Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Cry Proteins
2.3. Larval Exposure to Cry Proteins and Pupal Weight
2.4. Rotary Flight Mill (RFM) Experiments
2.5. Data Analysis
3. Results and Discussion
3.1. Effects of Sublethal Treatment on Pupal Weight
3.2. Total Distance Flown by Moths
3.3. Moth Migratory Versus Resident Flight Tendency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montezano, D.G.; Specht, A.; Sosa-Gomez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Overton, K.; Maino, J.L.; Day, R.; Umina, P.A.; Bett, B.; Carnovale, D.; Ekesi, S.; Meagher, R.; Reynolds, O.L. Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protect. 2021, 145, 105641. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. New crop pest takes Africa at lightning speed. Science 2017, 356, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Sharanabasappa, K.C.; Asokan, R.; Swamy, H.; Maruthi, M.; Pavithra, H.; Kavita Hegde, S.N.; Prabhu, S.; Goergen, G. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hort. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Sun, X.-X.; Hu, C.-X.; Jia, H.-R.; Wu, Q.-L.; Shen, X.-J.; Zhao, S.-Y.; Jiang, Y.-Y.; Wu, K.-M. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Navasero, M.V.; Navasero, M.M.; Burgonio, G.A.S.; Ardez, K.P.; Ebuenga, M.D.; Beltran, M.J.B.; Bato, M.B.; Gonzales, P.G.; Magsino, G.L.; Caoili, B.L. Detection of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) using larval morphological characters, and observations on its current local distribution in the Philippines. Philipp. Entomol. 2019, 33, 171–184. [Google Scholar]
- Wu, M.F.; Qi, G.J.; Chen, H.; Ma, J.; Liu, J.; Jiang, Y.Y.; Lee, G.S.; Otuka, A.; Hu, G. Overseas immigration of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), invading Korea and Japan in 2019. Insect Sci. 2021, 29, 505–520. [Google Scholar] [CrossRef]
- Cook, D.C.; Gardiner, P.S.; Spafford, H. What will fall armyworm (Lepidoptera: Noctuidae) cost western australian agriculture? J. Econ. Entomol. 2021, 114, 1613–1621. [Google Scholar] [CrossRef]
- Vives Moreno, A.; Gastón, J. Five new species for the fauna of Spain and other interesting lepidopterological information for Spain and Sudan (Insecta: Lepidoptera). SHILAP Rev. Lepidopt. 2020, 48, 717–731. [Google Scholar] [CrossRef]
- Pehlivan, S.; Atakan, E. First record of the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) in Türkiye. Çukurova J. Agric. Food Sci. 2022, 37, 139–145. [Google Scholar] [CrossRef]
- Westbrook, J.; Fleischer, S.; Jairam, S.; Meagher, R.; Nagoshi, R. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 2019, 10, e02919. [Google Scholar] [CrossRef]
- Li, C.; Liao, J.; Ya, Y.; Liu, J.; Li, J.; Yu, G. Analysis of potential distribution of Spodoptera frugiperda in western China. J. Asia-Pacif. Entomol. 2022, 25, 101985. [Google Scholar] [CrossRef]
- Paudel Timilsena, B.; Niassy, S.; Kimathi, E.; Abdel-Rahman, E.M.; Seidl-Adams, I.; Wamalwa, M.; Tonnang, H.E.Z.; Ekesi, S.; Hughes, D.P.; Rajotte, E.G.; et al. Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci. Rep. 2022, 12, 539. [Google Scholar] [CrossRef]
- Ramasamy, M.; Das, B.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2022, 95, 841–854. [Google Scholar] [CrossRef]
- Mota-Sanchez, D.; Wise, J.C. Arthropod Pesticide Resistance Database. Available online: www.pesticideresistance.org (accessed on 12 December 2023).
