Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Stingless Bee Samples
2.2. Morphological Characteristics and Morphometric Parameters of T. laeviceps s.l.
2.2.1. Body Size
2.2.2. Body Color and Pubescence
2.3. Molecular Analyses of T. laeviceps s.l.
2.3.1. DNA Extraction and PCR Amplification
2.3.2. Sequence Editing and Alignment
2.4. Data Analysis
2.4.1. Analysis of the Morphological and Morphometric Parameters of T. laeviceps s.l.
2.4.2. Correlations, PCA and LDA Biplot Analysis
2.4.3. Sequence and Phylogenetic Analysis
3. Results
3.1. Identification of T. laeviceps s.l.
3.2. Morphological and Morphometric Parameters Analysis of T. laeviceps s.l.
3.2.1. Quantitative Morphological Characteristics
3.2.2. Qualitative Analysis of Body Color and Pubescence
3.2.3. PCA and LDA Biplot Analysis
3.2.4. Sequence and Phylogenetic Analysis
4. Discussion
4.1. Distinctive Morphological and Morphometric Parameters of T. laeviceps s.l. Based on Body Size, Color and Hair
4.2. PCA and LDA Biplot and Phylogenetics Relationships of T. laeviceps s.l.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Trianto, M.; Marisa, F.; Kisman, M.D. Tetragonula laeviceps (Hymenoptera: Apidae: Meliponini): Morphology, morphometric, and nest structure. Bioeduscience 2020, 4, 188–194. [Google Scholar] [CrossRef]
- Abu Bakar, A.M.S.; Faik, A.A.M.; Rajendraan, G.; Gansau, J.A.; Abdulla, R. Potential DNA barcoding of local stingless honeybee (Tantadan) from Kiulu, Sabah using 28S ribosomal DNA. J. Phys. Conf. Ser. 2019, 1358, 012023. [Google Scholar] [CrossRef]
- Agung, S.A. Morfologi Lebah Pekerja Tetragonula laeviceps Smith (Apidae: Melliponinae). Bachelor’s Thesis, IPB University, Bogor, Indonesia, 2017. Available online: http://repository.ipb.ac.id/handle/123456789/90168 (accessed on 7 May 2022).
- Abu Hassan, J. Meliponine Identifier Pictorial Guide; Akademi Kelulut Malaysia Sdn. Bhd.: Bangi, Malaysia, 2016. [Google Scholar]
- Rasmussen, C.; Cameron, S.A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 2010, 99, 206–232. [Google Scholar] [CrossRef]
- Rasmussen, C. Catalog of the Indo-Malayan/Australasian Stingless Bees (Hymenoptera: Apidae: Meliponini); Magnolia Press: Auckland, New Zealand, 2008. [Google Scholar] [CrossRef]
- Sakagami, S.F. Tetragonula stingless bees of the continental Asia and Sri Lanka (Hymenoptera, Apidae). Zoology 1978, 21, 165–247. [Google Scholar]
- Trianto, M.; Purwanto, H. Morphological characteristics and morphometrics of stingless bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia. J. Biodiversitas 2020, 21, 2619–2628. [Google Scholar] [CrossRef]
- Smith, D.R. Key to workers of Indo-Malayan stingless bees. Use Stingless Bees Workshop 2012, 1, 1–42. [Google Scholar]
- Cockerell, T.D.A. Descriptions and records of bees—LXXX. Ann. Mag. Nat. Hist. 1911, 12, 384–390. [Google Scholar] [CrossRef]
- Rasmussen, C.; Michener, C.D. The Identity and Neotype of Trigona laeviceps Smith (Hymenoptera: Apidae). J. Kans. Entomol. Soc. 2010, 83, 129–133. [Google Scholar] [CrossRef]
- Schwarz, H.F. The Indon-Malaysan species of Trigona. Bull. Am. Mus. Nat. Hist. 1939, LXXVI, 83–141. [Google Scholar]
- Siti Fatimah, S.; Mamat, M.R.; Hazmi, I.R. Taxonomic study on selected species of stingless bee (Hymenoptera: Apidae: Meliponini) in Peninsular Malaysia. Serangga 2018, 23, 203–258. [Google Scholar]
