Predicting the Distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under Climate Change in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Data Sources and Processing
2.2. Environmental Factors
2.3. MaxEnt Modeling
3. Results
3.1. Model Optimization Results and Accuracy Evaluation
3.2. Model Performance and Key Environment Variables
3.3. Predicting the Current Distribution of Sclerodermus sichuanensis in China
3.4. Potential Distribution of S. sichuanensis in the Future Period
3.5. Environmental Variables Affecting the Geographical Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Yang, W.; Zhou, Z.; Yang, C.; Huang, Q. Parasitization Capacity Fecundity and Life Table of Laboratory Population of Scleroderma sichuanensis Xiao on the Pupae of Tenebrio molitor Linne. Chin. J. Biol. Control 2007, 23, 110–114. (In Chinese) [Google Scholar]
- Xu, D.; Zhuo, Z.; Wang, R.; Ye, M.; Pu, B. Modeling the Distribution of Zanthoxylum armatum in China with MaxEnt modeling. Glob. Ecol. Conserv. 2019, 19, e691. [Google Scholar] [CrossRef]
- Tao, Y.; Zhu, X.; Yang, W.; Yang, H.; Yang, C.; Guan, F.; Han, Q. Molecular Characterization, Expression and Binding Specificity Analysis of the Odorant-Binding Proteins of Scleroderma sichuanensis Xiao (Hymenoptera: Bethylidae). J. Kans. Entomol. Soc. 2020, 92, 459. [Google Scholar] [CrossRef]
- Zhuo, Z.; Xu, D.; Pu, B.; Wang, R.; Ye, M. Predicting Distribution of Zanthoxylum bungeanum Maxim. in China. BMC Ecol. 2020, 20, 46. [Google Scholar] [CrossRef]
- Qi, Z.; Ling, M.; Bao-Ping, L.I. Cooperatively Breeding Behavior of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) on the Host Monochamus alternatus (Coleoptera: Cerambycidae). Acta Entomol. Sin. 2020, 63, 327–333. (In Chinese) [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, Z. Structural and Major Physiological & Biological Changes of Substitute Host Parasitized by Scleroderma sichuanensis Xiao (Hymenoptera: Bethylidae). Sci. Silvae Sin. 2003, 39, 76–84. (In Chinese) [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Chen, D.; Guo, X.; Li, Q.; Wang, M. Analysis of the Potential Distribution of the Asian Citrusps Yllid, Diaphorina citri Kuwayama in Southwest China Using the MaxEnt model. Plant Prot. 2021, 47, 84–90. (In Chinese) [Google Scholar]
- Zhu, X. Binding Characterization of OBP1 and OBP2 in the Scleroderma sichuanensis Xiao and Behavior Verification. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2017. (In Chinese). [Google Scholar]
- Zheng, Y.; Song, Z.; Zhang, Y.; Li, D. Ability of Spalangia endius (Hymenoptera: Pteromalidae) to Parasitize Bactrocera dorsalis (Diptera: Tephritidae) after Switching Hosts. Insects 2021, 12, 613. [Google Scholar] [CrossRef]
- Bieńkowski, A.; Orlova-Bienkowskaja, M. Alien Leaf Beetles (Coleoptera, Chrysomelidae) of European Russia and Some General Tendencies of Leaf Beetle Invasions. PLoS ONE 2018, 13, e203561. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- McCarthy, A.; Peck, L.; Hughes, K.; Aldridge, D. Antarctica: The Final Frontier for Marine Biological Invasions. Glob. Change Biol. 2019, 25, 2221–2241. [Google Scholar] [CrossRef]