- Siebert, M.W.; Tindall, K.R.; Leonard, B.R.; Van Duyn, J.W.; Babcock, J.M. Evaluation of corn hybrids expressing Cry1F (Herculex I Insect Protection) against fall armyworm (Lepidoptera: Noctuidae) in the southern United States. J. Entomol. Sci. 2008, 43, 41–51. [Google Scholar] [CrossRef]
- Siebert, M.W.; Babock, J.M.; Nolting, S.; Santos, A.C.; Adamczyk, J.J.; Neese, P.A.; King, J.E.; Jenkins, J.N.; McCarty, J.; Lorenz, G.M.; et al. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 2008, 91, 555–565. [Google Scholar] [CrossRef]
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef]
- Huang, F.; Qureshi, J.A.; Meagher, R.L., Jr.; Reisig, D.D.; Head, G.P.; Andow, D.A.; Ni, X.; Kerns, D.; Buntin, G.D.; Niu, Y.; et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 2014, 9, e112958. [Google Scholar] [CrossRef]
- Farias, J.R.; Andow, D.A.; Horikoshi, R.J.; Sorgatto, R.J.; Fresia, P.; dos Santos, A.C.; Omoto, C. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protect. 2014, 64, 150–158. [Google Scholar] [CrossRef]
- Chandrasena, D.I.; Signorini, A.M.; Abratti, G.; Storer, N.P.; Olaciregui, M.L.; Alves, A.P.; Pilcher, C.D. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F delta-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 2018, 74, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Hasler, J.; Meagher, R.; Nagoshi, R.; Hietala, L.; Huang, F.; Narva, K.; Jurat-Fuentes, J.L. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 2017, 7, 10877. [Google Scholar] [CrossRef] [PubMed]
- Flagel, L.; Lee, Y.W.; Wanjugi, H.; Swarup, S.; Brown, A.; Wang, J.; Kraft, E.; Greenplate, J.; Simmons, J.; Adams, N.; et al. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins. Sci. Rep. 2018, 8, 7255. [Google Scholar] [CrossRef] [PubMed]
- Boaventura, D.; Ulrich, J.; Lueke, B.; Bolzan, A.; Okuma, D.; Gutbrod, O.; Geibel, S.; Zeng, Q.; Dourado, P.M.; Martinelli, S.; et al. Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. Insect Biochem. Mol. Biol. 2020, 116, 103280. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; De Bortoli, C.P.; Huang, F.; Lamour, K.; Meagher, R.; Buntin, D.; Ni, X.; Reay-Jones, F.P.F.; Stewart, S.; Jurat-Fuentes, J.L. Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera frugiperda) from Florida. Sci. Rep. 2022, 12, 13580. [Google Scholar] [CrossRef] [PubMed]
- Jakka, S.R.; Knight, V.R.; Jurat-Fuentes, J.L. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2014, 107, 342–351. [Google Scholar] [CrossRef]
- Vélez, A.M.; Spencer, T.A.; Alves, A.P.; Crespo, A.L.B.; Siegfried, B.D. Fitness costs of Cry1F resistance in fall armyworm, Spodoptera frugiperda. J. Appl. Entomol. 2013, 138, 315–325. [Google Scholar] [CrossRef]
- Storer, N.P.; Kubiszak, M.E.; Ed King, J.; Thompson, G.D.; Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebr. Pathol. 2012, 110, 294–300. [Google Scholar] [CrossRef]
- Tandy, P.; Lamour, K.; Placidi de Bortoli, C.; Nagoshi, R.; Emrich, S.J.; Jurat-Fuentes, J.L. Screening for resistance alleles to Cry1 proteins through targeted sequencing in the native and invasive range of Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 935–944. [Google Scholar] [CrossRef]
- Benard, M.F.; McCauley, S.J. Integrating across life-history stages: Consequences of natal habitat effects on dispersal. Am. Nat. 2008, 171, 553–567. [Google Scholar] [CrossRef]
- Mazzi, D.; Dorn, S. Movement of insect pests in agricultural landscapes. Ann. Appl. Biol. 2012, 160, 97–113. [Google Scholar] [CrossRef]
- Jiang, X.F.; Chen, J.; Zhang, L.; Sappington, T.W.; Luo, L.Z. Increased long-flight activity triggered in beet armyworm by larval feeding on diet containing Cry1Ac protoxin. PLoS ONE 2013, 8, e63554. [Google Scholar] [CrossRef] [PubMed]
