Bee-Associated Beneficial Microbes—Importance for Bees and for Humans
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Microbiota of Western Honeybees (Apis mellifera)
3. Other Bee Species Microbiota
4. Lactic Acid Bacteria and Bifidobacteria Related to Bees and Their Products
5. Beneficial Properties of Fructobacilli—For Bees and Beyond
6. Fructobacilli as Beneficial Microbes
6.1. Apilactobacillus kunkeei as a Beneficial Species
6.2. Other Bees Associate Species as Beneficial Organisms
6.3. Bifidobacteria as a Beneficial Species
6.4. Some Other Fructobacilli as Beneficial Species
7. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ivanova, I.; Iliev, I.; Haertle, T.; Chobert, J.-M. Food or Medicine? Future of Lactic Acid Bacteria; Sofia University: Sofia, Bulgaria, 2013; p. 180. ISBN 978-954-423-877-3. [Google Scholar]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From Biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Wasan, A.; Sharma, R.K. Desenvolvimentos recentes em probióticos: Uma ênfase em Bifidobacterium. Food Biosci. 2021, 41, 100993. [Google Scholar] [CrossRef]
- Singh, T.P.; Natraj, B.H. Next-Generation Probiotics: A promising approach towards designing personalized medicine. Crit. Rev. Microbiol. 2021, 47, 479–498. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.F.; Chaul, L.T.; Bueno, G.C.; Reinecke, I.; Silva, T.C.; Brito, P.V.; De Martinis, E.C. Associated bacterial microbiota of honey and related products from stingless bees as novel sources of bioactive compounds for biotechnological applications. Curr. Opin. Food Sci. 2024, 55, 101122. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Cornea-Cipcigan, M.; Topal, E.; Kösoğlu, M. Impact of fermentation processes on the bioactive profile and health-promoting properties of bee bread, mead and honey Vinegar. Processes 2020, 8, 1081. [Google Scholar] [CrossRef]
- Smutin, D.; Lebedev, E.; Selitskiy, M.; Panyushev, N.; Adonin, L. Micro”bee”ota: Honey bee normal microbiota as a part of superorganism. Microorganisms 2022, 10, 2359. [Google Scholar] [CrossRef] [PubMed]
- Fünfhaus, A.; Ebeling, J.; Genersch, E. Bacterial pathogens of bees. Curr. Opin. Insect Sci. 2018, 26, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, J.; Fünfhaus, A.; Gisder, S. Special issue: Honeybee pathogens and parasites. Vet. Sci. 2022, 9, 515. [Google Scholar] [CrossRef]
- Cunha, M.S.; Cardoso, D.C.; Cristiano, M.P.; de Oliveira Campos, L.A.; Lopes, D.M. The bee chromosome database (Hymenoptera: Apidae). Apidologie 2021, 52, 493–502. [Google Scholar] [CrossRef]
- Orr, M.C.; Hughes, A.C.; Chesters, D.; Pickering, J.; Zhu, C.-D.; Ascher, J.S. Global patterns and drivers of bee distribution. Curr. Biol. 2021, 31, 451–458.e4. [Google Scholar] [CrossRef] [PubMed]
- Bromenshenk, J.J.; Henderson, C.B.; Wick, C.H.; Stanford, M.F.; Zulich, A.W.; Jabbour, R.E.; Deshpande, S.V.; McCubbin, P.E.; Seccomb, R.A.; Welch, P.M.; et al. Iridovirus and microsporidian linked to honey bee colony decline. PLoS ONE 2010, 5, e13181. [Google Scholar] [CrossRef] [PubMed]
- Vanengelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y.; et al. Colony collapse disorder: A descriptive study. PLoS ONE 2009, 4, e6481. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhu, Y.; Ye, L.; Shi, T.; Li, L.; Cao, H.; Yu, L. Overwintering honeybees maintained dynamic and stable intestinal bacteria. Sci. Rep. 2021, 11, 22233. [Google Scholar] [CrossRef] [PubMed]
