Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Insects
2.3. General Procedure for the Synthesis of SOP-1
2.4. General Procedure for the Synthesis of SOP-2
2.5. General Procedure for the Synthesis of SOP-2a-SOP-2r
2.6. General Procedure for the Synthesis of SOP-3
2.7. General Procedure for the Synthesis of SOP-3a-SOP-3g
2.8. Bioassay
2.8.1. Insecticidal Tests for Larvae of Ae. albopictus
2.8.2. Insecticidal Tests for Female Mosquitoes of Ae. albopictus
2.8.3. Effects on the Growth Cycle of Ae. albopictus Fourth-Instar Larvae
Effects on the Emergence of Ae. albopictus Larvae
Effects on the Fertility of Female Adult Mosquitoes of Ae. albopictus
2.8.4. Inhibitory Activity of Compounds against Larval Enzyme
2.8.5. Observation of Morphological Changes in Dead Larvae
3. Results and Discussion
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Insecticidal Tests for Larval and Female Mosquitoes
3.2.2. Dose–Response Curves on Ae. albopictus Larvae
3.3. Effects of Sophoridine on the Partial Life Cycle of Ae. albopictus
3.3.1. Effects on the Emergence of Ae. albopictus Larvae
3.3.2. Effects on the Fertility of Female Adult Ae. albopictus Mosquitoes
3.4. SARs
3.5. Inhibitory Activity of Compounds against AChE
3.6. Observation of Morphological Changes in Dead Larvae
3.6.1. Observation of Larval Intestinal Cavity
3.6.2. Observation of Larval Caudal Gill
3.6.3. Observation of Larval Tail
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, A.S.; Ramesh, R.; Walia, S.; Sayyad, S.I.; Gathalkar, G.B.; Balamkundu, S.; Joshi, M.; Sen, A.; Reddy, D.S. Identification of a Novel Series of Potent Organosilicon Mosquito Repellents. ACS Omega 2021, 6, 31236–31243. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tang, X.; Jian, R.; Li, J.; Lin, M.; Dai, H.; Wang, K.; Sheng, Z.; Chen, B.; Xu, X.; et al. Chemical Composition, Antimicrobial and Insecticidal Activities of Essential Oils of Discarded Perfume Lemon and Leaves (Citrus limon (L.) Burm. F.) as Possible Sources of Functional Botanical Agents. Front. Chem. 2021, 9, 679116. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, X.; Chen, B.; Zheng, W.; Yan, Z.; Zhang, Z.; Li, J.; Su, K.; Ang, S.; Wu, R.; et al. Chemical compositions and anti-mosquito activity of essential oils from Pericarpium Citri Reticulataes of different aging years. Ind. Crops Prod. 2022, 188, 115701. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, C.T.; Yang, J.; Joyce, L.A.; Qiu, M.; Ward, M.D.; Kahr, B. Manipulating Solid Forms of Contact Insecticides for Infectious Disease Prevention. J. Am. Chem. Soc. 2019, 141, 16858–16864. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Shaw, V.; Mukherjee, P.; Ghosh, S.; Banerjee, P.K. Development of Plant-Based Larvicide and Herbal Mosquito Repellent Fast Card with Reference to Identification of the Functional Bioactive Compounds Effective Against Culex Mosquito. Appl. Biochem. Biotechnol. 2022, 194, 2419–2430. [Google Scholar] [CrossRef]
