Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. 2021–2022 Banker Plant Screening Study
2.2. 2022–2023 Banker Plant Evaluation Study
2.3. Statistical Analysis
3. Results
3.1. 2021–2022 Study
3.2. 2022–2023 Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, K.-M.; Guan, Z.; Hammami, A. The U.S. fresh fruit and vegetable industry: An overview of production and trade. Agriculture 2022, 12, 1719. [Google Scholar] [CrossRef]
- Guan, Z.; Feng, W. Alicia, Whidden Top challenges facing the Florida strawberry industry. EDIS 2016, FE972, 3. [Google Scholar] [CrossRef]
- Funderburk, J. Management of the western flower thrips (Thysanoptera: Thripidae) in fruiting vegetables. Fla. Entomol. 2009, 92, 1–6. [Google Scholar] [CrossRef]
- Strzyzewski, I.L.; Funderburk, J.E.; Renkema, J.M.; Smith, H.A. Characterization of Frankliniella occidentalis and Frankliniella bispinosa (Thysanoptera: Thripidae) injury to strawberry. J. Econ. Entomol. 2021, 114, 794–800. [Google Scholar] [CrossRef]
- Lahiri, S.; Smith, H.A.; Gireesh, M.; Kaur, G.; Montemayor, J.D. Arthropod pest management in strawberry. Insects 2022, 13, 475. [Google Scholar] [CrossRef]
- Kaur, G.; Lahiri, S. Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) management practices for Florida strawberry crops. EDIS 2023, 2022–1, ENY2076. [Google Scholar] [CrossRef]
- Lahiri, S.; Panthi, B. Insecticide efficacy for Chilli thrips management in strawberry. Arthropod Manag. Tests 2020, 45, 1–2. [Google Scholar] [CrossRef]
- Aristizábal, L.F.; Moura Mascarin, G.; Cherry, R.; Chaves-Cordoba, B.; Arthurs, S.P. A rapid sampling plan for Scirtothrips dorsalis (Thysanoptera: Thripidae) on container shrub rose (Rosa ‘Radrazz’). J. Econ. Entomol. 2016, 109, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Seal, D.R.; Kumar, V. Biological response of Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), to various regimes of chemical and biorational insecticides. Crop Prot. 2010, 29, 1241–1247. [Google Scholar] [CrossRef]
- Panthi, B.R.; Renkema, J.M.; Lahiri, S.; Liburd, O.E. Spatio-temporal distribution, and fixed-precision sampling plan of Scirtothrips dorsalis (Thysanoptera: Thripidae) in Florida blueberry. Insects 2021, 12, 256. [Google Scholar] [CrossRef]
- Kumar, V.; Kakkar, G.; McKenzie, C.L.; Seal, D.R.; Osborne, L.S. An overview of Chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) Biology, Distribution and Management. In Weed and Pest Control—Conventional and New Challenges; InTech eBooks: London, UK, 2013. [Google Scholar] [CrossRef]
- Seal, D.R.; Klassen, W. Chilli thrips (castor thrips, assam thrips, yellow tea thrips, strawberry thrips), Scirtothrips dorsalis Hood, provisional management guidelines. EDIS 2005, 2005–14, ENY725. [Google Scholar] [CrossRef]
- Tatara, A. Effect of temperature and host plant on the development, fertility and longevity of Scirtothrips dorsalis Hood (Thysanoptera: Thripidae). Appl. Entomol. Zool. 1994, 29, 31–37. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, F.; Chiu, Y.; Shih, H. Effects of temperature on development and reproduction of Scirtothrips dorsalis Hood on mango. J. Taiwan Agric. Res. 2013, 62, 351–359. [Google Scholar]
- Panthi, B.; Renkema, J. Managing Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) in Florida Strawberry with Flupyradifurone. Int. J. Fruit Sci. 2020, 20, 967–977. [Google Scholar] [CrossRef]
- Panthi, B.R.; Renkema, J.M.; Lahiri, S.; Abd-Elrahman, A.; Liburd, O.E. Delayed spinetoram application is useful in managing Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) in Florida strawberry. J. Econ. Entomol. 2024, 117, 585–594. [Google Scholar] [CrossRef]
- Arthurs, S.; McKenzie, C.L.; Chen, J.; Dogramaci, M.; Brennan, M.; Houben, K.; Osborne, L. Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of Chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol. Control 2009, 49, 91–96. [Google Scholar] [CrossRef]
- Lahiri, S.; Yambisa, A. Efficacy of a biopesticide and predatory mite to manage Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) in strawberry. Fla. Entomol. 2021, 104, 322–324. [Google Scholar] [CrossRef]
- Lahiri, S. Arthropod pest management practices of strawberry growers in Florida: A survey of the 2019–2020 field season. EDIS 2023, 2023–1, ENY2097. [Google Scholar] [CrossRef]