- Cridland, J.M.; Tsutsui, N.D.; Ramírez, S.R. The complex demographic history and evolutionary origin of the western honeybee, Apis mellifera. Genome Biol. Evol. 2017, 9, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Duan, H.; Wang, J.; Zhang, W.; Guo, J.; Zhang, X.; Hu, X.; Zheng, H. Specific strains of honeybee gut lactobacillus stimulate host immune system to protect against pathogenic Hafnia alvei. Microbiol. Spectr. 2022, 10, e01896-21. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, C.; Liu, Z.; Wang, Y.; Ma, L.; Xu, B. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiol. 2020, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Szczuka, D.; Górczyńska, A.; Motyl, I.; Kręgiel, D. Characterization of Apis mellifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection—A review. Cells 2021, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Moran, N.A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 2016, 14, 374–384. [Google Scholar] [CrossRef]
- Bonilla-Rosso, G.; Engel, P. Functional roles and metabolic niches in the honeybee gut microbiota. Curr. Opin. Microbiol. 2018, 43, 69–76. [Google Scholar] [CrossRef]
- Abdi, K.; Ben Said, M.; Crotti, E.; Masmoudi, A.S.; Cherif, A. The promise of probiotics in honeybee health and disease management. Arch. Microbiol. 2023, 205, 73. [Google Scholar] [CrossRef] [PubMed]
- Kešnerová, L.; Emery, O.; Troilo, M.; Liberti, J.; Erkosar, B.; Engel, P. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020, 14, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Aguado-López, D.; Urbieta Magro, A.; Higes, M.; Rodríguez, J.M.; Martín-Hernández, R. Influence of age of infection on the gut microbiota in worker honeybees (Apis mellifera iberiensis) experimentally infected with Nosema ceranae. Microorganisms 2024, 12, 635. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Callegari, M.; Crotti, E.; Fusi, M.; Marasco, R.; Gonella, E.; De Noni, I.; Romano, D.; Borin, S.; Tsiamis, G.; Cherif, A.; et al. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. npj Biofilms Microbiomes 2021, 7, 42. [Google Scholar] [CrossRef]
- Taylor, M.A.; Robertson, A.W.; Biggs, P.J.; Richards, K.K.; Jones, D.F.; Parkar, S.G. The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS ONE 2019, 14, e0225845. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; Baretto Penna, A.L.; Venema, K.; Holzapfel, W.H.; Chikindas, M.L. Recommendations for the use of standardized abbreviations for the former Lactobacillus genera, reclassified in the year 2020. Benef. Microb. 2023, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Martinson, V.G.; Moy, J.; Moran, N.A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 2012, 78, 2830–2840. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, L.; Xu, B. Bee wisdom: Exploring bee control strategies for food microflora by comparing the physicochemical characteristics and microbial composition of beebread. Microbiol Spectr. 2023, 12, e0181823. [Google Scholar] [CrossRef]
- Smith, E.A.; Anderson, K.E.; Corby-Harris, V.; McFrederick, Q.S.; Parish, A.J.; Rice, D.W.; Newton, I.L.G. Reclassification of seven honey bee symbiont strains as Bombella apis. J. Syst. Evol. Microbiol. 2021, 71, 004950. [Google Scholar] [CrossRef]
- Tsadila, C.; Amoroso, C.; Mossialos, D. Microbial diversity in bee species and bee products: Pseudomonads contribution to bee well-being and the biological activity exerted by honey bee products: A narrative review. Diversity 2023, 15, 1088. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, Y.; Jat, B.L. Honeybee: Diversity, castes and life cycle. In Industrial Entomology; Omkar, Ed.; Springer: Singapore, 2017; pp. 5–34. [Google Scholar] [CrossRef]
- Ghosh, S.; Namin, S.M.; Jung, C. Differential bacterial community of bee bread and bee pollen revealed by 16s rRNA high-throughput sequencing. Insects 2022, 13, 863. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, Y.; Lu, H.; Hao, Y.; Zhang, K.; Dang, X.; Fan, X.; Zhang, H.; Zhou, Z.; Zhu, C.; et al. Diversity of bacterial communities associated with solitary bee Osmia excavata alfken (Hymenoptera: Megachilidae). Appl. Sci. 2023, 13, 1524. [Google Scholar] [CrossRef]
- Janashia, I.; Carminati, D.; Rossetti, L.; Zago, M.; Fornasari, M.E.; Haertlé, T.; Chanishvili, N.; Giraffa, G. Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus mountains. Ann. Microbiol. 2016, 66, 1387–1395. [Google Scholar] [CrossRef]
