Sustainable Management of Arthropod Pests in Agroecosystems

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 20067

Special Issue Editors


E-Mail Website
Guest Editor
Scientific Directorate of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 Stefanou Delta Str., 14561 Kifissia, Greece
Interests: integrated pest management; agronomic practices/mitigation measures for conservation of natural enemies and pollinators; sustainable use of pesticides
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Campus Ås, Ås, Norway
2. Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
Interests: biological control; conservation biological control; tri-trophic interactions; functional agrobiodiversity; integrated pest management
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Agriculture, Food and Environment, Division of Applied Entomology, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
Interests: parasitoids; biological control; exotic pests; side effects of pesticides; integrated pest management; biopesticides
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Agricultural policies worldwide recognize the need for sustainable agricultural schemes, including pest management. Intensive agriculture has put great pressure on populations and resources of arthropod pests’ natural enemies through the adverse effects of pesticide application and the reduction of their habitats in agricultural land. Therefore, there is a need for more sustainable plant protection tools alternative to synthetic pesticides, such as biopesticides, semiochemicals (e.g., mating disruption, mass trapping, attract and kill), as well as agronomic measures to support the conservation of suitable habitats and provide food resources and shelter (e.g., management of field margins, cover crops, banker plants) to parasitoids and predators in agro-ecosystems. The successful development of such means and practices requires a good understanding of the chemical ecology, the tri-trophic interactions and the food-web theory in plant-pest-beneficial arthropod communities, in addition to the function of the bottom-up and top-down effects for the regulation of herbivore populations. This Special Issue aims to focus on new chemical and non-chemical means/methods of sustainable pest management, as well as conservation/mitigation practices to enhance beneficial arthropods and biological control in agricultural crops. Original research articles and review articles are welcome.

Dr. Filitsa Karamaouna
Prof. Dr. Lene Sigsgaard
Prof. Dr. Lucia Zappala
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable agriculture
  • biological control
  • integrated pest management
  • biopesticides
  • plant–insect interactions
  • semiochemicals
  • conservation of natural enemies
  • good agronomic practices
  • mitigation measures
  • pesticide side effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

14 pages, 2768 KiB  
Article
Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries
by Allan Busuulwa, Alexandra M. Revynthi, Oscar E. Liburd and Sriyanka Lahiri
Insects 2024, 15(10), 776; https://doi.org/10.3390/insects15100776 - 8 Oct 2024
Viewed by 729
Abstract
Since 2015, Scirtothrips dorsalis Hood has emerged as the main pest of strawberries in Florida. Given the limited management options, there is a recognized need to expand on the management strategies for this pest. Therefore, we explored the possibility of using banker plants [...] Read more.
Since 2015, Scirtothrips dorsalis Hood has emerged as the main pest of strawberries in Florida. Given the limited management options, there is a recognized need to expand on the management strategies for this pest. Therefore, we explored the possibility of using banker plants to recruit naturally occurring predators of thrips into strawberry fields to suppress S. dorsalis. The study began in the 2021–2022 strawberry season where five banker plants were screened to determine which ones could consistently attract thrips predators by flowering throughout the strawberry season. Capsicum annum L. (ornamental pepper) and Lobularia maritima L. (sweet alyssum) were selected for further evaluation. In the 2022–2023 strawberry season, using a randomized complete block design we assessed the capability of these banker plants to attract thrips predators into the strawberry field. In addition, we examined how the banker plant distance from the strawberry plants influenced the S. dorsalis pest suppression. Our results showed that strawberries located within 3.7 m of ornamental pepper plants had less leaf damage from S. dorsalis compared with those farther away, which may result from the repellent effect of the ornamental peppers. Additionally, Geocoris spp. and Orius spp. were identified as the main thrips predators in the system, although in relatively low numbers. Therefore, these results highlight the potential of incorporating ornamental pepper as a banker plant in strawberry production. Additional applications of this research are explored below. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

