Bactericera tremblayi (Wagner, 1961) (Hemiptera: Triozidae): The Prevalent Psyllid Species in Leek Fields of Northwestern Spain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Sampling Methodology
2.3. Development and Survival of Juvenile Stages at Different Constant Temperatures
2.4. Thermal Models and Critical Temperatures Estimation
2.5. Data Analysis
3. Results
3.1. Extensive Survey
3.2. Seasonal Monitoring
3.3. Developmental Time and Survival of Immature Stages of B. tremblayi
3.4. Model Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MAPA Estadísticas Agrarias: Agricultura. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/default.aspx (accessed on 25 October 2022).
- Asensio-S.Manzanera, M.C.; Santiago-Calvo, Y.; Ruano-Rosa, D.; Vacas-Izquierdo, R.; Flores-Pérez, D. Evolución de las poblaciones de Bactericera tremblayi (Wagner, 1961) (Insecta: Hemiptera: Sternorrhyncha: Psylloidea) en cultivos hortícolas de Castilla y León y su posible relación con los síntomas aparecidos. In Proceedings of the XI Congreso Nacional de Evaluación de Impacto Ambiental, Madrid, Spain, 4–8 November 2019. [Google Scholar]
- Ouvrard, D.; Burckhardt, D. First Record of the Onion Psyllid Bactericera tremblayi (Wagner, 1961) in France (Insecta: Hemiptera: Steirnorrhyncha: Psylloidea), New Symptoms on Leek Crops and Reassessment of the B. nigricornis-Group Distribution. EPPO Bull. 2012, 42, 585–590. [Google Scholar] [CrossRef]
- Hodkinson, D. Status and Taxonomy of the Trioza (Bactericera) nigricornis Förster Complex (Hemiptera: Triozidae). Bull. Entomol. Res. 1981, 71, 671–679. [Google Scholar] [CrossRef]
- Hodkinson, D. Life Cycle Variation and Adaptation in Jumping Plant Lice (Insecta: Hemiptera: Psylloidea): A Global Synthesis. J. Nat. Hist. 2009, 43, 65–179. [Google Scholar] [CrossRef]
- EPPO Bactericera tremblayi (TRIZTE) [World Distribution] EPPO Global Database. Available online: https://gd.eppo.int/taxon/TRIZTE/distribution (accessed on 16 October 2022).
- Conci, C.; Rapisarda, C.; Tamanini, L. Annotated Catalogue of the Italian Psylloidea. Second Part (Insecta Homoptera). Atti della Accad. Roveretana degli Agiati Ser. 7 B. Cl. di Sci. Mat. Fis. e Nat. 1996, 5B, 5–207. [Google Scholar]
- Jerinic-Prodanovic, D. Distribution, Biology and Harmfulnes of Jumping Plant-Louse Bactericera tremblayi Wagner (Homoptera, Triozidae) in Serbia. Pestic. Phytomedicine 2006, 21, 31–38. [Google Scholar]
- Teresani, G.; Hernández, E.; Bertolini, E.; Siverio, F.; Marroquín, C.; Molina, J.; de Mendoza, A.H.; Cambra, M. Search for Potential Vectors of Candidatus Liberibacter Solanacearum: Population Dynamics in Host Crops. Spanish J. Agric. Res. 2015, 13, e1002. [Google Scholar] [CrossRef]
- Antolínez, C.; Moreno, A.; Ontiveros, I.; Pla, S.; Plaza, M.; Sanjuan, S.; Palomo, J.L.; Sjölund, M.J.; Sumner-Kalkun, J.; Arnsdorf, Y.; et al. Seasonal Abundance of Psyllid Species on Carrots and Potato Crops in Spain. Insects 2019, 10, 287. [Google Scholar] [CrossRef]
- Asensio-S.Manzanera, M.C.; Santiago-Calvo, Y.; Palomo-Gómez, J.L.J.J.L.J.; Marquínez-Ramírez, R.; Bastin, S.; García-Méndez, E.E.M.; Hernández-Suárez, E.; Siverio-de-la-Rosa, F.; Asensio-S.-Manzanera, M.C.; Santiago-Calvo, Y.; et al. Survey of Candidatus Liberibacter Solanacearum and Its Associated Vectors in Potato Crop in Spain. Insects 2022, 13, 964. [Google Scholar] [CrossRef]