- World Health Organization. High Burden to High Impact: A Targeted Malaria Response; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Kajla, M.K. Symbiotic Bacteria as Potential Agents for Mosquito Control. Trends Parasitol. 2019, 36, 4–7. [Google Scholar] [CrossRef]
- Rivero, A.; Vezilier, J.; Weill, M.; Read, A.F.; Gandon, S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathog. 2010, 6, e1001000. [Google Scholar] [CrossRef]
- Rose, R. Pesticides and Public Health: Integrated Methods of Mosquito Management. Emerg. Infect. Dis. 2001, 7, 17–23. [Google Scholar] [CrossRef]
- Barbosa, S.; Kay, K.; Chitnis, N.; Hastings, I.M. Modelling the impact of insecticide-based control interventions on the evolution of insecticide resistance and disease transmission. Parasites Vectors 2018, 11, 482. [Google Scholar] [CrossRef]
- Richoux, G.M.; Yang, L.; Norris, E.; Jiang, S.; Linthicum, K.J.; Bloomquist, J.R. Resistance-Breaking Insecticidal Activity of New Spatial Insecticides against Aedes aegypti. J. Agric. Food Chem. 2021, 69, 9684–9692. [Google Scholar] [CrossRef]
- Singh, A.; Sheikh, J. Development of multifunctional polyester using disperse dyes based through a combination of mosquito repellents. J. Mol. Struct. 2021, 1232, 129988. [Google Scholar] [CrossRef]
- Toutant, J.-P. Insect acetylcholinesterase: Catalytic properties, tissue distribution and molecular forms. Prog. Neurobiol. 1989, 32, 423–446. [Google Scholar] [CrossRef]
- Knutsson, S.; Engdahl, C.; Kumari, R.; Forsgren, N.; Lindgren, C.; Kindahl, T.; Kitur, S.; Wachira, L.; Kamau, L.; Ekström, F.J.; et al. Noncovalent Inhibitors of Mosquito Acetylcholinesterase 1 with Resistance-Breaking Potency. J. Med. Chem. 2018, 61, 10545–10557. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annu. Rev. Èntomol. 2013, 58, 99–117. [Google Scholar] [CrossRef]
- Knutsson, S.; Kindahl, T.; Engdahl, C.; Nikjoo, D.; Forsgren, N.; Kitur, S.; Ekström, F.; Kamau, L.; Linusson, A. N-Aryl-N’-ethyleneaminothioureas effectively inhibit acetylcholinesterase 1 from disease-transmitting mosquitoes. Eur. J. Med. Chem. 2017, 134, 415–427. [Google Scholar] [CrossRef]
- Lee, S.-E.; Park, B.-S.; Kim, M.-K.; Choi, W.-S.; Kim, H.-T.; Cho, K.-Y.; Lee, S.-G.; Lee, H.-S. Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi. Crops Prot. 2001, 20, 523–528. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Al-Zharani, M.; Al-Eissa, M.S.; Rudayni, H.A.; Ali, D.; Alarifi, S.; SurendraKumar, R.; Idhayadhulla, A. Mosquito larvicidal activity of pyrrolidine-2,4-dione derivatives: An investigation against Culex quinquefasciatus and molecular docking studies. Saudi J. Biol. Sci. 2021, 29, 2389–2395. [Google Scholar] [CrossRef]
- Gabiane, G.; Yen, P.; Failloux, A. Aedes mosquitoes in the emerging threat of urban yellow fever transmission. Rev. Med. Virol. 2022, 32, e2333. [Google Scholar] [CrossRef]
- Isman, M.B. Bioinsecticides based on plant essential oils: A short overview. Z. Naturforsch. C. J. Biosci. 2020, 75, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.-H.; Jovel, E.; Isman, M.B. Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J. Pest Sci. 2015, 89, 183–193. [Google Scholar] [CrossRef]