19 pages, 3938 KiB  
Article
Effect of Commercial Trap Design and Location on Captures of Diocalandra frumenti (Fabricius) (Coleoptera: Dryophthoridae) on Palm Trees
by Carina Ramos-Cordero, Elena Seris-Barrallo, Sandra Vacas, Vicente Navarro-Llopis and Estrella M. Hernández-Suárez
Insects 2024, 15(10), 738; https://doi.org/10.3390/insects15100738 - 25 Sep 2024
Viewed by 1085
Abstract
Diocalandra frumenti (Fabricius) (Coleoptera: Dryophthoridae) is a weevil present in the Canary Islands, affecting economically important palms such as Phoenix canariensis H. Wildpret and its hybrids, for which there were no trapping tools. The larvae cause the main damage by burrowing galleries in [...] Read more.
Diocalandra frumenti (Fabricius) (Coleoptera: Dryophthoridae) is a weevil present in the Canary Islands, affecting economically important palms such as Phoenix canariensis H. Wildpret and its hybrids, for which there were no trapping tools. The larvae cause the main damage by burrowing galleries in the rachis of the leaves, causing premature drying and collapse. To develop an effective trap, six trials were carried out to evaluate the effect of trap type, design, colour, height, distance and location of the trap in relation to the palm tree on D. frumenti captures. This study confirms that the Econex® trap, green in colour, without a cover and with two ventilation holes of 2.5 cm in diameter, diametrically opposite each other and at 1 cm from the top of the base of the trap, baited with sugar cane and water, and placed between the first and second ring of green leaves of the palm canopy, is efficient in capturing D. frumenti. These results establish a basis for future research focused on the development of a specific trapping system based on semiochemicals to serve as a tool for detection, monitoring and mass trapping of D. frumenti. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

12 pages, 608 KiB  
Article
Feeding Preferences of the Bean Leaf Beetle (Ootheca spp.) (Coleoptera: Chrysomelidae): Insights for Targeted Pest Control Strategies in Uganda
by Samuel Olaboro, Samuel Kyamanywa, Moses Lutaakome, Pamela Paparu, Charles Halerimana, Stanley Tamusange Nkalubo and Michael Hilary. Otim
Insects 2024, 15(7), 516; https://doi.org/10.3390/insects15070516 - 10 Jul 2024
Viewed by 769
Abstract
The bean leaf beetle (BLB) (Ootheca spp.) is a polyphagous pest causing significant yield losses in Uganda, particularly in the Northern and Eastern regions on various hosts plants. Despite its polyphagous behaviour, the BLB exhibits preferential feeding, offering an opportunity for targeted [...] Read more.
The bean leaf beetle (BLB) (Ootheca spp.) is a polyphagous pest causing significant yield losses in Uganda, particularly in the Northern and Eastern regions on various hosts plants. Despite its polyphagous behaviour, the BLB exhibits preferential feeding, offering an opportunity for targeted pest management. This study explored its feeding preferences across seven crops: common bean, cowpea, greengram, okra, roselle (malakwang), groundnuts, and soybean. This study was conducted in Arua and Lira districts using a randomized complete block design for two rainy seasons (2018A and 2018B). The results showed significant differences in BLB abundance and foliar damage among host crops, locations, days after planting and seasons. Cowpea was the most preferred crop while groundnuts was the least preferred. Therefore, cowpea can be recommended for use as a trap for managing Ootheca spp. in gardens where it is not the main crop. There was a higher pest abundance in Arua than in Lira. There was also a higher pest abundance in 2018A than in 2018B. These findings highlight the importance of understanding BLB’s feeding preferences for implementing effective IPM strategies, emphasizing the potential role of trap cropping, especially with cowpea, to minimize BLB damage in resource-constrained agricultural settings. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