- Ellegaard, K.M.; Tamarit, D.; Javelind, E.; Olofsson, T.C.; Andersson, S.G.; Vásquez, A. Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genom. 2015, 16, 284. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Letizia, F.; Ganassi, S.; Testa, B.; Petrarca, S.; Albanese, G.; Di Criscio, D.; De Cristofaro, A. Functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honey bees. Insects 2022, 13, 308. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, A.E.S.; Hammer, T.J.; Moran, N.A.; Santana, W.C.; Kasuya, M.C.M.; da Silva, C.C. Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J. 2021, 15, 2813–2816. [Google Scholar] [CrossRef] [PubMed]
- Tola, Y.H.; Waweru, J.W.; Ndungu, N.N.; Nkoba, K.; Slippers, B.; Paredes, J.C. Loss and gain of gut bacterial phylotype symbionts in afrotropical stingless bee species (Apidae: Meliponinae). Microorganisms 2021, 9, 2420. [Google Scholar] [CrossRef] [PubMed]
- Sarton-Lohéac, G.; Nunes da Silva, C.G.; Mazel, F.; Baud, G.; de Bakker, V.; Das, S.; El Chazli, Y.; Ellegaard, K.; Garcia-Garcera, M.; Glover, N.; et al. Deep divergence and genomic diversification of gut symbionts of neotropical stingless bees. mBio 2023, 14, e03538-22. [Google Scholar] [CrossRef]
- Tang, Q.-H.; Miao, C.-H.; Chen, Y.-F.; Dong, Z.-X.; Cao, Z.; Liao, S.-Q.; Wang, J.-X.; Wang, Z.-W.; Guo, J. The composition of bacteria in gut and beebread of stingless bees (Apidae: Meliponini) from Tropics Yunnan, China. Antonie Van Leeuwenhoek 2021, 114, 1293–1305. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Mahmud-Ab-Rashid, N.K.; Zawawi, N. Stingless bee-collected pollen (Bee Bread): Chemical and microbiology properties and health benefits. Molecules 2021, 26, 957. [Google Scholar] [CrossRef] [PubMed]
- Sinpoo, C.; In-on, A.; Noirungsee, N.; Attasopa, K.; Chantawannakul, P.; Chaimanee, V.; Phokasem, P.; Ling, T.C.; Purahong, W.; Disayathanoowat, T. Microbial community profiling and culturing reveal functional groups of bacteria associated with Thai commercial stingless worker bees (Tetragonula pagdeni). PLoS ONE 2023, 18, e0280075. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.J.; Le, E.; Martin, A.N.; Moran, N.A. The gut microbiota of bumblebees. Insectes Sociaux 2021, 68, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Xu, X.; Ren, Z.; Zhao, Y.; Zhang, Y.; Chen, L.; Wu, Y.; Chen, G.; Cao, R.; Wu, Q.; et al. The adaptation of bumblebees to extremely high elevation associated with their gut microbiota. Msystems 2024, 9, e01219-23. [Google Scholar] [CrossRef] [PubMed]
- De Landa, G.F.; Alberoni, D.; Baffoni, L.; Fernandez De Landa, M.; Revainera, P.D.; Porrini, L.P.; Brasesco, C.; Quintana, S.; Zumpano, F.; Eguaras, M.J.; et al. The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. Environ. Microbiome 2023, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Siefert, P.; Buling, N.; Grünewald, B. Honey bee behaviours within the hive: Insights from long-term video analysis. PLoS ONE 2021, 16, e0247323. [Google Scholar] [CrossRef]
- Andrade-Velásquez, A.; Sánchez, H.H.; Dorantes-Álvarez, L.; Palmeros-Sánchez, B.; Torres-Moreno, R.; Hernández-Rodrigues, D.; Melgar-Lalanne, G. Honey characterization and identification of fructophilic lactic acid bacteria of fresh samples from Melipona beecheii, Scaptotrigona pectoralis, Plebeia llorentei, and Plebeia jatiformis hives. Front. Sustain. Food Syst. 2023, 7, 1113920. [Google Scholar] [CrossRef]
- Meradji, M.; Bachtarzi, N.; Mora, D.; Kharroub, K. Characterization of lactic acid bacteria strains isolated from Algerian honeybee and honey and exploration of their potential probiotic and functional features for human use. Foods 2023, 12, 2312. [Google Scholar] [CrossRef] [PubMed]
