Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Cultures
2.1.1. Target Pests
2.1.2. Non-Target Pest
2.2. Insecticide
2.3. Toxicity of Cyantraniliprole to Target Species
2.4. Sublethal and Lethal Effects of Cyantraniliprole on Target Species
2.5. Sublethal Effects of Cyantraniliprole on C. carnea
- The direct contact method: IOBC standard guidelines for C. carnea [53] were followed with some modifications. To estimate the residual effects of cyantraniliprole on C. carnea larvae, filter paper was dipped for 5 s in each concentration. For the control group, the filter paper was dipped in water. The treated and untreated paper was then allowed to dry in the air. For each treatment, five replicates with 10 larvae each were used. The larvae were placed on the contaminated filter paper for 24 h, after which they were transferred to individual Petri dishes (5 cm) to avoid cannibalism and provided with E. kuehniella eggs every two days.
- The insecticide-treated host method (feeding method): E. kuehniella egg cards [1 × 1 cm] were dipped for 5 s in cyantraniliprole concentrations, and each card was then placed in a 5 cm Petri dish with a single second-instar larva of C. carnea for 24 h before being replaced by an untreated one.
2.6. Sublethal Effects on C. carnea
2.7. Biochemical Assays
2.7.1. Sample Preparation
2.7.2. CarE Assay
2.7.3. GST Assay
2.7.4. Protein Content
2.8. Data Analysis
3. Results
3.1. Toxicity of Cyantraniliprole to S. littoralis and A. ipsilon
3.2. Toxicity of Cyantraniliprole to C. carnea
3.3. Lethal and Sublethal Effects of Cyantraniliprole
3.3.1. On S. littoralis and A. ipsilon
3.3.2. On C. carnea
3.4. Effect of Cyantraniliprole on Detoxifying Enzymes
3.4.1. S. littoralis and A. ipsilon
3.4.2. C. carnea
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, B.; Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT Food Sci. Technol. 2018, 87, 93–101. [Google Scholar] [CrossRef]
- Jayasekhar Babu, P.; Saranya, S.; Longchar, B.; Rajasekhar, A. Nanobiotechnology-mediated sustainable agriculture and post-harvest management. Curr. Res. Biotechnol. 2022, 4, 326–336. [Google Scholar] [CrossRef]
- Jalali, M.A.; Van Leeuwen, T.; Luc, T.; De Patrick, C. Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica 2009, 37, 323–326. [Google Scholar] [CrossRef]
- Medina, P.; Budia, F.; del Estal, P.; Adán, A.; Viñuela, E. Toxicity of fipronil to the predatory lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Biocontrol Sci. Technol. 2004, 14, 261–268. [Google Scholar] [CrossRef]
- Moscardini, V.F.; da Costa Gontijo, P.; Carvalho, G.A.; Oliveira, R.L.; Maia, J.B.; Silva, F.F. Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere 2013, 92, 490–496. [Google Scholar] [CrossRef]
- Biondi, A.; Desneux, N.; Siscaro, G.; Zappalà, L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 2012, 87, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Eiden, A.; Cooper, R.; Zha, C.; Wang, D.; Reilly, E. Changes in indoor insecticide residue levels after adopting an integrated pest management program to control German Cockroach infestations in an apartment building. Insects 2019, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Regier, J.C.; Mitter, C.; Mitter, K.; Cummings, M.P.; Bazinet, A.L.; Hallwachs, W.; Janzen, D.H.; Zwick, A. Further progress on the phylogeny of Noctuoidea (Insecta: Lepidoptera) using an expanded gene sample. Syst. Entomol. 2017, 42, 82–93. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Helen, H.-S.; Wang, J.-J. Effect of host plants on development, fecundity and enzyme activity of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Agric. Sci. China 2011, 10, 1232–1240. [Google Scholar] [CrossRef]