- Choi, W.; Nam, Y.; Lee, C.; Choi, B.; Shin, Y.; Lim, J.; Koh, S.; Park, Y. Changes in Major Insect Pests of Pine Forests in Korea Over the Last 50 Years. Forests 2019, 10, 692. [Google Scholar] [CrossRef]
- Cuthbert, R.; Diagne, C.; Hudgins, E.; Turbelin, A.; Ali Ahmed, D.; Albert, C.; Bodey, T.; Briski, E.; Essl, F.; Haubrock, P.; et al. Biological Invasion Costs Reveal Insufficient Proactive Management Worldwide. Sci. Total Environ. 2022, 819, 153404. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Meng, Y.E.; Zu-Ji, Z.; Qian-Qian, H.E. Effects of Feeding Foods with Different Protein Contents on the Growth of Tenebrio molitor and Its Parasitism by Scleroderma sichuanensis Xiao. Chin. J. Appl. Entomol. 2016, 53, 207–212. (In Chinese) [Google Scholar]
- Wei, Y.; Zheng-Hua, X.; Zu-Ji, Z.; Qiong, H.; Chun-Ping, Y. The Learning Behavior of Scleroderma sichuanensis Xiao (Hymenoptera: Bethylidae) Fed on the Fictitious Hosts Tenebrio molitor L. (Coleoptera: Tenebrionidae). Acta Entomol. Sin. 2005, 48, 731–735. (In Chinese) [Google Scholar] [CrossRef]
- Ruijun, X.U.; Ruliang, Z.; Qianfei, L.; Wei, L.I.; Yanxia, W. Prediction and Simulation of the Suitable Habitat of Monochamus Alternatus under Climate Warming. For. Resour. Manag. 2020, 109–116, 168. [Google Scholar] [CrossRef]
- Ravi, S.; Law, D.J.; Caplan, J.S.; Barron-Gafford, G.A.; Dontsova, K.M.; Espeleta, J.F.; Villegas, J.C.; Okin, G.S.; Breshears, D.D.; Huxman, T.E. Biological Invasions and Climate Change Amplify Each other’s Effects on Dryland Degradation. Glob. Change Biol. 2022, 28, 285–295. [Google Scholar] [CrossRef]
- Zhuo, Z.; Yang, W.; Xu, D.; Yang, C.; Yang, H. Effects of Scleroderma sichuanensis Xiao (Hymenoptera: Bethylidae) Venom and Parasitism on Nutritional Content Regulation in Host Tenebrio molitor L. (Coleoptera: Tenebrionidae). SpringerPlus 2016, 5, 1017. [Google Scholar] [CrossRef]
- Yan, H.; Feng, L.; Zhao, Y.; Feng, L.; Wu, D.; Zhu, C. Prediction of the Spatial Distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2019, 21, e856. [Google Scholar] [CrossRef]
- Iannella, M.; D’Alessandro, P.; Biondi, M. Forecasting the Spread Associated with Climate Change in Eastern Europe of the Invasive Asiatic Flea Beetle, Luperomorpha xanthodera (Coleoptera: Chrysomelidae). Eur. J. Entomol. 2020, 117, 130–138. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, X.; Yang, Z.; Wieprecht, S.; Zhang, S.; Wu, Y. Evaluating the Ecological Influence of Hydraulic Projects: A Review of Aquatic Habitat Suitability Models. Renew. Sustain. Energy Rev. 2017, 68, 748–762. [Google Scholar] [CrossRef]
- Zou, Y.; Ge, X.Z.; Guo, S.W.; Zhou, Y.T.; Wang, T.; Zong, S.X. Impacts of Climate Change and Host Plant Availability on the Global Distribution of Brontispa longissima (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2020, 76, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Na, X.D.; Zhou, H.T.; Zang, S.Y.; Wu, C.S.; Li, W.L.; Li, M. Maximum Entropy modeling for Habitat Suitability Assessment of Red-crowned Crane. Ecol. Indic. 2018, 91, 439–446. [Google Scholar] [CrossRef]