- Purwanto, H.; Soesilohadi, R.C.; Trianto, M. Stingless bees from meliponiculture in South Kalimantan, Indonesia. Biodiversitas 2022, 23, 1254–1266. [Google Scholar] [CrossRef]
- Trianto, M. Species description, morphometric measurement and molecular identification of stingless bees (Hymenoptera: Apidae: Meliponini) in meliponiculture industry in West Java province, Indonesia. Serangga 2021, 26, 13–33. [Google Scholar]
- Tej, M.K.; Srinivasan, M.R.; Vijayakumar, K.; Natarajan, N.; Kumar, S.M. Morphometry analysis of stingless bee Tetragonula iridipennis Smith. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2963–2970. [Google Scholar] [CrossRef]
- Eardley, C.; Kwapong, P. Taxonomy as a tool for conservation of African stingless bees and their honey. In Pot-Honey: A Legacy of Stingless Bees; Vit, P., Pedro, S.R.M., Roubik, D., Eds.; Springer: New York, NY, USA, 2013; pp. 261–268. [Google Scholar] [CrossRef]
- May-Itzá, W.J.; Quezada-Euán, J.J.G.; Ayala, R.; Ruá, P.D.L. Morphometric and genetic analyses differentiate Mesoamerican populations of the endangered stingless bee Melipona beecheii (Hymenoptera: Meliponidae) and support their conservation as two separate units. J. Insect Conserv. 2012, 16, 723–731. [Google Scholar] [CrossRef]
- Suriawanto, N. Keanekaragaman dan Tempat Bersarang Lebah Tak Bersengat (Hymenoptera: Apidae) di Sulawesi Tengah. Master’s Thesis, IPB University, Bogor, Indonesia, 2016. Available online: http://repository.ipb.ac.id/handle/123456789/81572 (accessed on 24 August 2022).
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identification through DNA barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–322. [Google Scholar] [CrossRef]
- Villalta, I.; Ledet, R.; Baude, M.; Genoude, D.; Bouget, C.; Cornillon, M.; Moreau, S.; Courtial, B.; Lopez-Vaamonde, C.A. DNA barcode-based survey of wild urban bees in the Loire Valley, France. Sci. Rep. 2021, 11, 4770. [Google Scholar] [CrossRef]
- Sheffield, C.; Heron, J.; Gibbs, J.; Onuferko, T.; Oram, R.; Best, L.; Silva, N.; Dumesh, S.; Pindar, A.; Rowe, G. Contribution of DNA barcoding to the study of the bees (Hymenoptera: Apoidea) of Canada: Progress to date. Can. Entomol. 2017, 149, 736–754. [Google Scholar] [CrossRef]
- Schmidt, S.; Schmid-Egger, C.; Morinière, J.; Haszprunar, G.; Hebert, P.D.N. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 2015, 15, 985–1000. [Google Scholar] [CrossRef]
- Françoso, E.; Arias, M.C. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and minibarcode. Mol. Ecol. Resour. 2013, 13, 844–850. [Google Scholar] [CrossRef]
- Packer, L.; Gibbs, J.; Sheffield, C.; Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 2009, 9, 42–50. [Google Scholar] [CrossRef]
- Köhler, F. From DNA taxonomy to barcoding—How a vague idea evolved into a biosystematic tool. Zoolog. Reihe 2007, 83, 44–51. [Google Scholar] [CrossRef]
- Sayusti, T.; Raffiudin, R.; Kahono, S.; Nagir, T. Stingless bees (Hymenoptera: Apidae) in South and West Sulawesi, Indonesia: Morphology, nest structure, and molecular characteristics. J. Apic. Res. 2021, 60, 143–156. [Google Scholar] [CrossRef]
- Galaschi-Teixeira, J.S.; Falcon, T.; Ferreira-Caliman, M.J.; Witter, S.; Francoy, T.M. Morphological, chemical and molecular analyses differentiate populations of the subterranean nesting stingless bee Mourella caerulea (Apidae: Meliponini). Apidologie 2018, 49, 367–377. [Google Scholar] [CrossRef]