- Keegan, K.L.; Rota, J.; Zahiri, R.; Zilli, A.; Wahlberg, N.; Schmidt, B.C.; Lafontaine, J.D.; Goldstein, P.Z.; Wagner, D.L. Toward a stable global Noctuidae (Lepidoptera) taxonomy. Insect Syst. Divers. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Henaish, M.; Elmetwaly, N. Identification and taxonomic notes of Spodoptera species (Lepidoptera: Noctuidae) known to occur in Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 161–175. [Google Scholar] [CrossRef]
- Abo-Elghar, G.C.; Rashwan, M.H.; El-Bermawy, Z.A.; Radwan, H.S.; Hussien, A.H. Monitoring for resistance in the cotton leafworm, Spodoptera littoralis (Boisd.) against mixtures with benzoylphenyl ureas. Bull. Entomol. Soc. Egypt Econ. Ser. 1992, 19, 249–259. [Google Scholar]
- Xu, C.; Zhang, Z.; Cui, K.; Zhao, Y.; Han, J.; Liu, F.; Mu, W. Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 2016, 11, e0156555. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, M.A.M.; Elmenofy, W.H.; Osman, E.A.; El-Said, N.A.; Awad, M. Biological impact, oxidative stress and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides. Plant Prot. Sci. 2022, 58, 326–337. [Google Scholar] [CrossRef]
- Hafez, S.S.M.; EL-Malla, A.; Ali, R.E.; El-Hadek, M.K. Resistance monitoring in cotton leafworm Spodoptera littoralis to certain bioinsecticides during ten cotton seasons in eight governorates on Egypt. J. Biol. Chem. 2018, 35, 590–594. [Google Scholar]
- Fouad, E.A.; Ahmed, F.S.; Moustafa, M.A.M. Monitoring and biochemical impact of insecticides resistance on field populations of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Pol. J. Entomol. 2022, 91, 109–118. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Osman, E.A.; Mokbel, E.M.S.; Fouad, E.A. Biochemical and molecular characterization of chlorantraniliprole resistance in Spodoptera littoralis (Lepidoptera: Noctuidae). Crop Prot. 2024, 177, 106533. [Google Scholar] [CrossRef]
- Garrido-Jurado, I.; Montes-Moreno, D.; Sanz-Barrionuevo, P.; Quesada-Moraga, E. Delving into the Causes and Effects of Entomopathogenic Endophytic Metarhizium brunneum Foliar Application-Related Mortality in Spodoptera littoralis Larvae. Insects 2020, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, S.A.; Shishehbor, P.; Stelinski, L.L. Life table parameters and digestive enzyme activity of Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) on selected legume cultivars. Insects 2022, 13, 661. [Google Scholar] [CrossRef]
- Sayed, R.M.; El Sayed, T.S.; Rizk, S.A. Potency of Bio Magic (Metarhizium anisopliae fungus) and gamma radiation in the black cut worm, Agrotis ipsilon (Hufnagel) larvae. Egypt. J. Biol. Pest Control 2023, 33, 1. [Google Scholar] [CrossRef]
- Amin, A.H.; Bayoumi, A.E.; Dimetry, A.Z.; Youssef, D.A. Efficiency of Nano-formulations of neem and peppermint oils on the bionomics and enzymatic activities of Agrotis ipsilon larvae (Lepidoptera: Noctuidae). Int. J. Nat. Resour. Ecol. Manag. 2019, 4, 102–111. [Google Scholar] [CrossRef]
- Awad, M.; Ibrahim, E.S.; Osman, E.I.; Elmenofy, W.H.; Mahmoud, A.W.M.; Atia, M.A.M.; Moustafa, M.A.M. Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS ONE 2022, 17, e0254285. [Google Scholar] [CrossRef]
- Tauber, M.J.; Tauber, C.A.; Daane, K.M.; Hagen, K.S. Commercialization of predators: Recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Am. Entomol. 2000, 46, 26–38. [Google Scholar] [CrossRef]
- New, T.R. Introduction to the systematics and distribution of Coniopterygidae, Hemerobiidae, and Chrysopidae used in pest management. In Lacewings in the Crop Environment; Cambridge University Press: Cambridge, UK, 2001; pp. 6–28. [Google Scholar]