- Gao, H. Method of Improving the Conversion of Cadmium-containing Plant Biomass Energy under the Background of Soil Pollution. Energy Rep. 2022, 8, 10803–10811. [Google Scholar] [CrossRef]
- Fantle-Lepczyk, J.; Haubrock, P.; Kramer, A.; Cuthbert, R.; Turbelin, A.; Crystal-Ornelas, R.; Diagne, C.; Courchamp, F. Economic costs of biological invasions in the United States. Sci. Total Environ. 2022, 806, 151318. [Google Scholar] [CrossRef]
- Yang, L.; Liu, R.; Zhao, X.; Huang, S.; Hua, J.; Sun, S. Vertical Distribution of Wood-boring Pests and Its Parasitic Wasp in Pinus tabulaeformis. Chin. J. Biol. Control 2021, 37, 701–708. (In Chinese) [Google Scholar] [CrossRef]
- Ma, B.; Sun, J. Predicting the Distribution of Stipa Purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 2018, 18, 10. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Luo, W.; Wang, M.; Lu, X.; Huang, T.; Zhao, J.; Li, Q. Predicting the Potential Distribution of the Asian Citrus Psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 2019, 7, e7323. [Google Scholar] [CrossRef]
- Gao, T.; Xu, Q.; Liu, Y.; Zhao, J.; Shi, J. Predicting the Potential Geographic Distribution of Sirex nitobei in China under Climate Change Using Maximum Entropy Model. Forests 2021, 12, 151. [Google Scholar] [CrossRef]
- Sady, E.; Kielkiewicz, M.; Kozłowski, W. The Rose Flea Beetle (Luperomorpha xanthodera, Coleoptera: Chrysomelidae), an Alien Species in Central Poland—From an Episodic Occurrence in an Established Population. J. Plant Prot. Res. 2020, 60, 86–97. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, J.; Shi, J. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt. J. Beijing For. Univ. 2020, 42, 64–71. (In Chinese) [Google Scholar]
- Li, X.; Xu, D.; Jin, Y.; Zhuo, Z.; Yang, H.; Hu, J.; Wang, R. Predicting the Current and Future Distributions of Brontispa longissima (Coleoptera: Chrysomelidae) under Climate Change in China. Glob. Ecol. Conserv. 2020, 25, e1444. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global Potential Distribution Prediction of Xanthium italicum Based on Maxent Model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, P.; Lin, F.; Yang, W.; Gaisberger, H.; Kettle, C. MaxEnt Modelling for Predicting the Potential Distribution of a Near Threatened Rosewood Species (Dalbergia cultrata Graham ex Benth). Ecol. Eng. 2019, 141, 105612. [Google Scholar] [CrossRef]
- Rodríguez-Merino, A.; Garcia Murillo, P.; Cirujano, S.; Fernández-Zamudio, R. Predicting the Risk of Aquatic Plant Invasions in Europe: How Climatic Factors and Anthropogenic Activity Influence Potential Species Distributions. J. Nat. Conserv. 2018, 45, 58–71. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Liao, W.; Wang, R.; Zhuo, Z. Predicting the Distributions of Scleroderma guani (Hymenoptera: Bethylidae) under Climate Change in China. Ecol. Evol. 2022, 12, e9410. [Google Scholar] [CrossRef]