- Jakka, S.R.K.; Gong, L.; Hasler, J.; Banerjee, R.; Sheets, J.J.; Narva, K.; Blanco, C.A.; Jurat-Fuentes, J.L. Field-evolved Mode 1 resistance of the fall armyworm to transgenic Cry1Fa-expressing corn associated with reduced Cry1Fa toxin binding and midgut alkaline phosphatase expression. Appl. Environ. Microbiol. 2016, 82, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaffar, H.; Tague, E.D.; Castro Gonzalez, H.F.; Campagna, S.R.; Jurat-Fuentes, J.L. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. Insect Biochem. Mol. Biol. 2019, 106, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Jurat-Fuentes, J.L.; Abdelgaffar, H.M.; Pan, H.; Song, F.; Zhang, J. Identification of a new cry1I-type gene as a candidate for gene pyramiding in corn to control Ostrinia species larvae. Appl. Environ. Microbiol. 2015, 81, 3699–3705. [Google Scholar] [CrossRef] [PubMed]
- Gouffon, C.; Van Vliet, A.; Van Rie, J.; Jansens, S.; Jurat-Fuentes, J.L. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 2011, 77, 3182–3188. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaffar, H.; Perera, O.P.; Jurat-Fuentes, J.L. ABC transporter mutations in Cry1F-resistant fall armyworm (Spodoptera frugiperda) do not result in altered susceptibility to selected small molecule pesticides. Pest Manag. Sci. 2021, 77, 949–955. [Google Scholar] [CrossRef]
- Jakka, S.R.; Knight, V.R.; Jurat-Fuentes, J.L. Spodoptera frugiperda (J. E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides. J. Invertebr. Pathol. 2014, 122, 52–54. [Google Scholar] [CrossRef]
- Deshmukh, S.; Prasanna, B.; Kalleshwaraswamy, C.; Jagdish, J.; Choudhary, B. Fall armyworm Spodoptera frugiperda (J. E. Smith). In Omkar (Ed) Polyphagous Pest of Corn, 1st ed.; Springer: Singapore, 2021; Volume 82, pp. 349–372. [Google Scholar]
- Jones, V.P.; Naranjo, S.E.; Smith, T.J. Insect Ecology and Behavior Laboratory: Flight Mill Studies. Available online: https://tfrec.cahnrs.wsu.edu/vpjones/flight-mill-studies/ (accessed on 15 November 2018).
- Beerwinkle, K.R.; Lopez, J.D., Jr.; Cheng, D.; Lingren, P.D.; Meola, R.W. Flight potential of feral Helicoverpa zea (Lepidoptera: Noctuidae) males measured with a 32-channel, computer-monitored, flight-mill system. Environ. Entomol. 1995, 24, 1122–1130. [Google Scholar] [CrossRef]
- Naranjo, S.E. Assessing insect flight behavior in the laboratory: A primer on flight mill methodology and what can be learned. Ann. Entomol. Soc. Am. 2019, 112, 182–199. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Huang, L.; Xu, C.F.; Li, J.H.; Wang, F.Y.; Cheng, W.; Gao, B.Y.; Chapman, J.W.; Hu, G. Flight capability and the low temperature threshold of a Chinese field population of the fall armyworm Spodoptera frugiperda. Insects 2022, 13, 422. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.-S.; He, L.-M.; He, W.; Yan, R.; Wyckhuys, K.A.G.; Wu, K.-M. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 2021, 20, 707–714. [Google Scholar] [CrossRef]
- Hietala, L.; Hietala, N.; Assirati, G.; Ferreira dos Santos, R.; Jurat-Fuentes, J.L. Novel software and hardware package for recording and visualizing rotational insect flight mill data. J. Biol. Meth. 2023. in review. [Google Scholar]
- Moar, W.; Khajuria, C.; Pleau, M.; Ilagan, O.; Chen, M.; Jiang, C.; Price, P.; McNulty, B.; Clark, T.; Head, G. Cry3Bb1-resistant Western corn rootworm, Diabrotica virgifera virgifera (LeConte) does not exhibit cross-resistance to DvSnf7 dsRNA. PLoS ONE 2017, 12, e0169175. [Google Scholar] [CrossRef]
- Mishra, S.; Dee, J.; Moar, W.; Dufner-Beattie, J.; Baum, J.; Dias, N.P.; Alyokhin, A.; Buzza, A.; Rondon, S.I.; Clough, M.; et al. Selection for high levels of resistance to double-stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Sci. Rep. 2021, 11, 6523. [Google Scholar] [CrossRef]
