When One’s Not Enough: Colony Pool-Seq Outperforms Individual-Based Methods for Assessing Introgression in Apis mellifera mellifera
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Sequencing and Data
2.2. Sample Collection
2.3. Restriction Site Associated DNA Methods
2.3.1. DNA Extraction of Individual and Pooled Colonies
2.3.2. Enzymatic Digest
2.3.3. Adaptor Ligation
2.3.4. Fragment Size Selection
2.3.5. PCR Amplification
2.3.6. Sequencing and Bioinformatics
2.4. SNP Array Data Generation
SNP Array Variant Calling
2.5. Subspecies Standards and Outgroup Data
2.5.1. Individual Subspecies Standards
2.5.2. Pooled Colony Subspecies Standards
2.5.3. Outgroup Data
2.6. Introgression Estimators
2.6.1. ADMIXTURE as an Introgression Estimator
2.6.2. ABBA BABA as an Introgression Estimator
3. Results
3.1. ADMIXTURE
3.2. ABBA BABA
3.3. Summary of Introgression Estimates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, E. Introgressive Hybridization; John Wiley and Sons: New York, NY, USA, 1949. [Google Scholar]
- Rhymer, J.M.; Simberloff, D. Extinction By Hybridization and Introgression. Annu. Rev. Ecol. Syst. 1996, 27, 83–109. [Google Scholar] [CrossRef]
- Burgarella, C.; Barnaud, A.; Kane, N.A.; Jankowski, F.; Scarcelli, N.; Billot, C.; Vigouroux, Y.; Berthouly-Salazar, C. Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation. Front. Plant Sci. 2019, 10, 4. [Google Scholar] [CrossRef]
- Hedrick, P.W. Adaptive Introgression in Animals: Examples and Comparison to New Mutation and Standing Variation as Sources of Adaptive Variation. Mol. Ecol. 2013, 22, 4606–4618. [Google Scholar] [CrossRef] [PubMed]
- Barbato, M.; Hailer, F.; Upadhyay, M.; Del Corvo, M.; Colli, L.; Negrini, R.; Kim, E.-S.; Crooijmans, R.P.M.A.; Sonstegard, T.; Ajmone-Marsan, P. Adaptive Introgression from Indicine Cattle into White Cattle Breeds from Central Italy. Sci. Rep. 2020, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.P.; Fessl, B.; Hernán Vargas, F.; Farrington, H.L.; Francesca Cunninghame, H.; Mueller, J.C.; Nemeth, E.; Christian Sevilla, P.; Petren, K. Slow Motion Extinction: Inbreeding, Introgression, and Loss in the Critically Endangered Mangrove Finch (Camarhynchus Heliobates). Conserv. Genet. 2017, 18, 159–170. [Google Scholar] [CrossRef]
- Epifanio, J.; Philipp, D. Simulating the Extinction of Parental Lineages from Introgressive Hybridization: The Effects of Fitness, Initial Proportions of Parental Taxa, and Mate Choice. Rev. Fish Biol. Fish. 2000, 10, 339–354. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Eldridge, M.D.B.; Lacy, R.C.; Ralls, K.; Dudash, M.R.; Fenster, C.B. Predicting the Probability of Outbreeding Depression. Conserv. Biol. 2011, 25, 465–475. [Google Scholar] [CrossRef]
- Freeland, J.R. Molecular Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Ilyasov, R.A.; Lee, M.; Takahashi, J.; Kwon, H.W.; Nikolenko, A.G. A Revision of Subspecies Structure of Western Honey Bee Apis mellifera. Saudi J. Biol. Sci. 2020, 27, 3615–3621. [Google Scholar] [CrossRef]
- Tihelka, E.; Cai, C.; Pisani, D.; Donoghue, P.C.J. Mitochondrial Genomes Illuminate the Evolutionary History of the Western Honey Bee (Apis mellifera). Sci. Rep. 2020, 10, 14515. [Google Scholar] [CrossRef]