- Purohit, S.; Rawat, N. MaxEnt modeling to Predict the Current and Future Distribution of Clerodendrum infortunatum L. under Climate Change Scenarios in Dehradun District, India. Model. Earth Syst. Environ. 2022, 8, 2051–2063. [Google Scholar] [CrossRef]
- Fand, B.; Shashank, P.R.; Suroshe, S.; Chandrashekar, K.; Meshram, N.; Hulagappa, T. Invasion Risk of the South American Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions Based on MaxEnt Ecological Niche Modelling. Int. J. Trop. Insect Sci. 2020, 40, 561–571. [Google Scholar] [CrossRef]
Environmental Variables | Abbreviation |
---|---|
Annual Mean Temperature | bio1 |
Mean Diurnal Range (Mean of monthly [max temp–min temp]) | bio2 |
Isothermality (bio 2/bio 7) (×100) | bio3 |
Temperature Seasonality (SD × 100) | bio4 |
Max Temperature of Warmest Month | bio5 |
Min Temperature of Coldest Month | bio6 |
Temperature Annual Range (bio5–bio6) | bio7 |
Mean Temperature of Wettest Quarter | bio8 |
Mean Temperature of Driest Quarter | bio9 |
Mean Temperature of Warmest Quarter | bio10 |
Mean Temperature of Coldest Quarter | bio11 |
Annual Precipitation | bio12 |
Precipitation of Wettest Month | bio13 |
Precipitation of Driest Month | bio14 |
Precipitation Seasonality (Coefficient of Variation) | bio15 |
Precipitation of Wettest Quarter | bio16 |
Precipitation of Driest Quarter | bio17 |
Precipitation of Warmest Quarter | bio18 |
Precipitation of Coldest Quarter | bio19 |
Altitude | Alt |
Environmental Variables | Abbreviation | Percent Contribution/% | Permutation Importance/% |
---|---|---|---|
Precipitation of Warmest Quarter | bio18 | 47.7 | 7.5 |
Temperature Seasonality (SD × 100) | Bio4 | 17.7 | 1.8 |
Precipitation Seasonality (Coefficient of Variation) | Bio15 | 7.6 | 0.6 |
Precipitation of Wettest Month | bio13 | 5.4 | 5.1 |
Isothermality (bio 2/bio 7) (×100) | Bio3 | 4.4 | 21.4 |
Min Temperature of Coldest Month | Bio6 | 4.1 | 0.8 |
Precipitation of Coldest Quarter | Bio19 | 3.5 | 4.7 |
Mean Diurnal Range (Mean of monthly [max temp–min temp]) | Bio2 | 2.2 | 2.1 |
Max Temperature of Warmest Month | Bio5 | 1.6 | 2.2 |
Temperature Annual Range (bio5–bio6) | Bio7 | 1.1 | 0 |
Mean Temperature of Coldest Quarter | Bio11 | 1 | 24.5 |
Mean Temperature of Wettest Quarter | Bio8 | 1 | 0.2 |
Province | High Suitable Area (km2) | Medium Suitable Area (km2) | Low Suitable Area (km2) | No Suitable Area (km2) | Total Area of Provinces (km2) | Percentage of High Suitable Areas in Province (%) | Percentage of High Suitable Areas in China (%) |
---|---|---|---|---|---|---|---|
Sichuan | 7082 | 1369 | 7788 | 9989 | 26,228 | 27.0 | 24.7 |
Chongqing | 3374 | 534 | 548 | 0 | 4456 | 75.7 | 11.8 |
Guizhou | 3237 | 5178 | 779 | 0 | 9194 | 35.2 | 11.3 |
Hebei | 2836 | 4275 | 3919 | 281 | 11,311 | 25.1 | 9.9 |
Jiangsu | 1782 | 3274 | 558 | 0 | 5614 | 31.7 | 6.2 |
Zhejiang | 1586 | 2385 | 1477 | 0 | 5448 | 29.1 | 5.5 |
Guangxi | 1518 | 10,013 | 541 | 0 | 12,072 | 12.6 | 5.3 |
Hunan | 1054 | 7989 | 2125 | 0 | 11,168 | 9.4 | 3.7 |
Hubei | 1030 | 6606 | 2479 | 0 | 10,115 | 10.2 | 3.6 |
Shandong | 781 | 3176 | 4910 | 0 | 8867 | 8.8 | 2.7 |