- Ndungu, N.N.; Kiatoko, N.; Masiga, D.K.; Raina, S.K.; Pirk, C.W.W.; Yusuf, A.A. Compounds extracted from heads of African stingless bees (Hypotrigona Species) as a prospective taxonomic tool. Chemoecology 2018, 28, 51–60. [Google Scholar] [CrossRef]
- Ndungu, N.N.; Kiatoko, N.; Ciosi, M.; Salifu, D.; Nyansera, D.; Masiga, D.; Raina, S.K. Identification of stingless bees (Hymenoptera: Apidae) in Kenya using morphometrics and DNA barcoding. J. Apic. Res. 2017, 56, 341–353. [Google Scholar] [CrossRef]
- Makkar, G.S.; Chhuneja, P.K.; Singh, J. Stingless bee, Tetragonula iridipennis Smith, 1854 (Hymenoptera: Apidae: Meliponini): Molecular and morphological characterization. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 285–291. [Google Scholar] [CrossRef]
- Hurtado-Burillo, M.; Ruiz, C.; de Jesús May-Itzá, W.; QuezadaEúan, J.J.G.; De la Rúa, P. Barcoding stingless bees: Genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 2013, 44, 1–10. [Google Scholar] [CrossRef]
- Koch, H. Combining morphology and DNA barcoding resolves the taxonomy of Western Malagasy Liotrigona Moure, 1961 (Hymenoptera: Apidae: Meliponini). Afr. Invertebr. 2010, 51, 413–421. [Google Scholar] [CrossRef]
- May-Itzá, W.D.J.; Quezada-Euán, J.J.G.; Medina, L.A.M.; Enríquez, E.; De la Rúa, P. Morphometric and genetic differentiation in isolated populations of the endangered Mesoamerican stingless bee Melipona yucatanica (Hymenoptera: Apoidea) suggest the existence of a two species complex. Conserv. Genet. 2010, 11, 2079–2084. [Google Scholar] [CrossRef]
- Batalha-Filho, H.; Waldschmidt, A.M.; Campos, L.A.O.; Tavares, M.G.; Fernandes-Salomão, T.M. Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): Incongruence between morphology and mitochondrial DNA. Apidologie 2010, 41, 34–47. [Google Scholar] [CrossRef]
- Ramírez, S.R.; Roubik, D.W.; Skov, C.; Pierce, N.E. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 2010, 100, 552–572. [Google Scholar] [CrossRef]
- Suprianto; Trianto, M.; Alam, N.; Kirana, N.A.G.C. Karakter morfologi dan analisis daerah conserved gen elongation factor 1a (EF1a) pada Lepidotrigona terminata. Metamorf. J. Biol. Sci. 2020, 7, 30–39. [Google Scholar] [CrossRef]
- Dollin, A.E.; Dollin, L.J.; Sakagami, S.F. Australian stingless bees of the genus Trigona (Hymenoptera: Apidae). Invertebr. Syst. 1997, 11, 861–896. [Google Scholar] [CrossRef]
- Sakagami, S.F.; Inoue, T.; Salmah, S. Stingless bees of Central Sumatra. In Natural History of Social Wasps and Bees in Equatorial Sumatra; Sakagami, S.F., Ohgushi, R., Roubik, D.W., Eds.; Hokkaido University Press: Sapporo, Japan, 1990; pp. 125–137. [Google Scholar]
- Sakagami, S.F.; Inoue, T. Stingless bee of the genus Trigona (subgenus Trigonella) with notes on the reduction of spatha in male genitalia of the subgenus Tetragonula (Hymenoptera: Apidae). Kontyu 1987, 55, 610–627. [Google Scholar]