15 pages, 1736 KiB  
Article
Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae)
by Mona Awad, Ahmed H. El Kenawy, Nawal AbdulAziz Alfuhaid, El-Desoky S. Ibrahim, Júlia Katalin Jósvai, Adrien Fónagy and Moataz A. M. Moustafa
Insects 2024, 15(6), 450; https://doi.org/10.3390/insects15060450 - 13 Jun 2024
Cited by 2 | Viewed by 1201
Abstract
Cyantraniliprole is a novel anthranilic diamide insecticide registered for controlling chewing and sucking insect pests. Here, the lethal and sublethal effects of this insecticide on two destructive lepidopteran pests, Spodoptera littoralis Boisduval and Agrotis ipsilon Hufnagel, were evaluated. Because the effects of novel [...] Read more.
Cyantraniliprole is a novel anthranilic diamide insecticide registered for controlling chewing and sucking insect pests. Here, the lethal and sublethal effects of this insecticide on two destructive lepidopteran pests, Spodoptera littoralis Boisduval and Agrotis ipsilon Hufnagel, were evaluated. Because the effects of novel insecticides on beneficial and non-target arthropods must be considered, the impact of cyantraniliprole on a generalist biological control agent, Chrysoperla carnea [Stephens 1836], were also examined. Overall, our study revealed that cyantraniliprole was more toxic to A. ipsilon than to S. littoralis. Moreover, the LC15 and LC50 of the insecticide significantly prolonged the duration of the larval and pupal stages and induced enzymatic detoxification activity in both species. Treatment of the second-instar larvae of C. carnea with the recommended concentration of cyantraniliprole (0.75 mg/L) doubled the mortality rates and resulted in a slight negative effect on the biology and detoxification enzymes of C. carnea. Our results indicate that both sublethal and lethal concentrations of cyantraniliprole can successfully suppress S. littoralis and A. ipsilon populations. They also suggest that C. carnea, as a generalist predator, is compatible with cyantraniliprole under the modelled realistic field conditions. In future investigations, insights into the effects of cyantraniliprole on S. littoralis, A. ipsilon, and C. carnea under field conditions will be required to appropriately validate our results. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States
by George N. Mbata, Yinping Li, Sanower Warsi and Alvin M. Simmons
Insects 2024, 15(6), 429; https://doi.org/10.3390/insects15060429 - 6 Jun 2024
Viewed by 3518
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) Middle East–Asia Minor 1 (MEAM1), causes significant losses to vegetable crops directly by sap-feeding, inducing plant physiological disorders, and elevating the build-up of sooty mold, and indirectly by transmitting plant viruses. In this study, we evaluated the [...] Read more.
The sweetpotato whitefly, Bemisia tabaci (Gennadius) Middle East–Asia Minor 1 (MEAM1), causes significant losses to vegetable crops directly by sap-feeding, inducing plant physiological disorders, and elevating the build-up of sooty mold, and indirectly by transmitting plant viruses. In this study, we evaluated the susceptibility of 20 yellow squash and zucchini (Cucurbita pepo) cultivars to MEAM1, across three growing seasons in the southeastern United States. Weekly sampling of the numbers of MEAM1 adults, nymphs, and eggs were conducted from the fourth week after seed sowing and across 6 weeks during the summer and fall of 2021 and five weeks during the fall of 2022. In general, adult whitefly populations were high during the first week of sampling but decreased as the seasons progressed. The zucchini cultivar ‘Black Beauty’ harbored the most adults, while ‘Green Eclipse Zucchini’ was the least attractive zucchini cultivar to the adults in fall 2022. For yellow squash, ‘Early Summer’ (summer 2021) and ‘Amberpic 8455’ (summer 2021 and fall 2022) were the cultivars with the highest adult populations, while ‘Lioness’ (summer 2021) and ‘Gourmet Gold Hybrid’ (fall 2022) harbored the lowest adult counts. The whitefly egg counts across both vegetables trailed those of adults and peaked in the second week of sampling. The counts of nymphs increased as the seasons progressed, but there was a decline after the second week during fall 2021. For the yellow squash cultivars, ‘Gourmet Gold Hybrid’, (summer 2021 and fall 2022), ‘Lioness’, and ‘Fortune’ (summer 2021) recorded the highest yields. For zucchini, ‘Golden Glory’ (summer 2021) was the top performer. These results provide valuable information for whitefly management in yellow squash and zucchini based on host plant susceptibility and yield. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

