Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design and Crop Management
2.3. MEAM1 Sampling
2.4. Squash Fruit Yield Evaluation
2.5. Statistical Analysis
3. Results
3.1. Summer 2021
3.1.1. MEAM1 Population Dynamics
Yellow Squash
Zucchini
3.1.2. Yellow Squash and Zucchini Yield
3.1.3. Correlations between MEAM1 Infestations and Climatic Factors
3.2. Fall 2021
3.2.1. MEAM1 Population Dynamics
Yellow Squash
Zucchini
3.2.2. Yellow Squash and Zucchini Yield
3.2.3. Correlations between MEAM1 Infestations and Climatic Factors
3.3. Fall 2022
3.3.1. MEAM1 Population Dynamics
Yellow Squash
Zucchini
3.3.2. Yellow Squash and Zucchini Yield
3.3.3. Correlations between MEAM1 Infestations and Climatic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A. Single-stranded RNA viruses infecting cucurbits. In Plant RNA Viruses; Elsevier: Amsterdam, The Netherlands, 2023; pp. 39–56. [Google Scholar] [CrossRef]
- USDA, National Agricultural Statistics Service. Vegetables 2019 Summary; United States Department of Agriculture, National Agricultural Statistics Service: Washington, DC, USA, 2020.
- Stubbs, K. Georgia Farm Gate Value Report 2019. The University of Georgia Center for Agribusiness and Economic Development. AR-20-01. 18 May 2021. Available online: https://caed.uga.edu/content/dam/caes-subsite/caed/publications/annual-reports-farm-gate-value-reports/2019%20Farm%20Gate%20Report.pdf (accessed on 10 February 2024).
- Wu, F.; Guan, Z.; Huang, K. The Industry of US Cucumber and Squash Industry. Available online: https://edis.ifas.ufl.edu/publication/FE1125 (accessed on 16 March 2024).
- Bird, T.L.; Krüger, K. Response of the polyphagous whitefly Bemisia tabaci B-Biotype (Hemiptera: Aleyrodidae) to crop diversification–influence of multiple sensory stimuli on activity and fecundity. Bull. Entomol. Res. 2006, 96, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Schuster, D.J. Preference of Bemisia argentifolii (Homoptera: Aleyrodidae) for selected vegetable hosts relative to tomato. J. Agric. Urban Entomol. 2003, 20, 59–67. [Google Scholar]
- Sharma, M.; Budha, P.B. Host preference vegetables of tobacco whitefly Bemisia tabaci (Gennadius, 1889) in Nepal. J. Inst. Sci. Technol. 2015, 20, 133–137. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Ellsworth, P.C.; Chu, C.C.; Henneberry, T.J. Conservation of predatory arthropods in cotton: Role of action thresholds for Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol. 2002, 95, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Li, Y.; Mbata, G.N.; Punnuri, S.; Simmons, A.M.; Shapiro-Ilan, D.I. Bemisia tabaci on vegetables in the southern United States: Incidence, impact, and management. Insects 2021, 12, 198. [Google Scholar] [CrossRef]
- Li, Y.; Mbata, G.N.; Simmons, A.M.; Shapiro-Ilan, D.I.; Wu, S. Management of Bemisia tabaci on vegetable crops using entomopathogens. Crop Prot. 2024, 180, 106638. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zheng, Y.; Feng, J.; Ruan, Y.; Diao, S.; Chen, S.; Jiang, B.; Shen, Z.; Lu, H. Effects of Bemisia tabaci (Gennadius) infestation and squash silverleaf disorder on Cucurbita pepo L. Leaf. Sci. Hortic. 2017, 217, 8–16. [Google Scholar] [CrossRef]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Akad, F.; Webb, S.; Nyoike, T.W.; Liburd, O.E.; Turechek, W.; Adkins, S.; Polston, J.E. Detection of cucurbit leaf crumple virus in Florida cucurbits. Plant Dis. 2008, 92, 648. [Google Scholar] [CrossRef]