- White, P.S.; Densmore, L.D. Mitochondrial DNA isolation. In Molecular Genetic Analysis of Populations: A Practical Approach; Hoelzel, A.R., Ed.; IRL Press: Oxford, UK, 1992; pp. 29–58. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0 Beta 10; Sinauer Associates: Sunderland, UK, 2002. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Suriawanto, N.; Atmowidi, T.; Kahono, S. Nesting sites characteristics of stingless bees (Hymenoptera: Apidae) in Central Sulawesi, Indonesia. J. Insect Biodivers. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Patel, H.K.; Pastagia, J.J. Morphometric variation in workers of stingless bees Tetragonula laeviceps Smith in South Gujarat. Int. J. Plant Prot. 2016, 9, 445–449. [Google Scholar] [CrossRef]
- Novita, S.; Rustama; Sutriyono. Analisis morfometrik lebah madu pekerja Apis cerana budidaya pada dua ketinggian tempat yang berbeda. J. Sain Peternak. Indones. 2013, 8, 41–56. [Google Scholar] [CrossRef]
- Quezada-Euán, J.J.G.; López-Velasco, A.; Pérez-Balam, J.; Moo-Valle, H.; Velazquez- Madrazo, A.; Paxton, R.J. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Soc. 2011, 58, 31–38. [Google Scholar] [CrossRef]
- Raffiudin, R.; Sosromarsono, S.; Ratna, E.S.; Solihin, D.D. Keragaman morfologi lebah Apis cerana (Hymenoptera: Apidae) di Jawa Barat. Bul. Hama Dan Penyakit Tumbuh. 1999, 11, 20–25. [Google Scholar]
- Roubik, D.W. Stingless bee nesting biology. Apidologie 2006, 37, 124–143. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer: Berlin, Germany, 1987. [Google Scholar]
- Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Sun, C.; Chaplin-Kramer, R. Characterizing the morphology of Costa Rican stingless bees to parameterize the InVEST crop pollination model. bioRxiv 2022. [Google Scholar] [CrossRef]
- Nasuha, A.A.N.; Idris, A.G.; Nur ‘Aliyaa, N.; Badrina, M.N.N.; Malissa, M.; Khairiyah, M.H.S. Morphological variations of epiphytic Ficus deltoidea (Moraceae) and its agaonid pollinators, Blastophaga spp. Serangga 2021, 26, 206–225. [Google Scholar]
- Francoy, T.M.; Grassi, M.L.; Imperatriz-Fonseca, V.L.; May-Itzá, W.; Quezada-Euán, J.J.G. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 2011, 42, 499–507. [Google Scholar] [CrossRef]
- Francisco, F.O.; Nunes-Silva, P.; Francoy, T.M.; Wittmann, D.; Imperatriz-Fonseca, V.L.; Arias, M.C.; Morgan, E.D. Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Insectes Soc. 2008, 55, 231–237. [Google Scholar] [CrossRef]
- Santos, C.G.; Hartfelder, K. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae—A morphology/differential gene expression analysis. Genet. Mol. Biol. 2015, 38, 263–277. [Google Scholar] [CrossRef]
- Suka, T.; Tanaka, H. New mitochondrial CO1 haplotypes and genetic diversity in the honeybee Apis Koschevnikovi of the Crocker Range Park, Sabah, Malaysia. J. Trop. Biol. Conserv. 2005, 1, 1–7. [Google Scholar] [CrossRef]
- Bomtorin, A.D.; Barchuk, A.R.; Moda, L.; Simoes, Z.L. Hox gene expression leads to differential hind leg development between honeybee castes. PLoS ONE 2012, 7, e40111. [Google Scholar] [CrossRef]
- Izhaki, I.; Tsahar, E.; Paluy, I.; Friedman, J. Within population variation and interrelationships between morphology, nutritional content, and secondary compounds of Rhamnus alaternus fruits. New Phytol. 2002, 156, 217–223. [Google Scholar] [CrossRef]
- Dukku, U. Evaluation of Morphometric Characters of Honeybee (Apis mellifera L.) Populations in the Lake Chad Basin in Central Africa. Adv. Entomol. 2016, 4, 75–89. [Google Scholar] [CrossRef]