- Dogantzis, K.A.; Tiwari, T.; Conflitti, I.M.; Dey, A.; Patch, H.M.; Muli, E.M.; Garnery, L.; Whitfield, C.W.; Stolle, E.; Alqarni, A.S.; et al. Thrice out of Asia and the Adaptive Radiation of the Western Honey Bee. Sci. Adv. 2021, 7, eabj2151. [Google Scholar] [CrossRef]
- Meixner, M.D.; Pinto, M.A.; Bouga, M.; Kryger, P.; Ivanova, E.; Fuchs, S. Standard Methods for Characterising Subspecies and Ecotypes of Apis mellifera. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer: Berlin, Germany, 1988. [Google Scholar]
- Tofilski, A. DrawWing, a Program for Numerical Description of Insect Wings. J. Insect Sci. 2004, 4, 17. [Google Scholar] [CrossRef]
- Miguel, I.; Baylac, M.; Iriondo, M.; Manzano, C.; Garnery, L.; Estonba, A. Both Geometric Morphometric and Microsatellite Data Consistently Support the Differentiation of the Apis mellifera M Evolutionary Branch. Apidologie 2011, 42, 150–161. [Google Scholar] [CrossRef]
- Dall’Olio, R.; Marino, A.; Lodesani, M.; Moritz, R.F.A. Genetic Characterization of Italian Honeybees, Apis mellifera ligustica, Based on Microsatellite DNA Polymorphisms. Apidologie 2007, 38, 207–217. [Google Scholar] [CrossRef]
- Muñoz, I.; Henriques, D.; Johnston, J.S.; Chávez-Galarza, J.; Kryger, P.; Pinto, M.A. Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera). PLoS ONE 2015, 10, e0124365. [Google Scholar] [CrossRef]
- De la Rúa, P.; Jaffé, R.; Dall’Olio, R.; Muñoz, I.; Serrano, J. Biodiversity, Conservation and Current Threats to European Honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef]
- Pinto, M.A.; Henriques, D.; Chávez-Galarza, J.; Kryger, P.; Garnery, L.; van der Zee, R.; Dahle, B.; Soland-Reckeweg, G.; de la Rúa, P.; Dall’ Olio, R.; et al. Genetic Integrity of the Dark European Honey Bee (Apis mellifera mellifera) from Protected Populations: A Genome-Wide Assessment Using SNPs and MtDNA Sequence Data. J. Apic. Res. 2014, 53, 269–278. [Google Scholar] [CrossRef]
- Nielsdatter, M.G.; Larsen, M.; Nielsen, L.G.; Nielsen, M.M.; Rasmussen, C. History of the Displacement of the European Dark Bee (Apis mellifera mellifera) in Denmark. J. Apic. Res. 2021, 60, 13–18. [Google Scholar] [CrossRef]
- Kauhausen-Keller, D.; Keller, R. Morphometrical Control of Pure Race Breeding in the Honeybee (Apis mellifera L.). Apidologie 1994, 25, 133–143. [Google Scholar] [CrossRef]
- Maul, V.; Hähnle, A. Morphometric Studies with Pure Bred Stock of Apis mellifera Carnica Pollmann from Hessen. Apidologie 1994, 25, 119–132. [Google Scholar] [CrossRef]
- Bieńkowska, M.; Splitt, A.; Węgrzynowicz, P.; Maciorowski, R. The Buzz Changes within Time: Native Apis mellifera mellifera Honeybee Subspecies Less and Less Popular among Polish Beekeepers Since 1980. Agriculture 2021, 11, 652. [Google Scholar] [CrossRef]
- VanEngelsdorp, D.; Meixner, M.D. A Historical Review of Managed Honey Bee Populations in Europe and the United States and the Factors That May Affect Them. J. Invertebr. Pathol. 2010, 103 (Suppl. S1), S80–S95. [Google Scholar] [CrossRef] [PubMed]
- Requier, F.; Garnery, L.; Kohl, P.L.; Njovu, H.K.; Pirk, C.W.W.; Crewe, R.M.; Steffan-Dewenter, I. The Conservation of Native Honey Bees Is Crucial. Trends Ecol. Evol. 2019, 34, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Hassett, J.; Browne, K.A.; McCormack, G.P.; Moore, E.; Society, N.I.H.B.; Soland, G.; Geary, M. A Significant Pure Population of the Dark European Honey Bee (Apis mellifera mellifera) Remains in Ireland. J. Apic. Res. 2018, 57, 337–350. [Google Scholar] [CrossRef]