- Nyoike, T.W.; Liburd, O.E.; Webb, S.E. Suppression of whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae) and incidence of cucurbit leaf crumple virus, a whitefly transmitted virus of zucchini squash new to Florida, with mulches and imidacloprid. Fla. Entomol. 2008, 91, 460–465. [Google Scholar] [CrossRef]
- Little, E.L.; Brannen, P.M.; Jagdale, G.; Dutta, B.; Brock, J.H. 2017 Georgia Plant Disease Loss Estimates; University of Georgia Extension: Athens, GA, USA, 2019. [Google Scholar]
- Little, E.L.; Brannen, P.M.; Jagdale, G.; Dutta, B.; Brock, J.H. 2018 Georgia Plant Disease Loss Estimates; University of Georgia Extension: Athens, GA, USA, 2020. [Google Scholar]
- Gorayeb, E.S.; Watanabe, L.F.M.; Pereira, Y.A.B.; Dovigo, L.H.; Bello, V.H.; de Souza, I.M.; Cruciol, G.C.D.; Vicentin, E.; Sartori, M.M.P.; Krause-Sakate, R. Performance and preference of Bemisia tabaci on cucumbers: Understanding the recent outbreaks of mediterranean cryptic species in Brazil. Crop Prot. 2021, 143, 105468. [Google Scholar] [CrossRef]
- Frank, D.L.; Liburd, O.E. Effects of living and synthetic mulch on the population dynamics of whiteflies and aphids, their associated natural enemies, and insect transmitted plant diseases in zucchini. Environ. Entomol. 2005, 34, 857–865. [Google Scholar] [CrossRef]
- Razze, J.M.; Liburd, O.E.; Nuessly, G.S.; Samuel-Foo, M. Evaluation of bioinsecticides for management of Bemisia tabaci (Hemiptera: Aleyrodidae) and the effect on the whitefly predator Delphastus catalinae (Coleoptera: Coccinellidae) in organic squash. J. Econ. Entomol. 2016, 109, 1766–1771. [Google Scholar] [CrossRef]
- Byrne, F.J.; Castle, S.; Prabhaker, N.; Toscano, N.C. Biochemical study of resistance to imidacloprid in B Biotype Bemisia tabaci from Guatemala. Pest Manag. Sci. 2003, 59, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Croft, B.A. Arthropod Biological Control Agents and Pesticides; John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The Sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.L.; Osborne, J.L. Cucurbits as a model system for crop pollination management. J. Pollinat. Ecol. 2019, 25, 89–102. [Google Scholar] [CrossRef]
- Li, Y.; Mbata, G.N.; Simmons, A.M.; Punnuri, S. Susceptibility of snap bean cultivars to the sweetpotato whitefly, Bemisia tabaci, in the southern United States. Crop Prot. 2022, 159, 106022. [Google Scholar] [CrossRef]
- Karley, A.J.; Douglas, A.E.; Parker, W.E. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 2002, 205, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, F.; Müller, C. UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids. Plant Biol. 2010, 12, 676–684. [Google Scholar] [CrossRef]
- Alvarez, A.E.; Broglia, V.G.; Alberti D’Amato, A.M.; Wouters, D.; van der Vossen, E.; Garzo, E.; Tjallingii, W.F.; Dicke, M.; Vosman, B. Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid Myzus persicae and the potato Aphid macrosiphum Euphorbiae. Insect Sci. 2013, 20, 207–227. [Google Scholar] [CrossRef]
- Maxwell, F.E.; Jennings, P.R. (Eds.) Breeding Plants Resistant to Insects; Environmental Science and Technology; Wiley: New York, NY, USA, 1980; ISBN 978-0-471-03268-7. [Google Scholar]
- Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci. 2016, 7, 1132. [Google Scholar] [CrossRef]
- Scott, R.A.; Worrall, W.D.; Frank, W.A. Screening for resistance to Russian wheat aphid in triticale. Crop Sci. 1991, 31, 32–36. [Google Scholar] [CrossRef]