- Teresani, G.; Bertolini, E.; Alfaro-Fernández, A.; Martínez, C.; Tanaka, F.A.O.; Kitajima, E.W.; Roselló, M.; Sanjuán, S.; Ferrándiz, J.C.; López, M.M.; et al. Association of Candidatus Liberibacter Solanacearum with a Vegetative Disorder of Celery in Spain and Development of a Real-Time Pcr Method for Its Detection. Phytopathology 2014, 104, 804–811. [Google Scholar] [CrossRef]
- Moreno, A.; Miranda, M.P.; Fereres, A. Psyllids as Major Vectors of Plant Pathogens. Entomol. Gen. 2021, 41, 419–438. [Google Scholar] [CrossRef]
- Antolínez, C.; Fereres, A.; Moreno, A. Risk Assessment of Candidatus Liberibacter Solanacearum Transmission by the Psyllids Bactericera trigonica and B. tremblayi from Apiaceae Crops to Potato. Sci. Rep. 2017, 7, 45534. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.; Frazer, B.D.; Gilbert, N.G.A.P.; Gutierrez, A.P.; Mackauer, M. Temperature Requirements of Some Aphids and Their Parasites. J. Appl. Ecol. 1974, 11, 431–438. [Google Scholar] [CrossRef]
- Damos, P.; Savopoulou-Soultani, M. Temperature-Driven Models for Insect Development and Vital Thermal Requirements. Psyche 2012, 2012, 123405. [Google Scholar] [CrossRef]
- Saeidi, Z.; Nemati, A. Relationship between Temperature and Developmental Rate of Schizotetranychus smirnovi (Acari: Tetranychidae) on Almond. Int. J. Acarol. 2017, 43, 142–146. [Google Scholar] [CrossRef]
- MAPA Registro de Productos Fitosanitarios. Available online: https://servicio.mapa.gob.es/regfiweb (accessed on 1 December 2023).
- MAPA Guía de Gestión Integrada de Plagas: Liliaceas. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/guiagip-liliaceasprotegida_tcm30-434394.pdf (accessed on 1 December 2023).
- European Commission Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/1165/oj/spa (accessed on 1 December 2023).
- Irwin, M.E. Sampling Aphids in Soybean Fields. In Sampling Methods in Soybean Entomology; Springer: New York, NY, USA, 1980; pp. 239–259. [Google Scholar] [CrossRef]
- Irwin, M.E.; Ruesink, W.G. Vector Intensity: A Product of Propensity and Activity. In Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks; McLean, G.D., Garrett, R.G., Ruesink, W.G., Eds.; Academic Press: London, UK, 1986; pp. 13–33. [Google Scholar]
- Briere, J.F.; Pracros, P.; le Roux, A.Y.; Pierre, S. A Novel Rate Model of Temperature-Dependent Development for Arthropods. Environ. Entomol. 1999, 28, 22–29. [Google Scholar] [CrossRef]
- Lactin, D.J.; Holliday, N.J.; Johnson, D.L.; Craigen, R. Improved Rate Model of Temperature-Dependent Development by Arthropods. Environ. Entomol. 1995, 24, 68–75. [Google Scholar] [CrossRef]
- Taylor, F. Ecology and Evolution of Physiological Time in Insects. Am. Nat. 1981, 117, 1–23. [Google Scholar] [CrossRef]
- Ikemoto, T.; Kurahashi, I.; Shi, P.J. Confidence Interval of Intrinsic Optimum Temperature Estimated Using Thermodynamic SSI Model. Insect Sci. 2013, 20, 420–428. [Google Scholar] [CrossRef]
- Kontodimas, D.; Eliopoulos, P.; Stathas, G.; Economou, L. Comparative Temperature-Dependent Development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) Preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): Evaluation of a Linear and Variou. Environ. Entomol. 2004, 33, 1–11. [Google Scholar] [CrossRef]