- Kaur, G.; Stelinski, L.L.; Martini, X.; Boyd, N.; Lahiri, S. Reduced insecticide susceptibility among populations of Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) in strawberry production. J. Econ. Entomol. 2023, 147, 271–278. [Google Scholar] [CrossRef]
- Busuulwa, A.; Revynthi, A.; Liburd, O.; Lahiri, S. Residual Effect of Commonly Used Fungicides in Strawberries on Amblyseius swirskii, Neoseiulus cucumeris, and Neoseiulus californicus (Mesostigmata: Phytoseiidae). Exp. Appl. Acarol. 2024, 93, 253–272. [Google Scholar] [CrossRef]
- Frank, S.D. Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biol. Control 2010, 52, 8–16. [Google Scholar] [CrossRef]
- Huang, N.; Enkegaard, A.; Osborne, L.S.; Ramakers, P.M.J.; Messelink, G.J.; Pijnakker, J.; Murphy, G. The banker plant method in biological control. Crit. Rev. Plant Sci. 2011, 30, 259–278. [Google Scholar] [CrossRef]
- Juventia, S.D.; Rossing, W.A.H.; Ditzler, L.; van Apeldoorn, D.F. Spatial and genetic crop diversity support ecosystem service delivery: A case of yield and biocontrol in Dutch organic cabbage production. Field Crops Res. 2021, 261, 108015. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R. Trap crops and insectary plants in the order Brassicales. Ann. Entomol. Soc. Am. 2019, 112, 318–329. [Google Scholar] [CrossRef]
- Madeira, F.; Lumbierres, B.; Pons, X. Contribution of surrounding flowering plants to reduce abundance of Aphis nerii (Hemiptera: Aphididae) on Oleanders (Nerium oleander L.). Horticulturae 2022, 8, 1038. [Google Scholar] [CrossRef]
- Andorno, A.V.; López, S.N. Biological control of Myzus persicae (Hemiptera: Aphididae) through banker plant system in protected crops. Biol. Control 2014, 78, 9–14. [Google Scholar] [CrossRef]
- Lopez, L.; Liburd, O.E. Can the introduction of companion plants increase biological control services of key pests in organic squash? Entomol. Exp. Appl. 2022, 170, 402–418. [Google Scholar] [CrossRef]
- Silveira, L.C.P.; Berti Filho, E.; Pierre, L.S.R.; Peres, F.S.C.; Louzada, J.N.C. Marigold (Tagetes erecta L.) as an attractive crop to natural enemies in onion fields. Sci. Agric. 2009, 66, 780–787. [Google Scholar] [CrossRef]
- Jankowska, B.; Poniedziałek, M.; Jędrszczyk, E. Effect of intercropping white cabbage with French marigold (Tagetes patula nana L.) and pot marigold (Calendula officinalis L.) on the colonization of plants by pest insects. Folia Hortic. 2009, 21, 95–103. [Google Scholar] [CrossRef]
- Hata, F.T.; Togni, P.H.; Ventura, M.U.; Da Silva, J.E.P.; Ferreira, N.Z.; Constantino, L. Diverse non-crop vegetation assemblages as banker plants for predatory mites in strawberry crop. Bull. Entomol. Res. 2022, 112, 389–398. [Google Scholar] [CrossRef]
- Kordestani, M.; Mahdian, K.; Baniameri, V.; Sheikhi Garjan, A. study of population dynamics of Orius laevigatus on green beans and marigold as banker plants in greenhouse strawberry planting. Biol. Control Pests Plant Dis. 2020, 9, 16–28. [Google Scholar] [CrossRef]
- Smith, H.A.; Liburd, O.E. Intercropping, crop diversity and pest management. EDIS 2011, 2012–3, ENY862. [Google Scholar] [CrossRef]
- Dingha, B.N.; Omaliko, P.C.; Amoah, B.A.; Jackai, L.E.; Shrestha, D. Evaluation of cowpea (Vigna unguiculata) in an intercropping system as pollinator enhancer for increased crop yield. Sustainability 2021, 13, 9612. [Google Scholar] [CrossRef]
- Hogg, B.N.; Bugg, R.L.; Daane, K.M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. control 2011, 56, 76–84. [Google Scholar] [CrossRef]
- Mao, R.; Xiao, Y.; Arthurs, S.P. Vespiform thrips Franklinothrips vespiformis Crawford (Insecta: Thysanoptera: Aeolothripidae). EDIS 2015, 2015–3, ENY621. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Peres, N.; Lahiri, S.; Brown, S.P.; Chandler, C.K. Growing strawberries in the Florida home garden. EDIS 2021, 2021–5, HS1154. [Google Scholar] [CrossRef]
- USDA—United States Department of Agriculture. Agricultural Marketing Service Fruit and Vegetable Programs Fresh Products Branch United States Standards for Grades of Strawberries. 2006. Available online: https://www.ams.usda.gov/sites/default/files/media/Strawberry_Standard%5B1%5D.pdf (accessed on 15 September 2024).
- Montemayor, J.D.; Smith, H.A.; Peres, N.A.; Lahiri, S. Potential of UV-C for management of twospotted spider mites and thrips in Florida strawberry. Pest. Manag. Sci. 2023, 79, 891–898. [Google Scholar] [CrossRef]
- R: The R project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 3 May 2024).