- Henriques, D.; Browne, K.A.; Barnett, M.W.; Parejo, M.; Kryger, P.; Freeman, T.C.; Muñoz, I.; Garnery, L.; Highet, F.; Jonhston, J.S.; et al. High Sample Throughput Genotyping for Estimating C-Lineage Introgression in the Dark Honeybee: An Accurate and Cost-Effective SNP-Based Tool. Sci. Rep. 2018, 8, 8552. [Google Scholar] [CrossRef]
- Garnery, L.; Franck, P.; Baudry, E.; Vautrin, D.; Cornuet, J.-M.; Solignac, M. Genetic Diversity of the West European Honey Bee (Apis mellifera mellifera and Apis mellifera iberica) II. Microsatellite Loci. Genet. Sel. Evol. 1998, 30, S49. [Google Scholar] [CrossRef]
- Franck, P.; Garnery, L.; Loiseau, A.; Oldroyd, B.P.; Hepburn, H.R.; Solignac, M.; Cornuet, J.M. Genetic Diversity of the Honeybee in Africa: Microsatellite and Mitochondrial Data. Heredity 2001, 86, 420–430. [Google Scholar] [CrossRef]
- Jensen, A.B.; Palmer, K.A.; Boomsma, J.J.; Pedersen, B.V. Varying Degrees of Apis mellifera ligustica Introgression in Protected Populations of the Black Honeybee, Apis mellifera mellifera, in Northwest Europe. Mol. Ecol. 2005, 14, 93–106. [Google Scholar] [CrossRef]
- Parejo, M.; Wragg, D.; Gauthier, L.; Vignal, A.; Neumann, P.; Neuditschko, M. Using Whole-Genome Sequence Information to Foster Conservation Efforts for the European Dark Honey Bee, Apis mellifera mellifera. Front. Ecol. Evol. 2016, 4, 140. [Google Scholar] [CrossRef]
- Ellis, J.S.; Soland-Reckeweg, G.; Buswell, V.G.; Huml, J.V.; Brown, A.; Knight, M.E. Introgression in Native Populations of Apis mellifera mellifera L.: Implications for Conservation. J. Insect Conserv. 2018, 22, 377–390. [Google Scholar] [CrossRef]
- Inbar, S.; Cohen, P.; Yahav, T.; Privman, E. Comparative Study of Population Genomic Approaches for Mapping Colony-Level Traits. PLoS Comput. Biol. 2020, 16, e1007653. [Google Scholar] [CrossRef]
- Gmel, A.I.; Guichard, M.; Dainat, B.; Williams, G.R.; Eynard, S.; Vignal, A.; Servin, B.; Neuditschko, M. Identification of Runs of Homozygosity in Western Honey Bees ( Apis mellifera ) Using Whole-genome Sequencing Data. Ecol. Evol. 2023, 13, e9723. [Google Scholar] [CrossRef]
- Regan, T.; Barnett, M.W.; Laetsch, D.R.; Bush, S.J.; Wragg, D.; Budge, G.E.; Highet, F.; Dainat, B.; De Miranda, J.R.; Watson, M. Characterisation of the British Honey Bee Metagenome. Nat. Commun. 2018, 9, 4995. [Google Scholar] [CrossRef]
- Gautier, M.; Foucaud, J.; Gharbi, K.; Cézard, T.; Galan, M.; Loiseau, A.; Thomson, M.; Pudlo, P.; Kerdelhué, C.; Estoup, A. Estimation of Population Allele Frequencies from Next-Generation Sequencing Data: Pool-versus Individual-Based Genotyping. Mol. Ecol. 2013, 22, 3766–3779. [Google Scholar] [CrossRef]
- Rode, N.O.; Holtz, Y.; Loridon, K.; Santoni, S.; Ronfort, J.; Gay, L. How to Optimize the Precision of Allele and Haplotype Frequency Estimates Using Pooled-Sequencing Data. Mol. Ecol. Resour. 2018, 18, 194–203. [Google Scholar] [CrossRef]
- Avalos, A.; Fang, M.; Pan, H.; Ramirez Lluch, A.; Lipka, A.E.; Zhao, S.D.; Giray, T.; Robinson, G.E.; Zhang, G.; Hudson, M.E. Genomic Regions Influencing Aggressive Behavior in Honey Bees Are Defined by Colony Allele Frequencies. Proc. Natl. Acad. Sci. USA 2020, 117, 17135–17141. [Google Scholar] [CrossRef]