- Tiffin, P. Mechanisms of tolerance to herbivore damage: What do we know? Evol. Ecol. 2000, 14, 523–536. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Ding, H.; Shiel, P.; Berger, P.H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.J.; Mowry, T.M.; Bosque-Pérez, N.A.; Ding, H.; Eigenbrode, S.D. Changes in green peach aphid responses to potato leafroll virus–induced volatiles emitted during disease progression. Environ. Entomol. 2009, 38, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Rajabaskar, D.; Ding, H.; Wu, Y.; Eigenbrode, S.D. Behavioral responses of green peach aphid, Myzus persicae (Sulzer), to the volatile organic compound emissions from four potato varieties. Am. J. Potato Res. 2013, 90, 171–178. [Google Scholar] [CrossRef]
- Smith, H.A.; Shrestha, D.; van Santen, E.; Masroor, Q.; Wong, A. Development of Bemisia tabaci MEAM1 and MED on tomato (Solanum lycopersicum) alone and in a mixed population. Fla. Entomol. 2020, 103, 72–79. [Google Scholar] [CrossRef]
- Heinz, K.M.; Zalom, F.G. Variation in trichome-based resistance to Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition on tomato. J. Econ. Entomol. 1995, 88, 1494–1502. [Google Scholar] [CrossRef]
- Domingos, G.M.; Baldin, E.L.L.; Canassa, V.F.; Silva, I.F.; Lourenção, A.L. Resistance of collard green genotypes to Bemisia tabaci Biotype B: Characterization of antixenosis. Neotrop. Entomol. 2018, 47, 560–568. [Google Scholar] [CrossRef]
- Pantoja, K.F.; Rocha, K.C.; Melo, A.M.; Marubayashi, J.M.; Baldin, E.L.; Bentivenha, J.P.; Gioria, R.; Kobori, R.F.; Pavan, M.A.; Krause-Sakate, R. Identification of capsicum accessions tolerant to tomato severe rugose virus and resistant to Bemisia tabaci Middle East-Asia Minor 1 (MEAM1). Trop. Plant Pathol. 2018, 43, 138–145. [Google Scholar] [CrossRef]
- Simmons, A.M.; Kousik, C.S.; Levi, A. Combining reflective mulch and host plant resistance for Sweetpotato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop Prot. 2010, 29, 898–902. [Google Scholar] [CrossRef]
- Silva, A.G.D.; Boiça, A.L.; Farias, P.R.D.S.; Souza, B.H.S.D.; Rodrigues, N.E.L.; Carbonell, S.A.M. Common bean resistance expression to whitefly in winter and rainy seasons in Brazil. Sci. Agric. 2019, 76, 389–397. [Google Scholar] [CrossRef]
- Weather Atlas. Available online: https://www.weather-us.com/en/georgia-usa-climate#climate_text_1 (accessed on 21 February 2024).
- SoilWeb. Available online: https://casoilresource.lawr.ucdavis.edu/gmap/ (accessed on 21 February 2024).
- SAS Institute. SAS/STAT User’s Guide, Version 9.4; SAS Institute: Cary, NC, USA, 2001. [Google Scholar]
- Pascual, S.; Callejas, C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull. Entomol. Res. 2004, 94, 369–375. [Google Scholar] [CrossRef]
- Liu, S.S.; De Barro, P.J.; Xu, J.; Luan, J.B.; Zang, L.S.; Ruan, Y.M.; Wan, F.H. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 2007, 318, 1769–1772. [Google Scholar] [CrossRef]
- De Barro, P.J.; Bourne, A.; Khan, S.A.; Brancatini, V.A.L. Host plant and biotype density interactions–their role in the establishment of the invasive B biotype of Bemisia tabaci. Biol. Invasions 2006, 8, 287–294. [Google Scholar] [CrossRef]
- Topçu, İ.; Karaca, M.M.; Karut, K. Dominance of Bemisia tabaci MEAM1 species over MED (Hemiptera: Aleyrodidae) in greenhouse vegetables in Mersin, Turkey. Phytoparasitica 2020, 48, 159–166. [Google Scholar] [CrossRef]
- Luckew, A.; Meru, G.; Wang, Y.Y.; Mwatuwa, R.; Paret, M.; Carvalho, R.; Kalischuk, M.; da Silva, A.L.B.R.; Candian, J.; Dutta, B.; et al. Field evaluation of Cucurbita germplasm for resistance to whiteflies and whitefly-transmitted viruses. HortScience 2022, 57, 337–344. [Google Scholar] [CrossRef]