- Isman, M. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Tan, C.-J.; Zhao, Y.; Goto, M.; Hsieh, K.-Y.; Yang, X.-M.; Morris-Natschke, S.L.; Liu, L.-N.; Zhao, B.-Y.; Lee, K.-H. Alkaloids from Oxytropis ochrocephala and antiproliferative activity of sophoridine derivatives against cancer cell lines. Bioorganic Med. Chem. Lett. 2016, 26, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- Han, F.M.; Zhu, M.M.; Chen, H.X.; Chen, Y. Identification of Sophoridine and Its Metabolites in Rat Urine by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Lett. 2009, 43, 45–54. [Google Scholar] [CrossRef]
- Wang, W.X.; Wang, K.; Xu, J.M.; Zhou, L.G. Antinematodal activity of the alkaloids from Pinellia ternata and Sophora alopecuroides. Nat. Prod. Res. Dev. 2016, 28, 719–723. [Google Scholar]
- Luo, Y.-P.; Zhang, Y.; Zhang, H.-M.; Zhang, H.; Zhang, L.; Yu, H.-J.; Cao, M.-Q.; Shi, Y.-B.; Zhi, D.-J.; Ma, X.-M.; et al. Anti-parasitic effects of water-soluble alkaloid fractions from ethanolic extracts of Sophora moorcroftiana seeds in Caenorhabditis elegans. Chin. J. Nat. Med. 2018, 16, 665–673. [Google Scholar] [CrossRef]
- Ma, T.; Yan, H.; Shi, X.; Liu, B.; Ma, Z.; Zhang, X. Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy. Ind. Crop. Prod. 2018, 111, 149–157. [Google Scholar] [CrossRef]
- Mao, L.; Henderson, G. Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2007, 100, 866–870. [Google Scholar] [CrossRef]
- Huang, J.-L.; Lv, M.; Xu, H. Semisynthesis of some matrine ether derivatives as insecticidal agents. RSC Adv. 2017, 7, 15997–16004. [Google Scholar] [CrossRef]
- Li, Q.; Huang, X.B.; Li, S.C.; Ma, J.C.; Lv, M.; Xu, H. Semisynthesis of esters of fraxinellone C4/10-oxime and their pesticidal activities. J. Agric. Food Chem. 2016, 64, 5472–5478. [Google Scholar] [CrossRef]
- Li, S.; Sun, Z.; Zhang, B.; Lv, M.; Xu, H. Non-food bioactive products: Semisynthesis, biological activities, and mechanisms of action of oximinoether derivatives of matrine from Sophora flavescens. Ind. Crops Prod. 2019, 131, 134–141. [Google Scholar] [CrossRef]
- Xu, H.; Xu, M.; Sun, Z.; Li, S. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinus. J. Agric. Food Chem. 2019, 67, 12182–12190. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Zhang, D.; Guan, X.; Gao, S.; Chen, Z.; Zou, X. Design, Synthesis, and Insecticidal Activities of Novel Monohalovinylated Pyrethroids. J. Agric. Food Chem. 2011, 59, 1171–1177. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Efficacy Testing of Insecticides for Indoor and Outdoor Ground-Applied Space Spray Applications; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Zhu, Q.; Yang, Y.; Lao, Z.; Zhong, Y.; Zhang, B.; Cui, X.; O’Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Synthesis, insecticidal activities and resistance in Aedes albopictus and cytotoxicity of novel dihaloacetylated heterocyclic pyrethroids. Pest Manag. Sci. 2019, 76, 636–644. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Giordani, C.; Casettari, L.; Curzi, G.; Cappellacci, L.; Petrelli, R.; Maggi, F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018, 112, 668–680. [Google Scholar] [CrossRef]