- Guichard, M.; Dietemann, V.; Neuditschko, M.; Dainat, B. Advances and Perspectives in Selecting Resistance Traits against the Parasitic Mite Varroa Destructor in Honey Bees. Genet. Sel. Evol. 2020, 52, 71. [Google Scholar] [CrossRef]
- Muñoz, I.; De la Rúa, P. Wide Genetic Diversity in Old World Honey Bees Threaten by Introgression. Apidologie 2021, 52, 200–217. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Bachtrog, D.; Thornton, K.; Clark, A.; Andolfatto, P. Extensive Introgression of Mitochondrial DNA Relative to Nuclear Genes in the Drosophila Yakuba Species Group. Evolution 2006, 60, 292–302. [Google Scholar]
- Darras, H.; Aron, S. Introgression of Mitochondrial DNA among Lineages in a Hybridogenetic Ant. Biol. Lett. 2015, 11, 20140971. [Google Scholar] [CrossRef] [PubMed]
- Randi, E.; Lucchini, V. Detecting Rare Introgression of Domestic Dog Genes into Wild Wolf (Canis Lupus) Populations by Bayesian Admixture Analyses of Microsatellite Variation. Conserv. Genet. 2002, 3, 29–43. [Google Scholar] [CrossRef]
- Hutchinson, J.M.C.; Schlitt, B.; Reise, H. One Town’s Invasion by the Pest Slug Arion Vulgaris (Gastropoda: Arionidae): Microsatellites Reveal Little Introgression from Arion Ater and Limited Gene Flow between Infraspecific Races in Both Species. Biol. J. Linn. Soc. 2021, 134, 835–850. [Google Scholar] [CrossRef]
- Beeler, R.B.; Sharples, M.T.; Tripp, E.A. Introgression among Three Western North American Bilberries (Vaccinium Section Myrtillus). Syst. Bot. 2020, 45, 576–584. [Google Scholar] [CrossRef]
- Natola, L.; Curtis, A.; Hudon, J.; Burg, T.M. Introgression between Sphyrapicus Nuchalis and S. Varius Sapsuckers in a Hybrid Zone in West-central Alberta. J. Avian Biol. 2021, 52, e02717. [Google Scholar] [CrossRef]
- Upadhyay, M.; Kunz, E.; Sandoval-Castellanos, E.; Hauser, A.; Krebs, S.; Graf, A.; Blum, H.; Dotsev, A.; Okhlopkov, I.; Shakhin, A. Whole Genome Sequencing Reveals a Complex Introgression History and the Basis of Adaptation to Subarctic Climate in Wild Sheep. Mol. Ecol. 2021, 30, 6701–6717. [Google Scholar] [CrossRef]
- Smeds, L.; Aspi, J.; Berglund, J.; Kojola, I.; Tirronen, K.; Ellegren, H. Whole-genome Analyses Provide No Evidence for Dog Introgression in Fennoscandian Wolf Populations. Evol. Appl. 2021, 14, 721–734. [Google Scholar] [CrossRef]
- Muñoz, I.; Henriques, D.; Jara, L.; Johnston, J.S.; Chávez-Galarza, J.; De La Rúa, P.; Pinto, M.A. SNPs Selected by Information Content Outperform Randomly Selected Microsatellite Loci for Delineating Genetic Identification and Introgression in the Endangered Dark European Honeybee (Apis mellifera mellifera). Mol. Ecol. Resour. 2017, 17, 783–795. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for de Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Lowry, D.B.; Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Reed, L.K.; Antolin, M.F.; Storfer, A. Breaking RAD: An Evaluation of the Utility of Restriction Site-Associated DNA Sequencing for Genome Scans of Adaptation. Mol. Ecol. Resour. 2017, 17, 142–152. [Google Scholar] [CrossRef]
- BeeBase. Third Country Import Reports. National Bee Unit Website. Available online: https://nationalbeeunit.com/public/BeeDiseases/importReport.cfm (accessed on 27 October 2022).