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M.; Brooks, M.E.; et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Fox, J.; Friendly, M.; Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R. J. 2013, 5, 39. [Google Scholar] [CrossRef]
- Lenth, R.V. Estimated Marginal Means, Aka Least-Squares Means [R Package Emmeans Version 1.10.1]. R-project.org. 2024. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 2 March 2024).
- Cluever, J.D.; Smith, H.A.; Nagle, C.A.; Funderburk, J.E.; Frantz, G. Effect of insecticide rotations on density and species composition of thrips (Thysanoptera) in Florida strawberry (Rosales: Rosaceae). Fla. Entomol. 2016, 99, 203–209. [Google Scholar] [CrossRef]
- Yousefi, M.; Marja, R.; Barmettler, E.; Six, J.; Dray, A.; Ghazoul, J. The effectiveness of intercropping and agri-environmental schemes on ecosystem service of biological pest control: A meta-analysis. Agron. Sustain. Dev. 2024, 44, 15. [Google Scholar] [CrossRef]
- Balzan, M.V. Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod Plant Interact. 2017, 11, 743–754. [Google Scholar] [CrossRef]
- Moretti, E.A.; Harding, R.S.; Scott, J.G.; Nault, B.A. Monitoring onion thrips (Thysanoptera: Thripidae) susceptibility to spinetoram in New York onion fields. J. Econ. Entomol. 2019, 112, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.-D.; Guo, L.-H.; Ali, A.; Desneux, N.; Zang, L.-S. Synergism of adjuvants mixed with spinetoram for the management of bean flower thrips, Megalurothrips usitatus (Thysanoptera: Thripidae) in cowpeas. J. Econ. Entomol. 2022, 115, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Bosco, L.; Funderburk, J.; Weiss, A. Spinetoram is compatible with the key natural enemy of Frankliniella species thrips in pepper. Plant Health Prog. 2008, 9, 30. [Google Scholar] [CrossRef]
- Lahiri, S.; Kaur, G.; Busuulwa, A. Field efficacy of a biopesticide and a predatory mite for suppression of Scirtothrips dorsalis (Thysanoptera: Thripidae) in strawberry. J. Econ. Entomol. 2024, 117, 1623–1627. [Google Scholar] [CrossRef]
- Li, B.; Yang, M.; Shi, R.; Ye, M. Insecticidal activity of natural capsaicinoids against several agricultural insects. Nat. Prod. Commun. 2019, 14, 1934578X19862695. [Google Scholar] [CrossRef]
- Li, Y.; Bai, P.; Wei, L.; Kang, R.; Chen, L.; Zhang, M.; Tan, E.K.; Liu, W. Capsaicin functions as drosophila ovipositional repellent and causes intestinal dysplasia. Sci. Rep. 2020, 10, 9963. [Google Scholar] [CrossRef]
- Cowles, R.S.; Keller, J.E.; Miller, J.R. Pungent Spices, Ground red pepper, and synthetic capsaicin as onion fly ovipositional deterrents. J. Chem. Ecol. 1989, 15, 719–730. [Google Scholar] [CrossRef]
- Xiao, Y.; Avery, P.; Chen, J.; McKenzie, C.; Osborne, L. Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biol. Control 2012, 63, 279–286. [Google Scholar] [CrossRef]
- Johanowicz, D.L.; Mitchell, E.R. Effects of sweet alyssum flowers on the longevity of the parasitoid wasps Cotesia marginiventris (Hymenoptera: Braconidae) and Diadegma insulare (Hymenoptera: Ichneumonidae). Fla. Entomol. 2000, 83, 41. [Google Scholar] [CrossRef]
- Haseeb, M.; Gordon, T.L.; Kanga, L.H.B.; Legaspi, J.C. Abundance of natural enemies of Nezara viridula (Hemiptera: Pentatomidae) on three cultivars of sweet alyssum. J. Appl. Entomol. 2018, 142, 847–853. [Google Scholar] [CrossRef]
- Bennison, J.; Pope, T.; Maulden, K. The potential use of flowering alyssum as a “banker” plant to support the establishment of Orius laevigatus in everbearer strawberry for improved biological control of western flower thrips. IOBC/WPRS Bull. 2011, 68, 15–18. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busuulwa, A.; Revynthi, A.M.; Liburd, O.E.; Lahiri, S. Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries. Insects 2024, 15, 776. https://doi.org/10.3390/insects15100776
Busuulwa A, Revynthi AM, Liburd OE, Lahiri S. Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries. Insects. 2024; 15(10):776. https://doi.org/10.3390/insects15100776
Chicago/Turabian StyleBusuulwa, Allan, Alexandra M. Revynthi, Oscar E. Liburd, and Sriyanka Lahiri. 2024. "Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries" Insects 15, no. 10: 776. https://doi.org/10.3390/insects15100776
APA StyleBusuulwa, A., Revynthi, A. M., Liburd, O. E., & Lahiri, S. (2024). Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries. Insects, 15(10), 776. https://doi.org/10.3390/insects15100776