- Salama, H.S.; Foda, M.S.; El-Sharaby, A.; Matter, M.; Khalafallah, M. Development of some lepidopterous cotton pests as affected by exposure to sublethal levels of endotoxins of Bacillus thuringiensis for different periods. J. Invertebr. Pathol. 1981, 38, 220–229. [Google Scholar] [CrossRef]
- Pedersen, A.; Dedes, J.; Gauthier, D.; Van Frankenhuyzen, K. Sublethal effects of Bacillus thuringiensis on the spruce budworm, Choristoneura fumiferana. Entomol. Exp. Appl. 1997, 83, 253–262. [Google Scholar] [CrossRef]
- Stapel, J.O.; Waters, D.J.; Ruberson, J.R.; Lewis, W.J. Development and behavior of Spodoptera exigua (Lepidoptera: Noctuidae) larvae in choice tests with food substrates containing toxins of Bacillus thuringiensis. Biol. Control 1998, 11, 29–37. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Cerda, H.; Wright, D.J. Could Bt transgenic crops have nutritionally favourable effects on resistant insects? Ecol. Lett. 2003, 6, 167–169. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carrière, Y. Bt transgenic crops do not have favorable effects on resistant insects. J. Insect Sci. 2004, 4, 4. [Google Scholar] [CrossRef]
- Pezzini, D.T.; Reisig, D.D.; Buntin, G.D.; Del Pozo-Valdivia, A.I.; Gould, F.; Paula-Moraes, S.V.; Reay-Jones, F.P. Impact of seed blend and structured maize refuge on Helicoverpa zea (Lepidoptera: Noctuidae) potential phenological resistance development parameters in pupae and adults. Pest Manag. Sci. 2023, 79, 3493–3503. [Google Scholar] [CrossRef] [PubMed]
- Dively, G.P.; Venugopal, P.D.; Finkenbinder, C. Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS ONE 2016, 11, e0169115. [Google Scholar] [CrossRef] [PubMed]
- Carrière, Y.; Tabashnik, B.E. Fitness costs and incomplete resistance associated with delayed evolution of practical resistance to Bt crops. Insects 2023, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.B.C.; Lim, K.S.; Bell, J.R.; Hill, J.K.; Chapman, J.W. Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique. Ecol. Evol. 2016, 6, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wang, X.; Jian, C.; Ignatus, A.D.; Zhang, X.; Peng, X.; Chen, M. Life-history traits and flight capacity of Grapholita molesta (Lepidoptera: Tortricidae) using artificial diets with varying sugar content. J. Econ. Entomol. 2021, 114, 112–121. [Google Scholar] [CrossRef]
- Su, S.; Zhang, X.; Jian, C.; Huang, B.; Peng, X.; Vreysen, M.J.B.; Chen, M. Effects of adult feeding treatments on longevity, fecundity, flight ability, and energy metabolism enzymes of Grapholita molesta moths. Insects 2022, 13, 725. [Google Scholar] [CrossRef]
- Jahant-Miller, C.; Miller, R.; Parry, D. Size-dependent flight capacity and propensity in a range-expanding invasive insect. Insect Sci. 2022, 29, 879–888. [Google Scholar] [CrossRef]
- Elliott, C.G.; Evenden, M.L. Factors influencing flight potential of Choristoneura conflictana. Physiol. Entomol. 2009, 34, 71–78. [Google Scholar] [CrossRef]
- Huang, J.; Gao, L.; Cobb, T.; Li, G.; Tian, C.; Duan, A.; Feng, H. The effect of larval diet on the flight capability of the adult moth Athetis lepigone (Möschler) (Lepidoptera: Noctuidae). Fla. Entomol. 2023, 105, 287–294. [Google Scholar] [CrossRef]
- Vilarinho, E.C.; Fernandes, O.A.; Hunt, T.E.; Caixeta, D.F. Movement of Spodoptera frugiperda adults (Lepidoptera: Noctuidae) in maize in Brazil. Fla. Entomol. 2011, 94, 480–488, 489. [Google Scholar] [CrossRef]
- Robinet, C.; David, G.; Jactel, H. Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecol. Model. 2019, 402, 85–92. [Google Scholar] [CrossRef]
- Forrest, J.M.S. The effect of maternal and larval experience on morph determination in Dysaphis devecta. J. Insect Physiol. 1970, 16, 2281–2292. [Google Scholar] [CrossRef]
- Mackay, P.A.; Lamb, R.J. Disperal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare. Environ. Entomol. 1996, 25, 1032–1044. [Google Scholar] [CrossRef]