Tianjin | 699 | 5 | 0 | 0 | 704 | 99.3 | 2.4 |
Guangdong | 668 | 4641 | 3681 | 0 | 8990 | 7.4 | 2.3 |
Beijing | 656 | 307 | 29 | 0 | 992 | 66.1 | 2.3 |
Fujian | 560 | 1503 | 4268 | 0 | 6331 | 8.9 | 2.0 |
Liaoning | 407 | 3260 | 5080 | 277 | 9024 | 4.5 | 1.4 |
Shanghai | 301 | 37 | 0 | 0 | 338 | 89.1 | 1.1 |
Anhui | 269 | 5004 | 2424 | 0 | 7697 | 3.5 | 0.9 |
Yunnan | 233 | 1054 | 17,770 | 689 | 19,746 | 1.2 | 0.8 |
Xizang | 191 | 440 | 7708 | 57,510 | 65,849 | 0.3 | 0.7 |
Gansu | 79 | 1479 | 9570 | 12,793 | 23,921 | 0.3 | 0.3 |
Inner Mongolia | 77 | 3276 | 35,634 | 35,383 | 74,370 | 0.1 | 0.3 |
Shaanxi | 54 | 2685 | 8960 | 41 | 11,740 | 0.5 | 0.2 |
Hong Kong | 52 | 0 | 0 | 0 | 52 | 100.0 | 0.2 |
Jiangxi | 41 | 1975 | 6780 | 0 | 8796 | 0.5 | 0.1 |
Taiwan | 35 | 507 | 975 | 320 | 1837 | 1.9 | 0.1 |
Hainan | 18 | 874 | 786 | 0 | 1678 | 1.1 | 0.1 |
Henan | 11 | 2048 | 7231 | 0 | 9290 | 0.1 | 0.0 |
Jilin | 8 | 2065 | 6598 | 3592 | 12,263 | 0.1 | 0.0 |
Shanxi | 1 | 682 | 7942 | 566 | 9191 | 0.0 | 0.0 |
Xinjiang | 0 | 23 | 4680 | 96,455 | 101,158 | 0.0 | 0.0 |
Qinghai | 0 | 61 | 2585 | 38,446 | 41,092 | 0.0 | 0.0 |
Heilongjiang | 0 | 186 | 10,586 | 20,588 | 31,360 | 0.0 | 0.0 |
Ningxia | 0 | 930 | 2104 | 0 | 3034 | 0.0 | 0.0 |
China | 28,640 | 77,841 | 170,515 | 276,930 | — | 0.3 | — |
Predicted Area (km2) | Comparison with Current Distribution (%) | ||||||
---|---|---|---|---|---|---|---|
Decade | Scenarios | High Suitable | Medium Suitable | Low Suitable | High Suitable | Medium Suitable | Low Suitable |
current | — | 28,691 | 77,841 | 170,515 | — | — | — |
2050s | SSP1-2.6 | 25,075 | 83,412 | 162,357 | −12.6 | 7.2 | −4.8 |
SSP2-4.5 | 25,767 | 84,029 | 158,285 | −10.2 | 8.0 | −7.2 | |
SSP5-8.5 | 44,405 | 111,638 | 202,299 | 54.8 | 43.4 | 18.6 | |
2090s | SSP1-2.6 | 22,454 | 77,184 | 170,955 | −21.7 | −0.8 | 0.3 |
SSP2-4.5 | 26,215 | 84,614 | 156,550 | −8.6 | 8.7 | −8.2 | |
SSP5-8.5 | 24,423 | 89,708 | 157,467 | −14.9 | 15.3 | −7.7 |
Environmental Variables | Unit | Suitable Range | Optimum Value |
---|---|---|---|
bio2 | °C | 2.40–8.10 | 5.40 |
bio6 | °C | −11.00–13.50 | 3.00 |
bio18 | mm | 381.66–1569.35 | 534.99 |
bio5 | °C | 26.69–33.04 | 30.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Qian, Q.; Liu, L.; Xu, D. Predicting the Distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under Climate Change in China. Insects 2023, 14, 475. https://doi.org/10.3390/insects14050475
Gao H, Qian Q, Liu L, Xu D. Predicting the Distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under Climate Change in China. Insects. 2023; 14(5):475. https://doi.org/10.3390/insects14050475
Chicago/Turabian StyleGao, Hui, Qianqian Qian, Lijuan Liu, and Danping Xu. 2023. "Predicting the Distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under Climate Change in China" Insects 14, no. 5: 475. https://doi.org/10.3390/insects14050475
APA StyleGao, H., Qian, Q., Liu, L., & Xu, D. (2023). Predicting the Distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under Climate Change in China. Insects, 14(5), 475. https://doi.org/10.3390/insects14050475