- Reich, D.; Green, R.E.; Kircher, M.; Krause, J.; Patterson, N.; Durand, E.Y.; Viola, B.; Briggs, A.W.; Stenzel, U.; Johnson, P.L.F. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature 2010, 468, 1053–1060. [Google Scholar] [CrossRef]
- Green, R.E.; Krause, J.; Briggs, A.W.; Maricic, T.; Stenzel, U.; Kircher, M.; Patterson, N.; Li, H.; Zhai, W.; Fritz, M.H.-Y. A Draft Sequence of the Neandertal Genome. Science 2010, 328, 710–722. [Google Scholar] [CrossRef]
- Durand, E.Y.; Patterson, N.; Reich, D.; Slatkin, M. Testing for Ancient Admixture between Closely Related Populations. Mol. Biol. Evol. 2011, 28, 2239–2252. [Google Scholar] [CrossRef]
- Patterson, N.; Moorjani, P.; Luo, Y.; Mallick, S.; Rohland, N.; Zhan, Y.; Genschoreck, T.; Webster, T.; Reich, D. Ancient Admixture in Human History. Genetics 2012, 192, 1065–1093. [Google Scholar] [CrossRef]
- Nicholls, J.A.; Double, M.C.; Rowell, D.M.; Magrath, R.D. The Evolution of Cooperative and Pair Breeding in Thornbills Acanthiza (Pardalotidae). J. Avian Biol. 2000, 31, 165–176. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An Analysis Tool Set for Population Genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- O’Leary, S.J.; Puritz, J.B.; Willis, S.C.; Hollenbeck, C.M.; Portnoy, D.S. These Aren’t the Loci You’re Looking for: Principles of Effective SNP Filtering for Molecular Ecologists. Mol. Ecol. 2018, 27, 3193–3206. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Wragg, D.; Marti-Marimon, M.; Basso, B.; Bidanel, J.-P.; Labarthe, E.; Bouchez, O.; Le Conte, Y.; Vignal, A. Whole-Genome Resequencing of Honeybee Drones to Detect Genomic Selection in a Population Managed for Royal Jelly. Sci. Rep. 2016, 6, 27168. [Google Scholar] [CrossRef] [PubMed]
- Wallberg, A.; Han, F.; Wellhagen, G.; Dahle, B.; Kawata, M.; Haddad, N.; Simões, Z.L.P.; Allsopp, M.H.; Kandemir, I.; De La Rúa, P.; et al. A Worldwide Survey of Genome Sequence Variation Provides Insight into the Evolutionary History of the Honeybee Apis mellifera. Nat. Genet. 2014, 46, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Cridland, J.M.; Tsutsui, N.D.; Ramírez, S.R. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis mellifera. Genome Biol. Evol. 2017, 9, 457–472. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Liu, Z.; Chen, X.; Tang, J.; Meng, F.; Shi, W. Population Genomics Provide Insights into the Evolution and Adaptation of the Eastern Honey Bee (Apis cerana). Soc. Mol. Biol. Evol. 2018, 35, 2260–2271. [Google Scholar] [CrossRef]
- Alexander, D.H.; Lange, K. Admixture 1. 23 Software Manual. 2013, pp. 3–4. Available online: https://dalexander.github.io/admixture/admixture-manual.pdf (accessed on 25 April 2023).
- Carstens, B.C.; Knowles, L.L. Estimating Species Phylogeny from Gene-Tree Probabilities despite Incomplete Lineage Sorting: An Example from Melanoplus Grasshoppers. Syst. Biol. 2007, 56, 400–411. [Google Scholar] [CrossRef]
- Degnan, J.H.; Rosenberg, N.A. Gene Tree Discordance, Phylogenetic Inference and the Multispecies Coalescent. Trends Ecol. Evol. 2009, 24, 332–340. [Google Scholar] [CrossRef]
- Lipson, M.; Loh, P.-R.; Levin, A.; Reich, D.; Patterson, N.; Berger, B. Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow. Mol. Biol. Evol. 2013, 30, 1788–1802. [Google Scholar] [CrossRef]