- Defarge, N.; Otto, M.; Hilbeck, A.A. Roundup herbicide causes high mortality and impairs development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Sci. Total Environ. 2023, 865, 161158. [Google Scholar] [CrossRef] [PubMed]
- Kabissa, J.C.B.; Yarro, J.G.; Kayumbo, H.Y.; Juliano, S.A. Functional responses of two chrysopid predators feeding on Helicoverpa armigera (lep.: Noctuidae) and Aphis Gossypii (hom.: Aphididae). Entomophaga 1996, 41, 141–151. [Google Scholar] [CrossRef]
- El-Wakeil, N.M.E. New Aspects of Biological Control of Helicoverpa armigera in Organic Cotton Production. Ph.D. Dissertation, Cairo University, Cairo, Egypt, 2003; p. 140. [Google Scholar] [CrossRef]
- Parajulee, M.N.; Shrestha, R.B.; Leser, J.F.; Wester, D.B.; Blanco, C.A. Evaluation of the functional response of selected arthropod predators on bollworm eggs in the laboratory and effect of temperature on their predation efficiency. Environ. Entomol. 2006, 35, 379–386. [Google Scholar] [CrossRef]
- El-Dessouki, W.A.E.W.; Korish, S.K. Assessment of two biological control agents and insecticide on Spodoptera littoralis (Boisd.) under laboratory conditions. Egypt. J. Crop Prot. 2023, 18, 14–23. [Google Scholar] [CrossRef]
- Hassanpour, M.; Mohaghegh, J.; Iranipour, S.; Nouri-Ganbalani, G.; Enkegaard, A. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): Effect of prey and predator stages. Insect Sci. 2011, 18, 217–224. [Google Scholar] [CrossRef]
- Medina, P.; Smagghe, G.; Budia, F.; Del Estal, P.; Tirry, L.; Viñuela, E. Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch. Insect Biochem. Physiol. 2002, 51, 91–101. [Google Scholar] [CrossRef]
- Turquet, M.; Pommier, J.J.; Piron, M.; Lascaux, E.; Lorin, G. Biological control of aphids with Chrysoperla carnea on strawberry. Acta Hortic. 2009, 842, 641–644. [Google Scholar] [CrossRef]
- Devine, G.; Furlong, M. Insecticide use: Contexts and ecological consequences. Agric. Hum. Values 2007, 24, 281–306. [Google Scholar] [CrossRef]
- Wilson, C.; Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability Costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef]
- Desneux, N.; Denoyelle, R.; Kaiser, L. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 2006, 65, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cui, B.; Zhao, X.; Wang, Y.; Zeng, Z.; Sun, C.; Yang, D.; Liu, G.; Cui, H. Optimization and characterization of lambda-cyhalothrin solid nanodispersion by self-dispersing method. Pest Manag. Sci. 2019, 75, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Shu, B.; Hu, M.; Wang, Z.; Zhong, G. Sublethal effects of cyantraniliprole on the development and reproduction of the Cabbage cutworm, Spodoptera litura. J. South China Agric. Univ. 2014, 35, 64–68. [Google Scholar]
- Yu, H.; Xiang, X.; Yuan, G.; Chen, Y.; Wang, X. Effects of sublethal doses of cyantraniliprole on the growth and development and the activities of detoxifying enzymes in Spodoptera exigua (Lepidoptera: Noctuidae). Acta Entomol. Sin. 2015, 6, 634–641. [Google Scholar]
- Moustafa, M.A.M.; Fouad, E.A.; Yasmin, A.M.; Hamow, K.Á.A.; Mikó, Z.; Molnár, B.P.; Fónagy, A. Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2021, 56, 115–124. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Fouad, E.A.; Ibrahim, E.; Erdei, A.L.; Kárpáti, Z.; Fónagy, A. The comparative toxicity, biochemical and physiological impacts of chlorantraniliprole and indoxacarb on Mamestra brassicae (Lepidoptera: Noctuidae). Toxics 2023, 11, 212. [Google Scholar] [CrossRef]
- Hill, M.P.; Macfadyen, S.; Nash, M.A. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 2017, 5, e4179. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Wangyang, W.; Liu, F.; Cui, Y.; Duan, Y. Design, synthesis, and insecticidal activities of phthalamides containing a hydrazone substructure. J. Agric. Food Chem. 2010, 58, 6858–6863. [Google Scholar] [CrossRef]