- Thanigaivel, A.; Chanthini, K.M.-P.; Karthi, S.; Vasantha-Srinivasan, P.; Ponsankar, A.; Sivanesh, H.; Stanley-Raja, V.; Shyam-Sundar, N.; Narayanan, K.R.; Senthil-Nathan, S. Toxic effect of essential oil and its compounds isolated from Sphaeranthus amaranthoides Burm. f. against dengue mosquito vector Aedes aegypti Linn. Pestic. Biochem. Physiol. 2019, 160, 163–170. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Shi, L.; Xu, Z.; He, L. Resistance selection and biochemical mechanism of resistance against cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pestic. Biochem. Physiol. 2014, 111, 24–30. [Google Scholar] [CrossRef]
- Anziani, O.S.; Guglielmone, A.A.; Aguirre, D.H. Larvicidal Activity of Abamectin against Natural Cochliomyia hominivorax Larva Infestation. Ann. NY Acad. Sci. 1996, 791, 443–444. [Google Scholar] [CrossRef]
- Vessally, E.; Saeidian, H.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A. A Review on Synthetic Applications of Oxime Esters. Curr. Org. Chem. 2016, 21, 249–271. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, J.; Jin, S.; Zhang, J. Synthesis and insecticidal activities of 5-deoxyavermectin B2a oxime ester derivatives. RSC Adv. 2018, 8, 3774–3781. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, S.; Lv, M.; Li, T.; Hao, M.; Zhang, S.; Xu, H. Non-food bioactive products for insecticides (II): Insights into agricultural activities of matrine-type alkaloid analogs as botanical pesticides. Ind. Crops Prod. 2020, 154, 112759. [Google Scholar] [CrossRef]
- Shao, Q.; Yang, B.; Xu, Q.; Li, X.; Lu, Z.; Wang, C.; Huang, Y.; Söderhäll, K.; Ling, E. Hindgut Innate Immunity and Regulation of Fecal Microbiota through Melanization in Insects. J. Biol. Chem. 2012, 287, 14270–14279. [Google Scholar] [CrossRef]
- Fujiwara, G.M.; Annies, V.; de Oliveira, C.F.; Lara, R.A.; Gabriel, M.M.; Betim, F.C.; Nadal, J.M.; Farago, P.V.; Dias, J.F.; Miguel, O.G.; et al. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol. Environ. Saf. 2017, 139, 238–244. [Google Scholar] [CrossRef]
- Chaithong, U.; Choochote, W.; Kamsuk, K.; Jitpakdi, A.; Tippawangkosol, P.; Chaiyasit, D.; Champakaew, D.; Tuetun, B.; Pitasawat, B. Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J. Vector Ecol. 2006, 31, 138–144. [Google Scholar] [CrossRef]
- Procópio, T.F.; Fernandes, K.M.; Pontual, E.V.; Ximenes, R.M.; de Oliveira, A.R.C.; Souza, C.D.S.; Melo, A.M.M.D.A.; Navarro, D.M.D.A.F.; Paiva, P.M.G.; Martins, G.F.; et al. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae. PLoS ONE 2015, 10, e0126612. [Google Scholar] [CrossRef]
Compound | R1 | Mortality ± SD † | Compound | R1 | Mortality ± SD † |
---|---|---|---|---|---|
SOP | - | 10.00 ± 2.25% | SOP-1 | - | 14.23 ± 1.18% |
SOP-2 | - | 100.00 ± 0.00% | SOP-3 | - | 85.33 ± 1.02% |
SOP-2a | 15.33 ± 3.48% | SOP-2m | 18.33 ± 4.08% | ||
SOP-2b | 20.00 ± 6.12% | SOP-2n | 13.00 ± 0.00% | ||