- Salces-Castellano, A.; Andújar, C.; López, H.; Pérez-Delgado, A.J.; Arribas, P.; Emerson, B.C. Flightlessness in insects enhances diversification and determines assemblage structure across whole communities. Proc. R. Soc. B 2021, 288, 20202646. [Google Scholar] [CrossRef]
- Suárez, D.; Arribas, P.; Jiménez-García, E.; Emerson, B.C. Dispersal ability and its consequences for population genetic differentiation and diversification. Proc. R. Soc. B 2022, 289, 20220489. [Google Scholar] [CrossRef]
- Christy, B.Y.; Roesma, D.I.; Dahelmi. Phylogenetic analysis of Tetragonula minangkabau and other species using cytochrome B gene. J. Apic. Sci. 2019, 63, 117–124. [Google Scholar] [CrossRef]
- Barley, A.J.; White, J.; Diesmos, A.C.; Brown, R.M. The challenge of species delimitation at the extremes: Diversification without morphological change in Philippine sun skinks. Evolution 2013, 67, 3556–3572. [Google Scholar] [CrossRef]
- Schönrogge, K.; Barr, B.; Wardlaw, J.C.; Napper, E.; Gardner, M.G.; Breen, J.; Elmes, G.W.; Thomas, J.A. When rare species become endangered: Cryptic speciation in myrmecophilous hoverflies. Biol. J. Linn. Soc. 2002, 75, 291–300. [Google Scholar] [CrossRef]
- Castanheira, E.B.; Contel, E.B.P. Geographic variation in Tetragonisca angustula (Hymenoptera, Apidae, Meliponinae). J. Apic. Res. 2005, 44, 101–105. [Google Scholar] [CrossRef]
- Francisco, F.O.; Santiago, L.R.; Brito, R.M.; Oldroyd, B.P.; Arias, M.C. Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 2014, 45, 1–9. [Google Scholar] [CrossRef]
- Koling, D.F.; Moretto, G. Mitochondrial discrimination of stingless bees Tetragonisca angustula (Apidae: Meliponini) from Santa Catarina state, Brazil. Apidologie 2010, 41, 454–462. [Google Scholar] [CrossRef]
- Quezada-Euán, J.J.G.; Paxton, R.J.; Palmer, K.A.; Itza, W.D.J.M.; Tay, W.T.; Oldroyd, B.P. Morphological and molecular characteristics reveal differentiation in a neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie 2007, 38, 247–258. [Google Scholar] [CrossRef]
- Khila, A.; Abouheif, E.; Rowe, L. Evolution of a novel appendage ground plan in water striders is driven by changes in the Hox gene Ultrabithorax. PLoS Genet. 2009, 5, e1000583. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Rebeiz, M.; Andolfatto, P.; Werner, T.; True, J.; Carroll, S.B. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 2008, 132, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Tojo, K.O.; Machida, R.Y. Techniques in embryological studies of mayflies (Insecta: Ephemeroptera). In Research Update on Ephemeroptera and Plecoptera; Gaino, E., Ed.; University of Perugia: Perugia, Italy, 2003; pp. 205–209. [Google Scholar]
- Averof, M. Arthropod evolution: Same hox genes, different body plans. Curr. Biol. 1997, 7, R634–R636. [Google Scholar] [CrossRef]
- Mahfooz, N.; Turchyn, N.; Mihajlovic, M.; Hrycaj, S.; Popadić, A. Ubx regulates differential enlargement and diversification of insect hind legs. PLoS ONE 2007, 2, e866. [Google Scholar] [CrossRef]
- Higgs, J.S.; Wattanachaiyingcharoen, W.; Oldroyd, B.P. A scientific note on a genetically-determined color morph of the dwarf honey bee, Apis andreniformis. Apidologie 2009, 40, 513–514. [Google Scholar] [CrossRef]
- Kaba, D.; Ravel, S.; Acapovi-Yao, G.; Solano, P.; Allou, K.; Bosson-Vanga, H.; Gardes, L.; N’Goran, E.K.; Schofield, C.J.; Koné, M.; et al. Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast. Parasites Vectors 2012, 5, 153. [Google Scholar] [CrossRef]