- Foster, S.P.; Denholm, I.; Rison, J.L.; Portillo, H.E.; Margaritopoulis, J.; Slater, R. Susceptibility of standard clones and European field populations of the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), to the novel anthranilic diamide insecticide cyantraniliprole. Pest Manag. Sci. 2012, 68, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Kandil, M.A.; Moustafa, M.A.M.; Saleh, M.A.; Ateya, I.R. Dissipation kinetics and degradation products of cyantraniliprole in tomato plants and soil in the open field. Egypt. J. Chem. 2023, 66, 483–493. [Google Scholar] [CrossRef]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. Lett. 2009, 17, 4127–4133. [Google Scholar] [CrossRef] [PubMed]
- Kandil, M.A.; Abdel-kerim, R.N.; Moustafa, M.A.M. Lethal and sublethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2020, 30, 76. [Google Scholar] [CrossRef]
- Awad, M.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Salem, M.Z.M.; Fónagy, A.; Moustafa, M.A.M. Insecticidal and biochemical impacts with molecular docking analysis of three Essential Oils against Spodoptera littoralis (Lepidoptera: Noctuidae). Crop Prot. 2024, 180, 106659. [Google Scholar] [CrossRef]
- He, F.; Sun, S.; Tan, H.; Sun, X.; Qin, C.; Ji, S.; Li, X.; Zhang, J.; Jiang, X. Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Sci. Rep. 2019, 9, 10328. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Awad, M.; Amer, A.; Hassan, N.N.; Ibrahim, E.S.; Ali, H.M.; Akrami, M.; Salem, M.Z.M. Insecticidal activity of lemongrass essential oil as an ecofriendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 2021, 12, 737. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Awad, M. Insights into the toxicity, biochemical activity and molecular docking of Cymbopogon citratus essential oils and citral on the cotton leafworm Spodoptera littoralis. J. Econ. Entomol. 2023, 116, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Moustafa, M.M.A.; Kákai, A.; Awad, M.; Fónagy, A. Sublethal effects of spinosad and emamectin benzoate on larval development and reproductive activities of the cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae). Crop Prot. 2016, 90, 197–204. [Google Scholar] [CrossRef]
- Vogt, H.; Brown, K.; Candolfi, M.; Kühner, C.; Moll, M.; Travis, A.; Ufer, A.; Waldburger, M.; Waltersdorfer, A.; Bigler, F. Laboratory method to test effects of plant protection products on larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). In Guidelines to Evaluate Side-Effects of Plant Protection Products to Non-Target Arthropods; IOBC/WPRS: Gent, Belgium, 2000; pp. 27–44. [Google Scholar]
- van Asperen, K. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar] [CrossRef]
- Walgenbach, J.F.; Bilbo, T.R.; Tussey, D.A.; Ogburn, E.C. Comparison of chemigation versus foliar insecticide use: Management of lepidopteran larvae and stink bugs in North Carolina field tomatoes with environmental and farmworker benefits. Pest Manag. Sci. 2021, 77, 58–765. [Google Scholar] [CrossRef]
- Bilbo, T.R.; Owens, D.R.; Golec, J.R.; Walgenbach, J.F. Impact of insecticide programs on pests, the predatory mite Phytoseiulus persimilis, and staked tomato profitability. Pest Manag. Sci. 2022, 78, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.H.A.; Mohammed, S.H.; Eltaly, R.I.; Moustafa, M.A.M.; Fónagy, A.; Farag, S.M. Co-application of entomopathogenic fungi with chemical insecticides against Culex pipiens. J. Invertebr. Pathol. 2023, 198, 107916. [Google Scholar] [CrossRef] [PubMed]