- Dempsey, M.; Riley, D.G.; Srinivasan, R. Insecticidal effects on the spatial progression of tomato yellow leaf curl virus and movement of its whitefly vector in tomato. J. Econ. Entomol. 2017, 110, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, Y.J.; McAuslane, H.J.; Webb, S.E. Mechanisms of resistance to whitefly induced squash silverleaf disorder in zucchini. J. Econ. Entomol. 1999, 92, 700–707. [Google Scholar] [CrossRef]
- Baldin, E.L.L.; Beneduzzi, R.A. Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. J. Pest Sci. 2010, 83, 223–229. [Google Scholar] [CrossRef]
- Lourenção, A.L.; Alves, A.C.; Melo, A.M.T.; Valle, G.E. Development of leaf silvering in squash cultivars infested by silverleaf whitefly. Hortic. Bras. 2011, 29, 112–116. [Google Scholar] [CrossRef]
- Coolong, T. Yellow Squash and Zucchini Cultivar Evaluation in Georgia. HortTechnology 2017, 27, 296–302. [Google Scholar] [CrossRef]
- Candian, J.S.; Coolong, T.; Dutta, B.; Srinivasan, R.; Sparks, A.; Barman, A.; da Silva, A.L.B.R. Yellow squash and zucchini cultivar selection for resistance to cucurbit leaf crumple virus in the southeastern United States. HortTechnology 2021, 31, 504–513. [Google Scholar] [CrossRef]
- LaTora, A.G.; Codod, C.B.; Legarrea, S.; Dutta, B.; Kemerait, R.C., Jr.; Adkins, S.; Turechek, W.; Coolong, T.; da Silva, A.L.B.R.; Srinivasan, R. Combining cultural tactics and insecticides for the management of the Sweetpotato whitefly, Bemisia tabaci MEAM1, and viruses in yellow squash. Horticulturae 2022, 8, 341. [Google Scholar] [CrossRef]
- Alves, A.C.; Lourenção, A.L.; de Melo, A.M. Resistência de genótipos de aboboreira a Bemisia tabaci (Genn.) Biotipo B (Hemiptera: Aleyrodidae). Neotrop. Entomol. 2005, 34, 973–979. [Google Scholar] [CrossRef]
- Alves, A.C.; Lourenção, A.L.; de Melo, A.M.; Matos, E.D.S. Atratividade e preferência para oviposição de Trialeurodes vaporariorum em genótipos de aboboreira. Hortic. Bras. 2006, 24, 446–449. [Google Scholar] [CrossRef]
- Mrosso, S.E.; Ndakidemi, P.A.; Mbega, E.R. Characterization of secondary metabolites responsible for the resistance of local tomato accessions to whitefly (Bemisia tabaci, Gennadius 1889) Hemiptera in Tanzania. Crops 2022, 2, 445–460. [Google Scholar] [CrossRef]
- Jaccard, C.; Cuny, M.A.; Bustos-Segura, C.; Arce, C.C.; Giollo, L.; Glauser, G.; Benrey, B. Squash varieties domesticated for different purposes differ in chemical and physical defense against leaf and root herbivores. Front. Agron. 2021, 3, 683936. [Google Scholar] [CrossRef]
- Sippell, D.W.; Bindra, O.S.; Khalifa, H. Resistance to whitefly (Bemisia tabaci) in cotton (Gossypium hirsutum) in the Sudan. Crop Prot. 1987, 6, 171–178. [Google Scholar] [CrossRef]
- McAuslane, H.J. Influence of leaf pubescence on ovipositional preference of Bemisia argentifolii (Homoptera: Aleyrodidae) on Soybean. Environ. Entomol. 1996, 25, 834–841. [Google Scholar] [CrossRef]
- Baldin, E.L.; Vendramim, J.D.; Lourenção, A.L. Resistance of tomato genotypes to the whitefly Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae). Neotrop. Entomol. 2005, 34, 435–441. [Google Scholar] [CrossRef]
- Williams, W.G.; Kennedy, G.G.; Yamamoto, R.T.; Thacker, J.D.; Bordner, J. 2 Tridecanone: A naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 1980, 207, 888–889. [Google Scholar] [CrossRef]
- Georgia Weather Stations. 2022. Available online: http://www.georgiaweather.net/ (accessed on 16 February 2024).