- Kratochwil, A.; Paxton, R.J.; Schwabe, A.; Aguiar, A.M.; Husemann, M. Morphological and genetic data suggest a complex pattern of inter-island colonisation and differentiation for mining bees (Hymenoptera: Anthophila: Andrena) on the Macaronesian Islands. Org. Divers. Evol. 2022, 22, 189–204. [Google Scholar] [CrossRef]
- Baur, H.; Kranz-Baltensperger, Y.; Cruaud, A.; Rasplus, J.Y.; Timokhov, A.V.; Gokhman, V.E. Morphometric analysis and taxonomic revision of Anisopteromalus ruschka (Hymenoptera: Chalcidoidea: Pteromalidae)—An integrative approach. Syst Entomol. 2014, 39, 691–709. [Google Scholar] [CrossRef]
- Baur, H.; Leuenberger, C. Analysis of ratios in multivariate morphometry. Syst. Biol. 2011, 60, 813–825. [Google Scholar] [CrossRef]
- Sungvornyothin, S.; Kumlert, R.; Paris, D.H.; Prasartvit, A.; Sonthayanon, P.; Apiwathnasorn, C.; Morand, S.; Stekolnikov, A.A.; Sumruayphol, S. Geometric morphometrics of the scutum for differentiation of trombiculid mites within the genus Walchia (Acariformes: Prostigmata: Trombiculidae), a probable vector of scrub typhus. Ticks Tick-Borne Dis. 2019, 10, 495–503. [Google Scholar] [CrossRef]
Group | Localities | Coordinates | Total Samples | References Collection No. | Sample Code and GenBank Accession No. | Hindleg |
---|---|---|---|---|---|---|
1 | Kota Marudu | 6.1763° N, 116.2328° E | 6 | TL5-1, TL5-2, TL5-3 | OM935867 | |
OQ545570 | HTC = Black | |||||
OQ545571 | BSC = Black | |||||
Tuaran | 6.4958° N, 116.7610° E | TL6-1, TL6-2, TL6-3 | OM935874 | |||
OQ545574 | HTC = Black | |||||
OQ545575 | BSC = Black | |||||
2 | Kinarut | 5.8370° N, 116.0433° E | 12 | TL1-1, TL1-2, TL1-3 | OM944002 | |
OQ538430 | HTC = Dark Brown | |||||
OQ538429 | BSC = Dark Brown | |||||
TL2-1, TL2-2, TL2-3 | OM935876 | |||||
OQ545566 | HTC = Dark Brown, | |||||
OQ545567 | BSC = Dark Brown | |||||
Putatan | 5.8912° N, 116.0485° E | TL3-1, TL3-2, TL3-3 | OM935869 | |||
OQ545568 | HTC = Dark Brown | |||||
OQ545569 | BSC = Dark Brown | |||||
TL4-1, TL4-2, TL4-3 | OM935866 | |||||
OQ545573 | HTC = Dark Brown | |||||
OQ545572 | BSC = Dark Brown | |||||
3 | FSA | 5.9306° N, 118.0116° E | 9 | TL10-1 | OM935871 | |
TL10-2 | OQ545582 | HTC = Blackish- Brown | ||||
TL10-3 | OQ545587 | BSC = Blackish- Brown | ||||
TL11-1 | OM935873 | |||||
TL11-2 | OQ545583 | HTC = Blackish- Brown | ||||
TL11-3 | OQ545585 | BSC = Blackish- Brown | ||||
TL12-1 | OM943485 | |||||
TL12-2 | OQ545584 | HTC = Blackish- Brown | ||||
TL12-3 | OQ545586 | BSC = Blackish- Brown | ||||
4 | Tuaran | 6.1763° N, 116.2328° E | 9 | TL7-1, TL7-2, TL7-3 | OM935875 | |
OQ545580 | HTC = Black | |||||
OQ545577 | BSC = Black | |||||
TL8-1, TL8-2, TL8-3 | OM977030 | |||||
OQ545579 | HTC = Black | |||||
OQ545578 | BSC = Black | |||||
RDC | 5.8760° N, 117.9449° E | TL9-1, TL9-2, TL9-3 | OM977031 | |||
OQ545581 | HTC = Black, | |||||
OQ545576 | BSC = Black | |||||
Outgroup species | 1 | Tetragonula fuscobalteata | ON458746 | - |
No. | Body Characteristics | |
---|---|---|
1. | Body size | Total length (TL) |
2. | Head width (HW) | |
3. | Head length (HL) | |
4. | Compound eye length (CEL) | |
5. | Compound eye width (CEW) | |
6. | Forewing length (including tegula) (FWLT) | |
7. | Forewing width (FWW) | |