- Oliphan, S.A.; Watson-Haigh, N.S.; Sumby, K.M.; Gardner, J.; Groom, S.; Jiranek, V. Apilactobacillus apisilvae sp. nov., Nicolia spurrieriana gen. nov. sp. nov., Bombilactobacillus folatiphilus sp. nov. and Bombilactobacillus thymidiniphilus sp. nov., four new lactic acid bacterial isolates from stingless bees Tetragonula carbonaria and Austroplebeia australis. Int. J. Syst. Evol. Microbiol. 2022, 72, 005588. [Google Scholar] [CrossRef]
- Ventura, M.; van Sinderen, D.; Fitzgerald, G.F.; Zink, R. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 2004, 86, 205–223. [Google Scholar] [CrossRef]
- Lee, J.H.; O’Sullivan, D.J. Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 2010, 74, 378–416. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; de Melo Franco, B.D.; Tagg, J.R. Bacteriocins of Gram-positive bacteria having activity spectra extending beyond closely-related species. Benef. Microb. 2019, 10, 315–328. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.; Rodriguez, L.G.R.; Zorzoli, A.; Dorfmueller, H.C.; Raya, R.R.; Mozzi, F. Genomic diversity in Fructobacillus spp. isolated from fructose-rich niches. PLoS ONE 2023, 18, e0281839. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Maeno, S.; Tanizawa, Y.; Kneifel, W.; Arita, M.; Dicks, L.; Salminen, S. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl. Environ. Microbiol. 2018, 84, e01290-18. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Di Cagno, R.; Addante, R.; Pontonio, E.; Gobbetti, M. Metabolism of fructophilic lactic acid bacteria isolated from the Apis mellifera L. bee gut: Phenolic acids as external electron acceptors. Appl. Environ. Microbiol. 2016, 82, 6899–6911. [Google Scholar] [CrossRef] [PubMed]
- Albiac, A.M.; Di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: A proof of concept. Microb. Cell Factories 2020, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Heilbronner, S.; Krismer, B.; Brötz-Oesterhelt, H.; Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 2021, 19, 726–739. [Google Scholar] [CrossRef]
- Endo, A.; Tanaka, N.; Oikawa, Y.; Okada, S.; Dicks, L. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr. Microbiol. 2014, 68, 531–535. [Google Scholar] [CrossRef]
- Peretó, J. Embden-Meyerhof-Parnas Pathway. In Encyclopedia of Astrobiology; Gargaud, M., Amils, R., Quintanilla, J.C., Cleaves, H.J., Irvine, W.M., Pinti, D.L., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; p. 485. [Google Scholar]
- Endo, A.; Okada, S. Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus Gen. Nov., Comb. Nov., Fructobacillus durionis Comb. Nov., Fructobacillus ficulneus Comb. Nov. and Fructobacillus pseudoficulneus Comb. Nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Harris, H.M.; McCann, A.; Guo, C.; Argimón, S.; Zhang, W.; Yang, X.; Jeffery, I.B.; Cooney, J.C.; Kagawa, T.F.; et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 2015, 6, 8322. [Google Scholar] [CrossRef] [PubMed]
- Alberoni, D.; Gaggìa, F.; Baffoni, L.; Di Gioia, D. Beneficial microorganisms for honeybees: Problems and progresses. Appl. Microbiol. Biotechnol. 2016, 100, 9469–9482. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.S.; Rabadzhiev, Y.; Eller, M.R.; Iliev, I.; Ivanova, I.; Santana, W.C. Honey Analysis; IntechOpen: London, UK, 2017. [Google Scholar]
- Torres-Moreno, R.; Humberto, S.H.-S.; Méndez-Tenorio, A.; Palmeros-Sánchez, B.; Melgar-Lalanne, G. Characterization and identification of lactic acid bacteria from Mexican stingless bees (Apidae: Meliponini). IOP Conf. Ser. Earth Environ. Sci. 2021, 858, 012010. [Google Scholar] [CrossRef]