19 pages, 2827 KiB  
Article
Influence of Vineyard Inter-Row Management on Grapevine Leafhoppers and Their Natural Enemies
by Elena Cargnus, Seyedeh Fatemeh Kiaeian Moosavi, Davide Frizzera, Chiara Floreani, Pietro Zandigiacomo, Giovanni Bigot, Davide Mosetti and Francesco Pavan
Insects 2024, 15(5), 355; https://doi.org/10.3390/insects15050355 - 14 May 2024
Cited by 1 | Viewed by 886
Abstract
Inter-row management in vineyards can influence the abundance of grapevine pests and their natural enemies. In 2013–2015, in a vineyard in northeastern Italy, the influence of two vineyard inter-row management strategies (i.e., alternate mowing, AM, and periodical tillage, PT) on the population dynamics [...] Read more.
Inter-row management in vineyards can influence the abundance of grapevine pests and their natural enemies. In 2013–2015, in a vineyard in northeastern Italy, the influence of two vineyard inter-row management strategies (i.e., alternate mowing, AM, and periodical tillage, PT) on the population dynamics of grapevine leafhoppers Hebata vitis and Zygina rhamni and their natural enemies, the mymarid Anagrus atomus and spiders (Araneae), and other hymenopteran parasitoids, were studied with different survey approaches. The infestations of both leafhoppers were lower in AM than PT due to the reduced leafhopper oviposition and higher nymph mortality in AM. This occurred although leafhopper egg parasitization by A. atomus was greater in PT than AM according to a density-dependent relationship with the leafhopper egg amount. Hymenopteran parasitoids other than A. atomus were the most abundant in AM, probably due to the higher availability of nectar and pollen than in PM. The significantly higher population densities of hunting spiders in AM than PT can be associated with the higher predation of leafhopper nymphs. Therefore, the study demonstrated that the alternate mowing of vineyard inter-rows enhances the abundance of natural enemies, such as spiders and hymenopteran parasitoids, and can contribute to grapevine leafhopper pest control. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

17 pages, 1347 KiB  
Article
Local Habitat Complexity and Its Effects on Herbivores and Predators in Urban Agroecosystems
by Azucena Lucatero, Shalene Jha and Stacy M. Philpott
Insects 2024, 15(1), 41; https://doi.org/10.3390/insects15010041 - 7 Jan 2024
Cited by 2 | Viewed by 1861
Abstract
In urban community gardens, cultivated vegetation provides variable levels of habitat complexity, which can suppress pests by promoting predator diversity and improving pest control. In this study, we examine three components of the structural complexity of garden vegetation (cover, diversity, and connectivity) to [...] Read more.
In urban community gardens, cultivated vegetation provides variable levels of habitat complexity, which can suppress pests by promoting predator diversity and improving pest control. In this study, we examine three components of the structural complexity of garden vegetation (cover, diversity, and connectivity) to investigate whether higher garden vegetation complexity leads to fewer herbivores, more predators, and higher predation. We worked in eight community gardens where we quantified vegetation complexity, sampled the arthropod community, and measured predation on corn earworm eggs. We found that plots with high vegetation cover supported higher species richness and greater abundance of predatory insects. High vegetation cover also supported a greater abundance and species richness of spiders. In contrast, high vegetation diversity was negatively associated with predator abundance. While high predator abundance was positively associated with egg predation, greater predator species richness had a negative impact on egg predation, suggesting that antagonism between predators may limit biological control. Community gardeners may thus manipulate vegetation cover and diversity to promote higher predator abundance and diversity in their plots. However, the species composition of predators and the prevalence of interspecific antagonism may ultimately determine subsequent impacts on biological pest control. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