- Lipson, M. Applying f4-statistics and Admixture Graphs: Theory and Examples. Mol. Ecol. Resour. 2020, 20, 1658–1667. [Google Scholar] [CrossRef]
- Malinsky, M.; Matschiner, M.; Svardal, H. Dsuite—Fast D-statistics and Related Admixture Evidence from VCF Files. Mol. Ecol. Resour. 2021, 21, 584–595. [Google Scholar] [CrossRef]
- Lawson, D.J.; van Dorp, L.; Falush, D. A Tutorial on How Not to Over-Interpret STRUCTURE and ADMIXTURE Bar Plots. Nat. Commun. 2018, 9, 3258. [Google Scholar] [CrossRef]
- Anderson, E.C.; Dunham, K.K. The Influence of Family Groups on Inferences Made with the Program Structure. Mol. Ecol. Resour. 2008, 8, 1219–1229. [Google Scholar] [CrossRef]
- Kong, S.; Kubatko, L.S. Comparative Performance of Popular Methods for Hybrid Detection Using Genomic Data. Syst. Biol. 2021, 70, 891–907. [Google Scholar] [CrossRef]
- Vähä, J.P.; Primmer, C.R. Efficiency of Model-Based Bayesian Methods for Detecting Hybrid Individuals under Different Hybridization Scenarios and with Different Numbers of Loci. Mol. Ecol. 2006, 15, 63–72. [Google Scholar] [CrossRef]
- Kalinowski, S.T. The Computer Program STRUCTURE Does Not Reliably Identify the Main Genetic Clusters within Species: Simulations and Implications for Human Population Structure. Heredity 2011, 106, 625–632. [Google Scholar] [CrossRef]
- Gautier, M.; Vitalis, R.; Flori, L.; Estoup, A. F-Statistics Estimation and Admixture Graph Construction with Pool-Seq or Allele Count Data Using the R Package Poolfstat. Mol. Ecol. Resour. 2022, 22, 1394–1416. [Google Scholar] [CrossRef]
- Mughal, M.R.; DeGiorgio, M. Properties and Unbiased Estimation of F-and D-Statistics in Samples Containing Related and Inbred Individuals. Genetics 2022, 220, iyab090. [Google Scholar] [CrossRef] [PubMed]
- Eynard, S.E.; Vignal, A.; Basso, B.; Canale-Tabet, K.; Le Conte, Y.; Decourtye, A.; Genestout, L.; Labarthe, E.; Mondet, F.; Servin, B. Reconstructing Queen Genotypes by Pool Sequencing Colonies in Eusocial Insects: Statistical Methods and Their Application to Honeybee. Mol. Ecol. Resour. 2022, 22, 3035–3048. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.J.; Jensen, J.D. To Pool, or Not to Pool? Genetics 2010, 186, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.C.; Skaug, H.J.; Barshis, D.J. Next-Generation Sequencing for Molecular Ecology: A Caveat Regarding Pooled Samples. Mol. Ecol. 2014, 23, 502–512. [Google Scholar] [CrossRef]
- Ellegren, H. Genome Sequencing and Population Genomics in Non-Model Organisms. Trends Ecol. Evol. 2014, 29, 51–63. [Google Scholar] [CrossRef]
- Groeneveld, L.F.; Kirkerud, L.A.; Dahle, B.; Sunding, M.; Flobakk, M.; Kjos, M.; Henriques, D.; Pinto, M.A.; Berg, P. Conservation of the Dark Bee (Apis mellifera mellifera): Estimating C-Lineage Introgression in Nordic Breeding Stocks. Acta Agric. Scand. Sect. A—Anim. Sci. 2020, 69, 157–168. [Google Scholar] [CrossRef]
- Parejo, M.; Henriques, D.; Pinto, M.A.; Soland-Reckeweg, G.; Neuditschko, M. Empirical Comparison of Microsatellite and SNP Markers to Estimate Introgression in Apis mellifera mellifera. J. Apic. Res. 2018, 57, 504–506. [Google Scholar] [CrossRef]