- Muñiz, M.; Nombela, G. Differential variation in development of the B-and Q biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environ. Entomol. 2001, 30, 720–727. [Google Scholar] [CrossRef]
- Wang, K.; Tsai, J.H. Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1996, 89, 375–384. [Google Scholar] [CrossRef]
- Simmons, A.M. Oviposition on vegetables by Bemisia tabaci (Homoptera: Aleyrodidae): Temporal and leaf surface factors. Environ. Entomol. 1994, 23, 381–389. [Google Scholar] [CrossRef]
- Engels, C.; Marschner, H. Plant uptake and utilization of nitrogen. In Nitrogen Fertilization in the Environment; Bacon, P.E., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1995; pp. 41–81. [Google Scholar]
- Jesus, F.G.; Martins, B.C.; Rocha, F.S.; Boiça Junior, A.L.; Carbonel, S.A.M.; Chiorato, A.F. Behavior of bean genotypes to attack by Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae). Arq. Inst. Biol. 2021, 77, 635–641. [Google Scholar] [CrossRef]
- Tuller, J.; Marquis, R.J.; Andrade, S.M.; Monteiro, A.B.; Faria, L.D. Trade-offs between growth, reproduction and defense in response to resource availability manipulations. PLoS ONE 2018, 13, e0201873. [Google Scholar] [CrossRef]
Cucurbits | No. | Cultivar | Seed Vendor |
---|---|---|---|
Yellow squash | 1 | Early Summer | Burpee |
2 | PIC-N-PIC | Burpee | |
3 | Saffron | Burpee | |
4 | Early Prolific | Burpee | |
5 | Lioness | Seedway | |
6 | Fortune | Seedway | |
7 | Amberpic 8455 | Amazon | |
8 | Golden Goose Hybrid | Burpee | |
9 | Gourmet Gold Hybrid | Burpee | |
10 | Gentry | Seedway | |
Zucchini | 11 | Caserta | Amazon |
12 | Grey | Amazon | |
13 | Cocozelle | Amazon | |
14 | Cube of Butter | Amazon | |
15 | Respect | Seedway | |
16 | Golden Glory | Seedway | |
17 | Fordhook Zucchini | Burpee | |
18 | Sure Thing Hybrid | Burpee | |
19 | Green Eclipse Zucchini | Seedway | |
20 | Black Beauty | Burpee |
Mean ± S.E. | ||||
---|---|---|---|---|
Sampling Week (Dates) | T (°C) | RH (%) | Rainfall (mm) | |
Summer 2021 | 1 (21–27 June) | 24.48 ±0.34 | 77.67 ± 2.43 | 0.00 ± 0.00 |
2 (28 June–4 July) | 24.46 ± 0.30 | 83.68 ± 2.90 | 0.30 ± 0.15 | |
3 (5–11 July) | 24.39 ± 0.44 | 84.86 ± 2.36 | 0.36 ± 0.16 | |
4 (12–18 July) | 25.38 ± 0.39 | 82.13 ± 1.58 | 0.15 ± 0.15 | |
5 (19–25 July) | 25.26 ± 0.34 | 87.94 ± 1.56 | 0.24 ± 0.12 | |
6 (26 July–1 August) | 27.26 ± 0.27 | 81.29 ± 0.70 | 0.17 ± 0.11 | |
Fall 2021 | 1 (4–10 October) | 21.67 ± 0.41 | 91.80 ± 2.01 | 7.98 ± 4.63 |
2 (11–17 October) | 19.81 ± 0.98 | 79.65 ± 3.77 | 0.04 ± 0.04 | |
3 (18–24 October) | 16.91 ± 0.88 | 75.63 ± 1.89 | 0.07 ± 0.05 | |
4 (25–31 October) | 15.26 ± 1.04 | 79.78 ± 2.23 | 4.68 ± 4.68 | |
5 (1–7 November) | 11.82 ± 0.92 | 70.28 ± 4.06 | 0.07 ± 0.05 | |
6 (8–14 November) | 12.72 ± 1.26 | 71.58 ± 2.85 | 1.67 ± 1.59 | |
Fall 2022 | 1 (17–23 October) | 12.09 ± 1.46 | 57.8 ± 3.26 | 0.0 ± 0.00 |
2 (24–30 October) | 16.79 ± 0.41 | 75.16 ± 3.91 | 0.36 ± 0.21 | |
3 (31 October–6 November) | 19.12 ± 0.82 | 77.90 ± 2.66 | 0.40 ± 0.40 | |
4 (7–13 November) | 17.28 ± 1.91 | 72.99 ± 6.53 | 6.50 ± 4.18 | |
5 (14–20 November) | 7.54 ± 0.89 | 62.85 ± 5.01 | 0.33 ± 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbata, G.N.; Li, Y.; Warsi, S.; Simmons, A.M. Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States. Insects 2024, 15, 429. https://doi.org/10.3390/insects15060429
Mbata GN, Li Y, Warsi S, Simmons AM. Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States. Insects. 2024; 15(6):429. https://doi.org/10.3390/insects15060429
Chicago/Turabian StyleMbata, George N., Yinping Li, Sanower Warsi, and Alvin M. Simmons. 2024. "Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States" Insects 15, no. 6: 429. https://doi.org/10.3390/insects15060429
APA StyleMbata, G. N., Li, Y., Warsi, S., & Simmons, A. M. (2024). Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States. Insects, 15(6), 429. https://doi.org/10.3390/insects15060429