21 pages, 5990 KiB  
Article
Diversified Rice Farms with Vegetable Plots and Flower Strips Are Associated with Fewer Pesticide Applications in the Philippines
by Finbarr G. Horgan, Enrique A. Mundaca, Buyung A. R. Hadi and Eduardo Crisol-Martínez
Insects 2023, 14(10), 778; https://doi.org/10.3390/insects14100778 - 22 Sep 2023
Cited by 2 | Viewed by 3667
Abstract
Ecological engineering is defined as the design of sustainable ecosystems for the benefit of both human society and the environment. In Southeast Asia, researchers have applied ecological engineering by diversifying farms using flower strips to restore regulatory services to rice ecosystems and thereby [...] Read more.
Ecological engineering is defined as the design of sustainable ecosystems for the benefit of both human society and the environment. In Southeast Asia, researchers have applied ecological engineering by diversifying farms using flower strips to restore regulatory services to rice ecosystems and thereby reduce herbivore-related yield losses and overall pesticide use. We conducted a survey of 302 rice farmers across four regions of the Philippines to assess their farm diversification practices and determine possible associations with pesticide use. Rice was the main product on all farms; however, the farmers also produced fruits and vegetables, either rotated with rice (47% of the farmers) or in small plots in adjacent farmland. In addition, 64% of the farmers produced flowers, herbs, and/or vegetables on rice bunds. Vegetables were cultivated mainly to supplement household food or incomes, but 30% of the farmers also believed that the vegetables reduced pest and weed damage to their rice. We found that 16% of the farmers grew flowers on their bunds to reduce pest damage to rice and vegetables, and many farmers applied botanical extracts, growth stimulants, and insect traps to reduce damage to the vegetables. Some farmers avoided insecticides on rice by using Trichogramma cards. Planting flowers on rice bunds, rearing ducks in the rice fields, and farmers’ recognition of beneficial rice arthropods were statistically significantly associated with lower pesticide (particularly, insecticide) applications to rice. Our results indicate that farm diversification to produce supplementary foods for rural households and access to alternative pest management options can reduce pesticide use on rice farms in tropical Asia. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

10 pages, 1046 KiB  
Article
Intraguild Prey Served as Alternative Prey for Intraguild Predators in a Reciprocal Predator Guild between Neoseiulus barkeri and Scolothrips takahashii
by Mingxiu Liu, Mian Wang, Yuzhen Nima, Xiaotian Feng, Guangyun Li, Yi Yang, Yaying Li and Huai Liu
Insects 2023, 14(6), 561; https://doi.org/10.3390/insects14060561 - 16 Jun 2023
Viewed by 1665
Abstract
The predatory mites Neoseiulus barkeri (Hughes) and the predatory thrips Scolothrips takahashii (Priesner) are known as potential biocontrol agents for the two-spotted spider mite Tetranychus urticae (Koch). These two predator species occur simultaneously on crops in agricultural ecosystems and are proved to be [...] Read more.
The predatory mites Neoseiulus barkeri (Hughes) and the predatory thrips Scolothrips takahashii (Priesner) are known as potential biocontrol agents for the two-spotted spider mite Tetranychus urticae (Koch). These two predator species occur simultaneously on crops in agricultural ecosystems and are proved to be involved in life-stage specific intraguild predation. The intraguild prey may play a role in securing the persistence of the intraguild predators during food shortage periods. To understand the potential of intraguild prey as food source for intraguild predators in the N. barkeri and S. takahashii guild at low T. urticae densities, the survival, development and reproduction of both predators was determined when fed on heterospecific predators. The choice tests were conducted to determine the preference of the intraguild predator between the intraguild prey and the shared prey. Results showed that 53.3% N. barkeri and 60% S. takahashii juveniles successfully developed when fed on heterospecific predators. Female intraguild predators of both species fed on intraguild prey survived and laid eggs throughout the experiment. In the choice test, both intraguild predator species preferred their extraguild prey T. urticae. This study suggested that intraguild prey served as an alternative prey for intraguild predators prolonged survival and ensured the reproduction of intraguild predators during food shortage, ultimately decreasing the need for the continual release of the predators. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Graphical abstract