- Ikemoto, T. Intrinsic Optimum Temperature for Development of Insects and Mites. Environ. Entomol. 2005, 34, 1377–1387. [Google Scholar] [CrossRef]
- Ikemoto, T. Tropical Malaria Does Not Mean Hot Environments. J. Med. Entomol. 2008, 45, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Ikemoto, T.; Egami, C.; Sun, Y.; Ge, F. A Modified Program for Estimating the Parameters of the SSI Model. Environ. Entomol. 2011, 40, 462–469. [Google Scholar] [CrossRef]
- Kazemi, M.H.; Jafarloo, M.M. Laboratory Investigation of the Biology of Bactericera tremblayi Wag. (Homoptera: Triozidae) a New Pest in Onion Fields of Iran. Am. J. Agric. Biol. Sci. 2008, 3, 686–688. [Google Scholar] [CrossRef]
- Veres, A.; Petit, S.; Conord, C.; Lavigne, C. Does Landscape Composition Affect Pest Abundance and Their Control by Natural Enemies? A Review. Agric. Ecosyst. Environ. 2013, 166, 110–117. [Google Scholar] [CrossRef]
- Togni, P.H.B.; Harterreiten-Souza, É.S.; Novaes, D.R.; Sujii, E.R. Spatial Dynamic and Spillover of the Polyphagous Pest Bemisia tabaci Is Influenced by Differences in Farmland Habitats on Tropical Organic Farms. Agric. Ecosyst. Environ. 2021, 320, 107610. [Google Scholar] [CrossRef]
- Mazzi, D.; Dorn, S. Movement of Insect Pests in Agricultural Landscapes. Ann. Appl. Biol. 2012, 160, 97–113. [Google Scholar] [CrossRef]
- Cranshaw, W.S. The Potato (Tomato) Psyllid, Paratrioza cockerelli (Sulc), as a Pest of Potatoes. In Advances in Potato Pest Biology and Management; Zehnder, G.W., Powelson, M.L., Janson, R.K., Raman, K.V., Eds.; APS Press: St. Paul, MN, USA, 1994; p. 665. [Google Scholar]
- Láska, P. Migration Flight of Carrot Psyllid (Trioza apicalis) at Various Latitudes Is Independent of Local Phenology. Plant Prot. Sci. 2013, 49, 187–192. [Google Scholar] [CrossRef]
- Djaman, K.; Higgins, C.; Begay, S.; Koudahe, K.; Allen, S.; Lombard, K.; O’Neill, M. Seasonal Occurrence of Potato Psyllid (Bactericera cockerelli) and Risk of Zebra Chip Pathogen (Candidatus Liberibacter Solanacearum) in Northwestern New Mexico. Insects 2019, 11, 3. [Google Scholar] [CrossRef]
- Tran, L.T.; Worner, S.P.; Hale, R.J.; Teulon, D.A.J. Estimating Development Rate and Thermal Requirements of Bactericera cockerelli (Hemiptera: Triozidae) Reared on Potato and Tomato by Using Linear and Nonlinear Models. Environ. Entomol. 2012, 41, 1190–1198. [Google Scholar] [CrossRef]
- Yang, X.B.; Liu, T.X. Life History and Life Tables of Bactericera cockerelli (Homoptera: Psyllidae) on Eggplant and Bell Pepper. Environ. Entomol. 2009, 38, 1661–1667. [Google Scholar] [CrossRef]
- Abdullah, N. Life History of the Potato Psyllid Bactericera cockerelli (Homoptera: Psyllidae) in Controlled Environment Agriculture in Arizona. African J. Agric. Res. 2008, 3, 60–67. [Google Scholar]
- Yang, X.B.; Zhang, Y.M.; Hua, L.; Peng, L.N.; Munyaneza, J.E.; Trumble, J.T.; Liu, T.X. Repellency of Selected Biorational Insecticides to Potato Psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). Crop Prot. 2010, 29, 1320–1324. [Google Scholar] [CrossRef]
- Tran, L. Population Phenology, Life Table and Forecasting Models of Tomato-Potato Psyllid (Bactericera cockerelli) and the Efficiency of a Selected Natural Enemy for Its Control. Ph.D. Thesis, Lincoln University, Oxford, PA, USA, 2012. [Google Scholar]