- Beye, M.; Gattermeier, I.; Hasselmann, M.; Gempe, T.; Schioett, M.; Baines, J.F.; Schlipalius, D.; Mougel, F.; Emore, C.; Rueppell, O.; et al. Exceptionally High Levels of Recombination across the Honey Bee Genome. Genome Res. 2006, 16, 1339–1344. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Huang, J.; Chen, J.Q.; Tian, D.; Hurst, L.D.; Yang, S. Causes and Consequences of Crossing-over Evidenced via a High-Resolution Recombinational Landscape of the Honey Bee. Genome Biol. 2015, 16, 15. [Google Scholar] [CrossRef]
- Janoušek, V.; Munclinger, P.; Wang, L.; Teeter, K.C.; Tucker, P.K. Functional Organization of the Genome May Shape the Species Boundary in the House Mouse. Mol. Biol. Evol. 2015, 32, 1208–1220. [Google Scholar] [CrossRef]
- Martin, S.H.; Davey, J.W.; Salazar, C.; Jiggins, C.D. Recombination Rate Variation Shapes Barriers to Introgression across Butterfly Genomes. PLoS Biol. 2019, 17, e2006288. [Google Scholar] [CrossRef]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. BioRxiv 2017. [Google Scholar] [CrossRef]
- Martin, S.H.; Davey, J.W.; Jiggins, C.D. Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci. Mol. Biol. Evol. 2015, 32, 244–257. [Google Scholar] [CrossRef]
- Henriques, D.; Parejo, M.; Vignal, A.; Wragg, D.; Wallberg, A.; Webster, M.T.; Pinto, M.A. Developing Reduced SNP Assays from Whole-genome Sequence Data to Estimate Introgression in an Organism with Complex Genetic Patterns, the Iberian Honeybee (Apis Mellifera Iberiensis). Evol. Appl. 2018, 11, 1270–1282. [Google Scholar] [CrossRef]
Samples Representing | Genotyping Method | Sequencing Platform | Sampling Approach | Data Source |
---|---|---|---|---|
South West, England | RAD-seq | Illumina (Novaseq) | Pooled colony | Generated in this study |
South West, England | RAD-seq | Illumina (Novaseq) | Individual worker | Generated in this study |
South West, England | SNP Array | iPLEX MassARRAY | Individual worker | Generated in this study |
Subspecies standards | WGS | BGISEQ-500 | Pooled colony | Generated in this study |
Subspecies standards | WGS | SOLiD 5500xl | Individual worker | Downloaded (SRA) |
Outgroup | WGS | Illumina (HiSeq 2500) | Individual worker | Downloaded (SRA) |
Colony ID | ADMIXTURE K = 2 | |||||
---|---|---|---|---|---|---|
SNP Array | Individual RAD-Seq | Colony Pooled RAD-Seq | ||||
M | C | M | C | M | C | |
c2 | 0.80 | 0.20 | 0.78 | 0.22 | 0.60 | 0.40 |
c5 | 0.79 | 0.21 | 0.86 | 0.14 | 0.65 | 0.35 |
c6 | 0.82 | 0.18 | 0.83 | 0.17 | 0.74 | 0.26 |
c7 | 0.87 | 0.13 | 0.89 | 0.11 | 0.80 | 0.20 |
c8 | 0.79 | 0.21 | 0.79 | 0.21 | 0.73 | 0.27 |
c26 | 0.67 | 0.33 | 0.81 | 0.19 | 0.70 | 0.30 |
c11 | 0.83 | 0.17 | 0.77 | 0.23 | 0.62 | 0.38 |
c13 | 0.74 | 0.26 | 0.73 | 0.27 | 0.53 | 0.47 |
c14 | 0.79 | 0.21 | 0.74 | 0.26 | 0.72 | 0.28 |
c16 | 0.47 | 0.53 | 0.43 | 0.57 | 0.51 | 0.49 |
c17 | 0.85 | 0.15 | 0.85 | 0.15 | 0.73 | 0.27 |
c18 | 0.85 | 0.15 | 0.86 | 0.14 | 0.76 | 0.24 |
c10 | 0.35 | 0.65 | 0.29 | 0.71 | 0.41 | 0.59 |
c23 | 0.86 | 0.14 | 0.86 | 0.14 | 0.78 | 0.22 |
c21 | 0.37 | 0.63 | 0.37 | 0.63 | 0.36 | 0.64 |
c22 | 0.21 | 0.79 | 0.18 | 0.82 | 0.18 | 0.82 |
c25 | 0.84 | 0.16 | 0.88 | 0.12 | 0.80 | 0.20 |
Average | 0.70 | 0.30 | 0.70 | 0.30 | 0.62 | 0.38 |
Trios | D Statistic | Z Score | p-Value | F4-Ratio (α) | 1-α |
---|---|---|---|---|---|
C-lineage; South West; Mel | 0.105 | 3.47167 | 0.000517 | 0.292 | 0.708 |