- Mesas, J.M.; Rodríguez, M.C.; Alegre, M.T. Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of ribeira sacra. Lett. Appl. Microbiol. 2011, 52, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Tanizawa, Y.; Tanaka, N.; Maeno, S.; Kumar, H.; Shiwa, Y.; Okada, S.; Yoshikawa, H.; Dicks, L.; Nakagawa, J.; et al. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp. BMC Genom. 2015, 16, 1117. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Sadeghi, A.; Rahimi, D.; Purabdolah, H.; Shahryari, S. Postbiotic and anti-aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey. Probiot. Antimicrob. Prot. 2021, 13, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Maeno, S.; Nishimura, H.; Tanizawa, Y.; Dicks, L.; Arita, M.; Endo, A. Unique niche-specific adaptation of fructophilic lactic acid bacteria and proposal of three Apilactobacillus species as novel members of the group. BMC Microbiol. 2021, 21, 41. [Google Scholar] [CrossRef]
- Lugli, G.A.; Fontana, F.; Tarracchini, C.; Mancabelli, L.; Milani, C.; Turroni, F.; Ventura, M. Exploring the biodiversity of Bifidobacterium asteroides among honey bee microbiomes. Environ. Microbiol. 2022, 24, 5666–5679. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, W.; Guo, C.; Yang, X.; Liu, W.; Wu, Y.; Song, Y.; Kwok, L.Y.; Cui, Y.; Menghe, B.; et al. Comparative genomic analysis of 45 type strains of the Genus Bifidobacterium: A snapshot of its genetic diversity and evolution. PLoS ONE 2015, 10, e0117912. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lai, C.-C.; Huang, H.-L.; Huang, W.-Y.; Toh, H.-S.; Weng, T.-C.; Chuang, Y.-C.; Lu, Y.-C.; Tang, H.-J. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front. Microbiol. 2019, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Niu, J.; Zhu, Y.; Li, Z.; Ye, L.; Cao, H.; Shi, T.; Yu, L. Apilactobacillus kunkeei alleviated toxicity of acetamiprid in honeybee. Insects 2022, 13, 1167. [Google Scholar] [CrossRef]
- Pino, A.; Benkaddour, B.; Inturri, R.; Amico, P.; Vaccaro, S.C.; Russo, N.; Vaccalluzzo, A.; Agolino, G.; Caggia, C.; Miloud, H.; et al. Characterization of Bifidobacterium asteroides isolates. Microorganisms 2022, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; Alves, V.F.; Popov, I.; Weeks, R.; Pinto, U.M.; Petrov, N.; Ivanova, I.V.; Chikindas, M.L. Antimicrobial compounds in wine. Probiot. Antimicrob. Prot. 2024, 16, 763–783. [Google Scholar] [CrossRef]
- Tajabadi, N.; Mardan, M.; Shuhaimi, M.; Abdul Manap, M.Y. Isolation and identification of Enterococcus sp. from honey stomach of honeybee based on biochemical and 16S sequencing analysis. Int. J. Probiot. Prebiot. 2011, 6, 95–100. [Google Scholar]
- Olofsson, T.C.; Butler, È.; Markowicz, P.; Lindholm, C.; Larsson, L.; Vásquez, A. Lactic acid bacterial symbionts in honeybees—An unknown key to honey’s antimicrobial and therapeutic activities. Int. Wound J. 2016, 13, 668–679. [Google Scholar] [CrossRef]
- Berge, A.C.; Wierup, M. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal 2012, 6, 557–564. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An overview of beneficial effects. Antonie Van Leeuwenhoek 2002, 82, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, E.; O’Callaghan, J.; Buttó, L.F.; Hurley, G.; Melgar, S.; Tanabe, S.; Shanahan, F.; Nally, K.; O’Toole, P.W. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: Strain dependence and attenuation by bacteriocin production. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1029–G1041. [Google Scholar] [CrossRef] [PubMed]
- Rajilić-Stojanović, M.; Smidt, H.; de Vos, W.M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 2007, 9, 2125–2136. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Alberoni, D. Probiotics for honeybees’ health. In Probiotics and Prebiotics in Animal Health and Food Safety; Di Gioia, D., Biavati, B., Eds.; Springer: Cham, Switzerland, 2018; pp. 154–196. [Google Scholar] [CrossRef]
- Royan, M. Mechanisms of probiotic action in the honeybee. Crit. Rev. Eukaryot. Gene Expr. 2019, 29, 95–103. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Powell, J.E.; Leonard, S.P.; Moran, N.A. Prospects for probiotics in social bees. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210156. [Google Scholar] [CrossRef] [PubMed]