21 pages, 18247 KiB  
Article
Potential of Hedgerows with Aromatic Plants as Reservoirs of Natural Enemies of Pests in Orange Orchards
by Theodoros Stathakis, Leonidas Economou, Myrto Barda, Theodoros Angelioudakis, Vaya Kati and Filitsa Karamaouna
Insects 2023, 14(4), 391; https://doi.org/10.3390/insects14040391 - 17 Apr 2023
Viewed by 2170
Abstract
In the present study, the potential of hedgerows from Mediterranean aromatic plant species, i.e., oregano, rosemary, sage, and savory, in orange field margins to function as reservoirs of natural enemies of citrus pests was tested in comparison to the common management practice of [...] Read more.
In the present study, the potential of hedgerows from Mediterranean aromatic plant species, i.e., oregano, rosemary, sage, and savory, in orange field margins to function as reservoirs of natural enemies of citrus pests was tested in comparison to the common management practice of bare soil or weed vegetation. Assessments were based on the abundance and diversity of parasitoid wasps, spiders, and insect predators in the field margins and on the orange trees for two growing seasons. Savory plants harbored more parasitoids compared to weed vegetation and the other aromatic plants (savory > organic rosemary > sage > oregano). Weed vegetation hosted more arachnid predators than the aromatic plants in their first year in the orchard, but this was reversed with their full growth in the following year (most abundant on rosemary). Oregano and sage favor insect predators. The similarity of the natural enemy communities on the field margins and on the orange trees increased with time, indicating the insects’ movement from the field margins to the trees. The results support the use of the tested aromatic plant species in conservation practices for targeted groups of beneficial arthropods in orange orchards, also considering the exploitation of suitable wild flowering plants of the weed flora. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

Other

Jump to: Research

10 pages, 1658 KiB  
Brief Report
Efficacy of Entomopathogenic Fungi as Prevention against Early Life Stages of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Laboratory and Greenhouse Trials
by Dana Ment, Noa Levy, Arnon Allouche, Michael Davidovitz and Gal Yaacobi
Insects 2023, 14(12), 918; https://doi.org/10.3390/insects14120918 - 30 Nov 2023
Cited by 2 | Viewed by 1483
Abstract
The red palm weevil (RPW) Rhynchophorus ferrugineus is a highly destructive invasive pest for palms whose management is mainly by application of synthetic pesticides. As a key pest of date palm plantations, it is necessary to integrate environmentally safe measures for its management. [...] Read more.
The red palm weevil (RPW) Rhynchophorus ferrugineus is a highly destructive invasive pest for palms whose management is mainly by application of synthetic pesticides. As a key pest of date palm plantations, it is necessary to integrate environmentally safe measures for its management. Entomopathogenic fungi (EPF) have been primarily studied as a preventative control measure due to the horizontal transfer of conidia within the RPW population. We previously demonstrated the horizontal transmission of fungal conidia from an egg-laying surface to the female weevil and then to the eggs and larvae. Based on that strategy, this study aimed to evaluate the virulence of commercial EPF products and laboratory EPF preparations to RPW females and their progeny, and their ability to protect palms against infestation. As such, it serves as a screening platform for field experiments. Mortality rates of females and eggs depended on the applied treatment formulation and fungal strain. Velifer®, a Beauveria bassiana product, and Metarhizium brunneum (Mb7) resulted in 60–88% female mortality. Mb7—as a conidial suspension or powder—resulted in 18–21% egg-hatching rates, approximately 3 times less than in the non-treated control. Treating palms with Mb7 suspension or dry formulation significantly inhibits infestation signs and results in protection. These results lay the foundation for investigating the protective rate of EPF products against RPW in date plantations. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

Back to TopTop