8. | Forewing length (FWL) | |
9. | Mesoscutum length (ML) | |
10. | Mesoscutum width (MW) | |
11. | Mesoscutellum width (SW) | |
12. | Mesoscutellum length (SL) | |
13. | Hind tibia length (HTL) | |
14. | Hind tibia width (HTW) | |
15. | Hind basitarsus length (HBL) | |
16. | Hind basitarsus width (HBW) | |
17. | Body color and pubescence | Head color (HC) |
18. | Clypeus color (CC) | |
19. | Antennae scape color (ASC) | |
20. | Clypeus and frons plumose pubescence (CFPP) | |
21. | Hind tibia color (HTC) | |
22. | Hind basitarsus color (BSC) | |
23. | Hind leg setae pubescence (LSP) | |
24. | Hind leg setae pubescence length (LSPL) | |
25. | Thorax mesoscutellum pubescence (SP) | |
26. | Thorax mesoscutellum pubescence length (SPL) | |
27. | Thorax color (TC) |
No. | Body Measurements | Group | N | Mean (mm) | Standard Error (SE) | Minimum (mm) | Maximum (mm) |
---|---|---|---|---|---|---|---|
1 | TL *** | 1 | 9 | 3.43 a | 0.01 | 3.39 | 3.47 |
2 | 12 | 3.70 b | 0.01 | 3.65 | 3.75 | ||
3 | 9 | 4.24 b | 0.12 | 3.73 | 4.52 | ||
4 | 6 | 3.74 c | 0.02 | 3.69 | 3.79 | ||
2 | HW *** | 1 | 9 | 1.54 a | 0.01 | 1.5 | 1.59 |
2 | 12 | 1.65 b | 0.01 | 1.6 | 1.7 | ||
3 | 9 | 1.82 b | 0.04 | 1.64 | 1.92 | ||
4 | 6 | 1.66 c | 0.02 | 1.6 | 1.71 | ||
3 | HL *** | 1 | 9 | 1.38 a | 0.01 | 1.33 | 1.43 |
2 | 12 | 1.41 a | 0.01 | 1.36 | 1.45 | ||
3 | 9 | 1.55 b | 0.02 | 1.43 | 1.61 | ||
4 | 6 | 1.47 c | 0.01 | 1.44 | 1.5 | ||
4 | CEL *** | 1 | 9 | 1.03 a | 0.01 | 1 | 1.07 |
2 | 12 | 1.20 b | 0.01 | 1.16 | 1.26 | ||
3 | 9 | 1.28 c | 0.01 | 1.23 | 1.32 | ||
4 | 6 | 1.25 c | 0.02 | 1.2 | 1.31 | ||
5 | CEW *** | 1 | 9 | 0.45 b | 0.01 | 0.41 | 0.49 |
2 | 12 | 0.35 a | 0.01 | 0.3 | 0.41 | ||
3 | 9 | 0.46 b | 0.01 | 0.4 | 0.51 | ||
4 | 6 | 0.43 b | 0.01 | 0.4 | 0.46 | ||
6 | FWLT *** | 1 | 9 | 3.69 a | 0.01 | 3.65 | 3.75 |
2 | 12 | 4.34 b | 0.01 | 4.29 | 4.38 | ||
3 | 9 | 4.39 c | 0.01 | 4.32 | 4.45 | ||
4 | 6 | 4.34 b | 0.02 | 4.28 | 4.39 | ||
7 | FWW *** | 1 | 9 | 1.21 a | 0.01 | 1.17 | 1.26 |
2 | 12 | 1.37 b | 0.01 | 1.32 | 1.43 | ||
3 | 9 | 1.52 c | 0.02 | 1.4 | 1.6 | ||
4 | 6 | 1.42 b | 0.02 | 1.35 | 1.48 | ||
8 | FWL *** | 1 | 9 | 3.30 a | 0.01 | 3.26 | 3.35 |
2 | 12 | 3.94 b | 0.01 | 3.89 | 3.98 | ||
3 | 9 | 3.99 c | 0.01 | 3.92 | 4.05 | ||
4 | 6 | 3.94 b | 0.02 | 3.89 | 3.99 | ||
9 | ML *** | 1 | 9 | 0.95 a | 0.01 | 0.91 | 0.99 |
2 | 12 | 0.98 a | 0.01 | 0.94 | 1.04 | ||
3 | 9 | 1.05 b | 0.01 | 1 | 1.13 | ||
4 | 6 | 1.05 b | 0.03 | 0.97 | 1.14 | ||
10 | MW *** | 1 | 9 | 1.06 a | 0.01 | 1.02 | 1.11 |
2 | 12 | 1.10 a | 0.01 | 1.05 | 1.14 | ||
3 | 9 | 1.18 c | 0.02 | 1.1 | 1.25 | ||
4 | 6 | 1.14 b | 0.01 | 1.1 | 1.18 | ||
11 | SW *** | 1 | 9 | 0.66 a | 0.01 | 0.62 | 0.71 |
2 | 12 | 0.71 b | 0.01 | 0.66 | 0.75 | ||
3 | 9 | 0.78 c | 0.01 | 0.72 | 0.83 | ||
4 | 6 | 0.74 b | 0.02 | 0.68 | 0.79 | ||
12 | SL *** | 1 | 9 | 0.21 a | 0.01 | 0.18 | 0.27 |
2 | 12 | 0.25 a | 0.01 | 0.2 | 0.29 | ||
3 | 9 | 0.31 a | 0.02 | 0.23 | 0.38 | ||
4 | 6 | 0.24 b | 0.02 | 0.19 | 0.29 | ||
13 | HTL *** | 1 | 9 | 1.36 a | 0.01 | 1.31 | 1.42 |
2 | 12 | 1.50 b | 0.01 | 1.46 | 1.54 | ||
3 | 9 | 1.69 c | 0.03 | 1.53 | 1.79 | ||
4 | 6 | 1.57 d | 0.01 | 1.54 | 1.6 | ||
14 | HTW *** | 1 | 9 | 0.42 a | 0.01 | 0.38 | 0.48 |
2 | 12 | 0.49 b | 0.01 | 0.44 | 0.53 | ||
3 | 9 | 0.59 c | 0.01 | 0.52 | 0.65 | ||
4 | 6 | 0.54 d | 0.02 | 0.5 | 0.6 | ||