- Krams, R.; Gudra, D.; Popovs, S.; Willow, J.; Krama, T.; Munkevics, M.; Megnis, K.; Jõers, P.; Fridmanis, D.; Contreras Garduño, J.; et al. Dominance of fructose-associated Fructobacillus in the gut microbiome of bumblebees (Bombus terrestris) inhabiting natural forest meadows. Insects 2022, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Zendo, T.; Ohashi, C.; Maeno, S.; Piao, X.; Salminen, S.; Sonomoto, K.; Endo, A. Kunkecin A, a new nisin variant bacteriocin produced by the fructophilic lactic acid bacterium, Apilactobacillus kunkeei FF30-6 isolated from honey bees. Front. Microbiol. 2020, 16, 571903. [Google Scholar] [CrossRef]
- Teng, K.; Huang, F.; Liu, Y.; Wang, Y.; Xia, T.; Yun, F.; Zhong, J. Food and gut originated bacteriocins involved in gut microbe-host interactions. Crit. Rev. Microbiol. 2023, 49, 515–527. [Google Scholar] [CrossRef]
- De Simone, N.; Rocchetti, M.T.; la Gatta, B.; Spano, G.; Drider, D.; Capozzi, V.; Russo, P.; Fiocco, D. Antimicrobial properties, functional characterization and application of Fructobacillus fructosus and Lactiplantibacillus plantarum isolated from artisanal honey. Probiot. Antimicrob. Prot. 2023, 15, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- Bisson, L.; Walker, G.; Ramakrishnan, V.; Luo, Y.; Fan, Q.; Wiemer, E.; Luong, P.; Ogawa, M.; Joseph, C.M. The two faces of Lactobacillus kunkeei: Wine spoilage agent and bee probiotic. Catal. Discov. Pract. 2016, 1, 1–11. [Google Scholar] [CrossRef]
- Lashani, E.; Davoodabadi, A.; Soltan Dallal, M.M. Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Vet. Res. Forum 2020, 11, 121–126. [Google Scholar] [CrossRef]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and postbiotics of probiotic lactobacilli, their positive effects on the host and action mechanisms: A review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Edwards, C.G.; Peterson, J.C.; Haag, K.M. Relationship between sluggish fermentations and the antagonism of yeast by lactic acid bacteria. Am. J. Enol. Vitic. 1996, 47, 1–10. [Google Scholar] [CrossRef]
- Edwards, C.G.; Haag, K.M.; Collins, M.D.; Hutson, R.A.; Huang, Y.C. Lactobacillus kunkeei sp. nov.: A spoilage organism associated with grape juice fermentations. J. Appl. Microbiol. 1998, 84, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Yan, X.; Chen, S.; Wu, C.; Huang, H.; Shi, Y.; Huang, G.; Dong, M.; Xu, A.; et al. Broad distribution, high diversity and ancient origin of the ApeC-containing proteins. Mol. Phylogenet. Evol. 2021, 155, 107009. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Lombardi, S.J.; Ganassi, S.; Testa, B.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; Vergalito, F.; Cozzolino, A.; et al. Antagonistic activity against Ascosphaera apis and functional properties of Lactobacillus kunkeei strains. Antibiotics 2020, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Tootiaie, S.; Moharrami, M.; Mojgani, N. Honeybee gut: Reservoir of probiotic bacteria. In Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health; Mojgani, N., Dadar, M., Eds.; Springer: Singapore, 2021; p. 2. [Google Scholar] [CrossRef]
- Cuesta-Maté, A.; Renelies-Hamilton, J.; Kryger, P.; Jensen, A.B.; Sinotte, V.M.; Poulsen, M. Resistance and vulnerability of honeybee (Apis mellifera) gut bacteria to commonly used pesticides. Front. Microbiol. 2021, 12, 717990. [Google Scholar] [CrossRef] [PubMed]
- Gruneck, L.; Khongphinitbunjong, K.; Popluechai, S. Gut microbiota associated with two species of domesticated honey bees from Thailand. Symbiosis 2021, 83, 335–345. [Google Scholar] [CrossRef]
- Brown, A.F.; Rodriguez, V.; Brzoska, C.; Pfister, J.; Neumann, P.; Retschnig, G. Dream team for honey bee health: Pollen and unmanipulated gut microbiota promote worker longevity and body weight. Front. Sustain. Food Syst. 2022, 6, 864741. [Google Scholar] [CrossRef]