SOP-2c | 12.15 ± 3.50% | SOP-2o | 10.00% ± 3.12% | ||
SOP-2d | 15.33 ± 4.85% | SOP-2p | 15.00 ± 2.23% | ||
SOP-2e | 20.00 ± 0.00% | SOP-2q | 80.00 ± 2.23% | ||
SOP-2f | 11.33 ± 4.16% | SOP-2r | 85.00 ± 1.67% | ||
SOP-2g | 90.00 ± 1.01% | SOP-3a | 31.67 ± 4.56% | ||
SOP-2h | 38.00 ± 6.10% | SOP-3b | 25.00 ± 1.45% | ||
SOP-2i | 30.00 ± 2.13% | SOP-3c | 35.00 ± 5.12% | ||
SOP-2j | 11.33 ± 1.03% | SOP-3d | 26.67 ± 3.05% | ||
SOP-2k | 16.67 ± 2.08% | SOP-3e | 11.33 ± 4.71% | ||
SOP-2l | 25.00 ± 2.35% | SOP-3f | 100.00 ± 0.00% | ||
Deltamethrin | - | 100.00% | Acetone | - | 0.00% |
Compound | R1 | Mortality ± SD † | Compound | R1 | Mortality ± SD † |
---|---|---|---|---|---|
SOP | - | 0.00% | SOP-1 | - | 0.00% |
SOP-2 | - | 32.51 ± 3.50% | SOP-3 | - | 27.14 ± 2.00% |
SOP-2a | 18.56 ± 0.85% | SOP-2m | 27.16 ± 3.56% | ||
SOP-2b | 30.12 ± 4.18% | SOP-2n | 35.27 ± 3.12% | ||
SOP-2c | 9.13 ± 5.12% | SOP-2o | 6.43 ± 0.20% | ||
SOP-2d | 15.56 ± 3.27% | SOP-2p | 12.19 ± 1.28% | ||
SOP-2e | 20.00 ± 2.84% | SOP-2q | 21.09 ± 1.01% | ||
SOP-2f | 16.57 ± 4.39% | SOP-2r | 0.00% | ||
SOP-2g | 26.50 ± 2.00% | SOP-3a | 14.19 ± 3.90% | ||
SOP-2h | 2.86 ± 0.11% | SOP-3b | 5.10 ± 1.78% | ||
SOP-2i | 6.18 ± 0.12% | SOP-3c | 11.25 ± 0.56% | ||
SOP-2j | 25.64 ± 4.09% | SOP-3d | 0.00% | ||
SOP-2k | 2.90 ± 1.29% | SOP-3e | 0.00% | ||
SOP-2l | 24.18 ± 0.71% | SOP-3f | 0.00% | ||
Deltamethrin | - | 100.00% | Acetone | - | 0.00% |
Compound | Toxicity Regression Equations | Insecticidal Activity against IV-Instar Larvae | ||
---|---|---|---|---|
LC20 (ppm) | LC50 (ppm) (95% CI) | LC90 (ppm) | ||
SOP-2 | (R2 = 0.979) | 308.49 | 527.01 (485.27–602.19) | 736.10 |
SOP-2r | (R2 = 0.993) | 126.22 | 411.09 (374.27–485.16) | 858.89 |
SOP-2q | (R2 = 0.977) | 129.41 | 430.53 (409.16–512.37) | 1035.17 |
SOP-2g | (R2 = 0.983) | 140.33 | 330.98 (202.17–385.18) | 828.50 |
SOP-3 | (R2 = 0.970) | 301.40 | 594.03 (519.75–620.43) | 907.10 |
SOP-3f | (R2 = 0.991) | 341.76 | 546.68 (403.14–582.91) | 732.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, S.; Cao, N.; Zheng, W.; Zhang, Z.; Li, J.; Yan, Z.; Su, K.; Wong, W.-L.; Zhang, K.; Hong, W.D.; et al. Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study. Insects 2023, 14, 399. https://doi.org/10.3390/insects14040399
Ang S, Cao N, Zheng W, Zhang Z, Li J, Yan Z, Su K, Wong W-L, Zhang K, Hong WD, et al. Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study. Insects. 2023; 14(4):399. https://doi.org/10.3390/insects14040399
Chicago/Turabian StyleAng, Song, Nana Cao, Wende Zheng, Zhen Zhang, Jinxuan Li, Zhenping Yan, Kaize Su, Wing-Leung Wong, Kun Zhang, Weiqian David Hong, and et al. 2023. "Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study" Insects 14, no. 4: 399. https://doi.org/10.3390/insects14040399
APA StyleAng, S., Cao, N., Zheng, W., Zhang, Z., Li, J., Yan, Z., Su, K., Wong, W. -L., Zhang, K., Hong, W. D., & Wu, P. (2023). Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study. Insects, 14(4), 399. https://doi.org/10.3390/insects14040399