- Blackmer, J.L.; Byrne, D.N. Flight behaviour of Bemisia tabaci in a vertical flight chamber: Effect of time of day, sex, age and host quality. Physiol. Entomol. 1993, 18, 223–232. [Google Scholar] [CrossRef]
- Brown, S.; Soroker, V.; Ribak, G. Effect of larval growth conditions on adult body mass and long-distance flight endurance in a wood-boring beetle: Do smaller beetles fly better? J. Insect Physiol. 2017, 98, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.F.; Shi, Z.P.; Wu, J.C. Insecticide-induced enhancement of flight capacity of the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Crop Protect. 2011, 30, 476–482. [Google Scholar] [CrossRef]
- Menz, M.H.M.; Reynolds, D.R.; Gao, B.; Hu, G.; Chapman, J.W.; Wotton, K.R. Mechanisms and consequences of partial migration in insects. Front. Ecol. Evo. 2019, 7, 403. [Google Scholar] [CrossRef]
- Dällenbach, L.J.; Glauser, A.; Lim, K.S.; Chapman, J.W.; Menz, M.H.M. Higher flight activity in the offspring of migrants compared to residents in a migratory insect. Proc. Royal Soc. B Biol. Sci. 2018, 285, 20172829. [Google Scholar] [CrossRef]
- Becciu, P.; Menz, M.H.M.; Aurbach, A.; Cabrera-Cruz, S.A.; Wainwright, C.E.; Scacco, M.; Ciach, M.; Pettersson, L.B.; Maggini, I.; Arroyo, G.M.; et al. Environmental effects on flying migrants revealed by radar. Ecography 2019, 42, 942–955. [Google Scholar] [CrossRef]
- Reisig, D.D.; DiFonzo, C.; Dively, G.; Farhan, Y.; Gore, J.; Smith, J. Best management practices to delay the evolution of Bt resistance in lepidopteran pests without high susceptibility to Bt toxins in North America. J. Econ. Entomol. 2022, 115, 10–25. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Reisig, D.D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 2023, 68, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, L.; Chapman, J.W.; Sappington, T.W.; Liu, J.; Cheng, Y.; Jiang, X. Juvenile hormone regulates the shift from migrants to residents in adult oriental armyworm, Mythimna separata. Sci. Rep. 2020, 10, 11626. [Google Scholar] [CrossRef] [PubMed]
Strain | Sex | Control | n | Cry1Ac | n | Cry1F | n |
---|---|---|---|---|---|---|---|
Benzon | Female | 169.30 ± 4.33 | 37 | 186.26 ± 4.39 | 29 | Not tested | -- |
Male | 177.60 ± 2.73 | 31 | 181.77 ± 3.84 | 31 | Not tested | -- | |
456LS4D | Female | 183.35 ± 4.08 | 43 | 157.89 ± 4.71 | 38 | 191.92 ± 4.59 | 38 |
Male | 189.63 ± 3.90 | 53 | 156.88 ± 8.35 | 16 | 196.90 ± 2.68 | 25 |
Strain | Sex | Control | n | Cry1Ac | n | Cry1F | n |
---|---|---|---|---|---|---|---|
Benzon | Female | 3287.7 ± 514.8 | 37 | 5702.1 ± 862.6 | 29 | Not tested | -- |
Male | 3537.3 ± 837.5 | 30 | 5424.5 ± 1034.7 | 31 | Not tested | -- | |
456LS4D | Female | 3023.5 ± 933.4 | 43 | 4596.3 ± 789.1 | 38 | 6704.3 ± 993.7 | 38 |
Male | 2076.0 ± 351.9 | 53 | 3796.8 ± 138.1 | 16 | 2093.7 ± 348.5 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bortoli, C.P.; Santos, R.F.; Assirati, G.J.; Sun, X.; Hietala, L.; Jurat-Fuentes, J.L. Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2024, 15, 7. https://doi.org/10.3390/insects15010007
De Bortoli CP, Santos RF, Assirati GJ, Sun X, Hietala L, Jurat-Fuentes JL. Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2024; 15(1):7. https://doi.org/10.3390/insects15010007
Chicago/Turabian StyleDe Bortoli, Caroline P., Rafael F. Santos, Giordano J. Assirati, Xiaocun Sun, Lucas Hietala, and Juan Luis Jurat-Fuentes. 2024. "Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae)" Insects 15, no. 1: 7. https://doi.org/10.3390/insects15010007
APA StyleDe Bortoli, C. P., Santos, R. F., Assirati, G. J., Sun, X., Hietala, L., & Jurat-Fuentes, J. L. (2024). Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 15(1), 7. https://doi.org/10.3390/insects15010007