- Moallem, Z.; Karimi-Malati, A.; Sahragard, A.; Zibaee, A. Modeling Temperature-Dependent Development of Glyphodes pyloalis (Lepidoptera: Pyralidae). J. Insect Sci. 2017, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, H.R.; Fathipour, Y.; Radjabi, G.; Rezapanah, M. Temperature-Dependent Development and Temperature Thresholds of Codling Moth (Lepidoptera: Tortricidae) in Iran. Environ. Entomol. 2009, 38, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Zahiri, B.; Fathipour, Y.; Khanjani, M.; Moharramipour, S.; Zalucki, M.P. Preimaginal Development Response to Constant Temperatures in Hypera postica (Coleoptera: Curculionidae): Picking the Best Model. Environ. Entomol. 2010, 39, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Láska, P. Biology of Trioza apicalis—A Review. Plant Prot. Sci. 2011, 47, 68–77. [Google Scholar] [CrossRef]
- Blackmer, J.L.; Cañas, L.A. Visual Cues Enhance the Response of Lygus hesperus (Heteroptera: Miridae) to Volatiles from Host Plants. Environ. Entomol. 2005, 34, 1524–1533. [Google Scholar] [CrossRef]
- Nissinen, A.I.; Kristoffersen, L.; Anderbrant, O. Physiological State of Female and Light Intensity Affect the Host-Plant Selection of Carrot Psyllid, Trioza apicalis (Hemiptera: Triozidae). Eur. J. Entomol. 2008, 105, 227–232. [Google Scholar] [CrossRef]
- Nissinen, A.I.; Haapalainen, M.; Jauhiainen, L.; Lindman, M.; Pirhonen, M. Different Symptoms in Carrots Caused by Male and Female Carrot Psyllid Feeding and Infection by Candidatus Liberibacter Solanacearum. Plant Pathol. 2014, 63, 812–820. [Google Scholar] [CrossRef]
Year | Field Location | Province | Latitude | Longitude | Management | Crop Cycle 1 |
---|---|---|---|---|---|---|
2017 | Chatún | Segovia | 41°17′4.59″ N | 4°22′4.81″ W | Organic | MS |
2017 | San Pablo de la Moraleja | Valladolid | 41°9′53.90″ N | 4°45′10.90″ W | Integrated | MS |
2018 | Arroyo de Cuéllar | Segovia | 41°21′25.89″ N | 4°20′38.98″ W | Integrated | LS |
2018 | Ataquines | Valladolid | 41°12′17.30″ N | 4°46′36.59″ W | Integrated | LS |
2019 | Campo de Cuéllar | Segovia | 41°18′33.25″ N | 4°21′29.41″ W | Organic | LS |
2019 | Chañe | Segovia | 41°19′53.65″ N | 4°24′15.37″ W | Integrated | LS |
2020 | Íscar | Valladolid | 41°20′17.38″ N | 4°31′32.96″ W | Organic | LS |
Year | Locality | Bactericera trigonica | Bactericera nigricornis | Bactericera tremblayi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HGWT | SNS | HGWT | SNS | HGWT | SNS | ||||||||
Males | Females | Males | Females | Males | Females | Males | Females | Males | Females | Males | Females | ||
2017 | Chatún | 6 | 4 | 11 | 1 | 40 | 1 | 1 | 0 | 14 | 1 | 373 | 160 |
San Pablo de la Moraleja | 5 | 0 | 3 | 2 | 22 | 4 | 2 | 0 | 27 | 6 | 1067 | 302 | |
2018 | Arroyo de Cuéllar | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 8 | 3 | 3059 | 620 |
Ataquines | 0 | 0 | 8 | 2 | 2 | 0 | 1 | 3 | 20 | 2 | 206 | 56 | |
2019 | Campo de Cuéllar | 1 | 2 | 6 | 3 | 2 | 0 | 7 | 1 | 68 | 13 | 581 | 202 |
Chañe | 30 | 12 | 1 | 3 | 0 | 0 | 0 | 0 | 113 | 12 | 2834 | 700 | |
2020 | Íscar | 16 | 3 | 0 | 5 | 2 | 1 | 5 | 0 | 10 | 0 | 65 | 67 |
Total by gender | 59 | 21 | 29 | 16 | 68 | 6 | 19 | 12 | 260 | 37 | 8185 | 2107 | |
Percentage by gender | 73.75 | 26.25 | 64.44 | 35.56 | 91.89 | 8.11 | 61.29 | 38.71 | 87.54 | 12.46 | 79.53 | 20.47 | |
Total by species | 80 | 45 | 74 | 31 | 297 | 10,292 | |||||||