15 | HBL *** | 1 | 9 | 0.55 a | 0.01 | 0.52 | 0.6 |
2 | 12 | 0.57 a | 0.01 | 0.52 | 0.63 | ||
3 | 9 | 0.66 c | 0.01 | 0.6 | 0.71 | ||
4 | 6 | 0.62 b | 0.01 | 0.6 | 0.66 | ||
16 | HBW *** | 1 | 9 | 0.25 a | 0.01 | 0.21 | 0.31 |
2 | 12 | 0.27 a | 0.01 | 0.23 | 0.33 | ||
3 | 9 | 0.33 b | 0.01 | 0.3 | 0.38 | ||
4 | 6 | 0.31 b | 0.02 | 0.25 | 0.36 |
No | Body Color and Hair | Group | N | Mean Rank | Standard Error (SE) |
---|---|---|---|---|---|
1 | HC *** | 1 | 9 | 1.00 | 0.00 |
2 | 12 | 2.00 | 0.00 | ||
3 | 9 | 1.00 | 0.00 | ||
4 | 6 | 1.00 | 0.00 | ||
2 | CC *** | 1 | 9 | 1.00 | 0.00 |
2 | 12 | 2.00 | 0.00 | ||
3 | 9 | 1.00 | 0.00 | ||
4 | 6 | 1.00 | 0.00 | ||
3 | ASC *** | 1 | 9 | 2.33 | 0.17 |
2 | 12 | 1.00 | 0.00 | ||
3 | 9 | 2.00 | 0.00 | ||
4 | 6 | 2.00 | 0.00 | ||
4 | CFPP *** | 1 | 9 | 1.00 | 0.00 |
2 | 12 | 1.00 | 0.00 | ||
3 | 9 | 1.00 | 0.00 | ||
4 | 6 | 2.00 | 0.00 | ||
5 | HTC *** | 1 | 9 | 3.00 | 0.00 |
2 | 12 | 2.00 | 0.00 | ||
3 | 9 | 1.67 | 0.33 | ||
4 | 6 | 1.00 | 0.00 | ||
6 | BSC *** | 1 | 9 | 3.00 | 0.00 |
2 | 12 | 2.00 | 0.00 | ||
3 | 9 | 1.67 | 0.33 | ||
4 | 6 | 1.00 | 0.00 | ||
7 | SP * | 1 | 9 | 1.33 | 0.17 |
2 | 12 | 1.00 | 0.00 | ||
3 | 9 | 1.00 | 0.00 | ||
4 | 6 | 1.00 | 0.00 | ||
8 | LSPL NS | 1 | 9 | 1.33 | 0.17 |
2 | 12 | 1.00 | 0.00 | ||
3 | 9 | 1.33 | 0.17 | ||
4 | 6 | 1.00 | 0.00 | ||
9 | SP * | 1 | 9 | 1.33 | 0.17 |
2 | 12 | 1.00 | 0.00 | ||
3 | 9 | 1.00 | 0.00 | ||
4 | 6 | 1.00 | 0.00 | ||
10 | SPL * | 1 | 9 | 1.33 | 0.17 |
2 | 12 | 1.00 | 0.00 | ||
3 | 9 | 1.00 | 0.00 | ||
4 | 6 | 1.00 | 0.00 | ||
11 | TC *** | 1 | 9 | 3.00 | 0.00 |
2 | 12 | 2.00 | 0.00 | ||
3 | 9 | 3.00 | 0.00 | ||
4 | 6 | 3.00 | 0.00 |
Photographs of T. laeviceps s.l. | Group, Haplotypes | Morphological and Morphometrical Characteristics | |
---|---|---|---|
Group 2, TL2-1 and TL4-1 | Antennae scape color (ASC) = yellowish-brown, Thorax color (TC) = dark brown. Body total length (TL) = 3.65 mm, Forewing length (FWL) = 3.89 mm. Forewing width (FWW) = 1.32 mm. | ||
Antennae scape color (ASC) = yellowish-brown, Thorax color (TC)= dark brown. Body total length (TL) = 3.75 mm. Forewing length (FWL) = 3.98 mm. Forewing width (FWW) = 1.43 mm. | |||
Group 3, TL11-1 | Antennae scape color (ASC) = dark brown, Thorax color (TC) = black. Body total length (TL) = 4.52 mm. Forewing length (FWL) = 4.05 mm. Forewing width (FWW) = 1.60 mm. | ||
Group 1, TL 6-1 | Antennae scape color (ASC) = blackish-brown, Thorax color (TC) = black. Body total length (TL) = 3.39 mm. Forewing length (FWL) = 3.26 mm. Forewing width (FWW) = 1.17 mm. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ador, K.; Gobilik, J.; Benedick, S. Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae). Insects 2023, 14, 438. https://doi.org/10.3390/insects14050438
Ador K, Gobilik J, Benedick S. Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae). Insects. 2023; 14(5):438. https://doi.org/10.3390/insects14050438
Chicago/Turabian StyleAdor, Kimberly, Januarius Gobilik, and Suzan Benedick. 2023. "Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae)" Insects 14, no. 5: 438. https://doi.org/10.3390/insects14050438
APA StyleAdor, K., Gobilik, J., & Benedick, S. (2023). Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae). Insects, 14(5), 438. https://doi.org/10.3390/insects14050438