long-Term Persistence of Wolbachia-Infected Aedes aegypti in the Mentari Court, Malaysia. Insects, 14(4), 373. https://doi.org/10.3390/insects14040373