Percentage by species | 17.74 | 0.43 | 16.41 | 0.30 | 65.85 | 99.27 |
Temperature | Egg | N1 | N2 | N3 | N4 | N5 |
---|---|---|---|---|---|---|
15 | 16.09 a | 26.35 a | 32.87 a | 42.42 a | 46.88 a | 51.5 a |
20 | 9.85 b | 16.09 b | 20.36 b | 23.87 b | 26.18 b | 31.61 b |
25 | 8.18 bc | 13.89 b | 17.11 b | 20.34 b | 22.56 b | 26.72 b |
30 | 6.19 c | 10.67 b | ND | - | - | - |
F | 72.76 | 26.55 | 26.54758 | 33.674 | 19.27 | 36.51 |
df between groups | 3 | 3 | 2 | 2 | 2 | 2 |
df within groups | 11 | 11 | 8 | 8 | 8 | 8 |
p | 6.68 × 10−6 | 0.00043 | 0.00043 | 0.0006615 | 0.00136 | 0.00052 |
Temperature | Egg | N1 | N2 | N3 | N4 | N5 | Egg to Adult |
---|---|---|---|---|---|---|---|
15 | 46.02 a | 82.12 a | 95.24 a | 96.42 a | 96.73 a | 86.93 a | 29.45 a |
20 | 56.39 ab | 87.46 a | 92.55 a | 92.58 a | 93.40 a | 89.51 a | 35.24 a |
25 | 52.60 ab | 84.91 a | 90.04 a | 89.35 a | 90.50 a | 83.28 a | 32.07 a |
30 | 8.45 b | 8.69 b | 0.00 b | - | - | - | 0.00 b |
F | 5.759 | 11.9 | 17.69 | 19.27 | 18.48 | 16.56 | 5.564 |
df between groups | 3 | 3 | 3 | 2 | 2 | 2 | 3 |
df within groups | 11 | 11 | 11 | 8 | 8 | 8 | 11 |
p | 0.0373 | 0.00623 | 0.00181 | 0.00136 | 0.00157 | 0.00225 | 0.04 |
Parameter | Egg | N1 | N2 | N3 | N4 | N5 | Reference | |
---|---|---|---|---|---|---|---|---|
Campbell | Tmin | 4.99 | −0.21 | 3.73 | 5.32 | 5.13 | 3.80 | [15] |
R-square | 0.93 | 0.91 | 0.96 | 0.97 | 0.95 | 0.96 | ||
Briere1_99 | Tmin | −13.98 | 0 | 3.91 | 7.27 | 7.6 | 4.94 | [23] |
Topt | 46.35 | 29.24 | 25.12 | 24.35 | 24.11 | 24.69 | ||
Tmax | 59.45 | - | 30.87 | 29.37 | 29.01 | 30.18 | ||
R-square | 0.94 | 0.91 | 0.90 | 0.90 | 0.93 | 0.95 | ||
Taylor | Topt | 41.68 | 29.40 | 25.76 | 24.67 | 24.34 | 25.20 | [25] |
R-square | 0.94 | 0.95 | 0.90 | 0.90 | 0.93 | 0.95 | ||
Lactin | Topt | 34.24 | 28.84 | 24.33 | 23.84 | 23.71 | 24.08 | [24] |
Tmax | 43.40 | 37.25 | 30.04 | 28.71 | 28.5 | 29.57 | ||
R-square | 0.94 | 0.96 | 0.90 | 0.90 | 0.93 | 0.95 | ||
SSI | Topt’ | 20.6 | 22.15 | 21.93 | 20.45 | 20.34 | 20.54 | [26] |
TL | 6.5 | 8.63 | 8.80 | 8.14 | 7.82 | 6.57 | ||
TH | 37.18 | 31.95 | 25.83 | 26.72 | 26.76 | 26.92 | ||
R-square | 0.94 | 0.79 | 0.79 | 0.87 | 0.89 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Calvo, Y.; Baños-Picón, L.; Flores-Pérez, D.; Asensio-S.-Manzanera, M.C. Bactericera tremblayi (Wagner, 1961) (Hemiptera: Triozidae): The Prevalent Psyllid Species in Leek Fields of Northwestern Spain. Insects 2024, 15, 4. https://doi.org/10.3390/insects15010004
Santiago-Calvo Y, Baños-Picón L, Flores-Pérez D, Asensio-S.-Manzanera MC. Bactericera tremblayi (Wagner, 1961) (Hemiptera: Triozidae): The Prevalent Psyllid Species in Leek Fields of Northwestern Spain. Insects. 2024; 15(1):4. https://doi.org/10.3390/insects15010004
Chicago/Turabian StyleSantiago-Calvo, Yolanda, Laura Baños-Picón, Diego Flores-Pérez, and M. Carmen Asensio-S.-Manzanera. 2024. "Bactericera tremblayi (Wagner, 1961) (Hemiptera: Triozidae): The Prevalent Psyllid Species in Leek Fields of Northwestern Spain" Insects 15, no. 1: 4. https://doi.org/10.3390/insects15010004
APA StyleSantiago-Calvo, Y., Baños-Picón, L., Flores-Pérez, D., & Asensio-S.-Manzanera, M. C. (2024). Bactericera tremblayi (Wagner, 1961) (Hemiptera: Triozidae): The Prevalent Psyllid Species in Leek Fields of Northwestern Spain. Insects, 15(1), 4. https://doi.org/10.3390/insects15010004