Lig; South West; Mel | 0.0816 | 2.63019 | 0.008534 | 0.241 | 0.759 |
Car; South West; Mel | 0.1306 | 4.374 | 0.0000122 | 0.340 | 0.66 |
Sample ID | Summary of Introgression Estimates | ||||
---|---|---|---|---|---|
ABBA BABA f Statistic Proportion of Admixture from C Lineage Colony | ADMIXTURE C Lineage Q Values from K = 2 | ||||
Colony-Pooled Estimated Using A. m. ligustica | Colony-Pooled Estimated Using A. m. carnica | Colony-Pooled RAD-Seq | Individual RAD-Seq | Individual AIMs SNP Array | |
c1 | 0.149 | 0.146 | 0.277 | no sample | 0.189 |
c2 | 0.177 | 0.172 | 0.398 | 0.217 | 0.204 |
c3 | 0.122 | 0.122 | 0.258 | no sample | 0.137 |
c4 | 0.089 | nsi | 0.272 | no sample | 0.226 |
c5 | 0.080 | nsi | 0.348 | 0.140 | 0.205 |
c6 | nsi | nsi | 0.257 | 0.173 | 0.175 |
c7 | 0.144 | 0.141 | 0.197 | 0.114 | 0.127 |
c8 | 0.100 | 0.087 | 0.274 | 0.206 | 0.213 |
c9 | 0.084 | nsi | 0.239 | no sample | 0.216 |
c10 | 0.447 | 0.467 | 0.583 | 0.706 | 0.652 |
c11 | 0.271 | 0.264 | 0.380 | 0.229 | 0.171 |
c13 | 0.247 | 0.248 | 0.470 | 0.274 | 0.263 |
c14 | 0.138 | 0.132 | 0.283 | 0.263 | 0.208 |
c15 | 0.327 | 0.340 | 0.471 | no sample | 0.188 |
c16 | 0.263 | 0.267 | 0.492 | 0.569 | 0.535 |
c17 | 0.133 | 0.126 | 0.268 | 0.153 | 0.150 |
c18 | nsi | nsi | 0.239 | 0.144 | 0.154 |
c19 | 0.452 | 0.472 | 0.572 | no sample | 0.374 |
c20 | 0.345 | 0.351 | 0.525 | no sample | 0.434 |
c21 | 0.478 | 0.504 | 0.644 | 0.632 | 0.627 |
c22 | 0.629 | 0.669 | 0.821 | 0.816 | 0.790 |
c23 | 0.086 | nsi | 0.225 | 0.140 | 0.144 |
c24 | 0.110 | 0.100 | 0.305 | no sample | 0.259 |
c25 | nsi | nsi | 0.195 | 0.123 | 0.155 |
c26 | 0.085 | nsi | 0.299 | 0.368 | 0.327 |
c28 | no sample | no sample | no sample | 0.163 | no sample |
c29 | nsi | nsi | 0.257 | 0.168 | no sample |
c30 | 0.144 | 0.147 | 0.299 | 0.126 | no sample |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buswell, V.G.; Ellis, J.S.; Huml, J.V.; Wragg, D.; Barnett, M.W.; Brown, A.; The Scottish Beekeepers Association Citizen Science Group; Knight, M.E. When One’s Not Enough: Colony Pool-Seq Outperforms Individual-Based Methods for Assessing Introgression in Apis mellifera mellifera. Insects 2023, 14, 421. https://doi.org/10.3390/insects14050421
Buswell VG, Ellis JS, Huml JV, Wragg D, Barnett MW, Brown A, The Scottish Beekeepers Association Citizen Science Group, Knight ME. When One’s Not Enough: Colony Pool-Seq Outperforms Individual-Based Methods for Assessing Introgression in Apis mellifera mellifera. Insects. 2023; 14(5):421. https://doi.org/10.3390/insects14050421
Chicago/Turabian StyleBuswell, Victoria G., Jonathan S. Ellis, J. Vanessa Huml, David Wragg, Mark W. Barnett, Andrew Brown, The Scottish Beekeepers Association Citizen Science Group, and Mairi E. Knight. 2023. "When One’s Not Enough: Colony Pool-Seq Outperforms Individual-Based Methods for Assessing Introgression in Apis mellifera mellifera" Insects 14, no. 5: 421. https://doi.org/10.3390/insects14050421
APA StyleBuswell, V. G., Ellis, J. S., Huml, J. V., Wragg, D., Barnett, M. W., Brown, A., The Scottish Beekeepers Association Citizen Science Group, & Knight, M. E. (2023). When One’s Not Enough: Colony Pool-Seq Outperforms Individual-Based Methods for Assessing Introgression in Apis mellifera mellifera. Insects, 14(5), 421. https://doi.org/10.3390/insects14050421