- Lanh, P.T.; Duong, B.T.T.; Thu, H.T.; Hoa, N.T.; Yoo, M.S.; Cho, Y.S.; Quyen, D.V. The gut microbiota at different developmental stages of Apis cerana reveals potential probiotic bacteria for improving honeybee health. Microorganisms 2022, 10, 1938. [Google Scholar] [CrossRef]
- Daisley, B.A.; Pitek, A.P.; Chmiel, J.A.; Al, K.F.; Chernyshova, A.M.; Faragalla, K.M.; Burton, J.P.; Thompson, G.J.; Reid, G. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 2020, 14, 476–491. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Wilkes, J.; Wilson, M.; Spivak, M.; Sagili, R.R.; Tarpy, D.R.; McDermott, E.; Garavito, A.; Rennich, K.; et al. Survey-derived best management practices for backyard beekeepers improve colony health and reduce mortality. PLoS ONE 2021, 16, e0245490. [Google Scholar] [CrossRef]
- Daisley, B.A.; Pitek, A.P.; Torres, C.; Lowery, R.; Adair, B.A.; Al, K.F.; Niño, B.; Burton, J.P.; Allen-Vercoe, E.; Thompson, G.J.; et al. Delivery mechanism can enhance probiotic activity against honey bee pathogens. ISME J. 2023, 17, 1382–1395. [Google Scholar] [CrossRef]
- Damico, M.E.; Beasley, B.; Greenstein, D.; Raymann, K. Testing the effectiveness of a commercially sold probiotic on restoring the gut microbiota of honey bees: A field study. Probiot. Antimicrob. Prot. 2023; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Snydman, D.R. Risk and safety of probiotics. Clin. Infect. Dis. 2015, 60, S129–S134. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, S.; Erginkaya, Z.; Turhan, E.Ü.; Konuray, G. Assessment of the risk of probiotics in terms of the ffoodty and human health. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer: Cham, Switzerland, 2019; pp. 419–443. [Google Scholar] [CrossRef]
Phylum | Genus | Species |
---|---|---|
Firmicutes | Bombilactobacillus | Bombilactobacillus mellifer Bombilactobacillus mellis |
Lactobacillus | Lactobacillus melliventris | |
Apilactobacillus | Apilactobacillus kunkeei Apilactobacillus apinorum Apilactobacillus micheneri Apilactobacillus quenuiae Apilactobacillus timberlakei | |
Fructobacillus | Fructobacillus fructosus Fructobacillus durionis Fructobacillus ficulneus Fructobacillus pseudoficulneus Fructobacillus tropaeoli Fructobacillus papyriferae Fructobacillus papyrifericola Fructobacillus broussonetiae Fructobacillus parabroussonetiae Fructobacillus cardui Fructobacillus apis | |
Leuconostoc | Leuconostoc durionis Leuconostoc ficulneum Leuconostoc fructosum Leuconostoc pseudoficulneum | |
Pediococcus | ||
Streptococcus | ||
Weissella | ||
Enterococcus | ||
Lactococcus | ||
Actinobacteria | Bifidobacterium | Bifidobacterium asteroides |
Pseudomonadota | Bombella | Bombella apis |
Snodgrassella | Snodgrassella alvi | |
Pseudomonas | ||
Sphingomonas | ||
Bacilota | Bacillus | |
Proteobacteria | Gilliamella | Gilliamella apicola |
Proteobacteria | Serratia | |
Bacteroidetes | ||
Cyanobacteria | ||
Verrucomicrobia | ||
Acidobacteria | ||
Spirochaetes | ||
Planctomycetes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorov, S.D.; Alves, M.V.; Bueno, G.C.A.; Alves, V.F.; Ivanova, I.V. Bee-Associated Beneficial Microbes—Importance for Bees and for Humans. Insects 2024, 15, 430. https://doi.org/10.3390/insects15060430
Todorov SD, Alves MV, Bueno GCA, Alves VF, Ivanova IV. Bee-Associated Beneficial Microbes—Importance for Bees and for Humans. Insects. 2024; 15(6):430. https://doi.org/10.3390/insects15060430
Chicago/Turabian StyleTodorov, Svetoslav Dimitrov, Marcos Vinício Alves, Gisana Cristina Alves Bueno, Virgínia Farias Alves, and Iskra Vitanova Ivanova. 2024. "Bee-Associated Beneficial Microbes—Importance for Bees and for Humans" Insects 15, no. 6: 430. https://doi.org/10.3390/insects15060430
APA StyleTodorov, S. D., Alves, M. V., Bueno, G. C. A., Alves, V. F., & Ivanova, I. V. (2024). Bee-Associated Beneficial Microbes—Importance for Bees and for Humans. Insects, 15(6), 430. https://doi.org/10.3390/insects15060430