- Farag, S.M.; Moustafa, M.A.M.; Fónagy, A.; Kamel, O.M.H.M.; Abdel-Haleem, D.R. Chemical composition of four essential oils and their adulticidal, repellence, and field oviposition deterrence activities against Culex pipiens L. (Diptera: Culicidae). Parasitol. Res. 2024, 123, 110. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, M.A.M.; Moteleb, R.I.A.; Ghoneim, Y.F.; Hafez, S.S.; Ali, R.E.; Eweis, E.E.A.; Hassan, N.N. Monitoring resistance and biochemical studies of three Egyptian field strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to six insecticides. Toxics 2023, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, A.M.N.; Faroni, L.R.D.; de Oliveira, J.V.; Navarro, D.M.D.F.; Barbosa, D.R.S.; Breda, M.O.; de Franca, S.M. Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. J. Pest Sci. 2017, 90, 589–600. [Google Scholar] [CrossRef]
- Hannig, G.T.; Ziegler, M.; Marçon, P.G. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag. Sci. 2009, 65, 969–974. [Google Scholar] [CrossRef]
- Han, W.; Zhang, S.; Shen, F.; Liu, M.; Ren, C.; Gao, X. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag. Sci. 2012, 68, 1184–1190. [Google Scholar] [CrossRef]
- Song, Y.; Dong, J.; Sun, H. Chlorantraniliprole at sublethal concentrations may reduce the population growth of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Acta Entomol. Sin. 2013, 56, 446–451. [Google Scholar] [CrossRef]
- Kinareikina, A.; Silivanova, E. Impact of insecticides at sublethal concentrations on the enzyme activities in Adult Musca domestica L. Toxics 2023, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Liu, C.; Wen, S.; Xue, Y.; Jin, Y.; Zhang, G.; Xia, X. Effects of sublethal concentrations of cyantraniliprole on the biology and metabolic enzyme activities of Laodelphax striatellus (Fallén). Crop Prot. 2022, 156, 105964. [Google Scholar] [CrossRef]
- Rumpf, S.; Hetzel, F.; Frampton, C. Lacewings (Neuroptera: Hemerobiidae and Chrysopidae) and integrated pest management: Enzyme activity as biomarker of sublethal insecticide exposure. J. Econ. Entomol. 1997, 90, 102–108. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Luo, Y.; Sheikh, U.A.A.; Bamisile, B.S.; Khan, M.M.; Imran, M.; Hafeez, M.; Ghani, M.I.; Lei, N.; Xu, Y. Transcriptome analysis reveals differential effects of beta-cypermethrin and fipronil insecticides on detoxification mechanisms in Solenopsis invicta. Front. Physiol. 2022, 13, 1018731. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Fan, Z.; Sun, Z.; Chen, Y.; Gui, F. Insecticide susceptibility and detoxification enzyme activity of Frankliniella occidentalis under three habitat conditions. Insects 2023, 14, 643. [Google Scholar] [CrossRef]
- Zeng, X.; Pan, Y.; Tian, F.; Li, J.; Xu, H.; Liu, X.; Chen, X.; Gao, X.; Peng, T.; Bi, R.; et al. Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. Pestici. Biochem. Physiol. 2021, 176, 104879. [Google Scholar] [CrossRef]
- Pengsook, A.; Tharamak, S.; Keosaeng, K.; Koul, O.; Bullangpoti, V.; Kumrungsee, N.; Pluempanupat, W. Insecticidal and growth inhibitory effects of some thymol derivatives on the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and their impact on detoxification enzymes. Pest Manag. Sci. 2022, 78, 684–691. [Google Scholar] [CrossRef]
- Vandervoet, T.F.; Ellsworth, P.C.; Carriere, Y.; Naranjo, S.E. Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. J. Econ. Entomol. 2018, 111, 1056–1068. [Google Scholar] [CrossRef]
- Bordini, I.; Ellsworth, P.C.; Naranjo, S.E.; Fournier, A. Novel insecticides and generalist predators support conservation biological control in cotton. Biol. Control 2021, 154, 104502. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.A.; Lacerda, M.C.; Zanuncio, T.V.; Ramalho, F.d.S.; Polanczyk, R.A.; Serrão, J.E.; Zanuncio, J.C. Effect of the insect growth regulator diflubenzuron on the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology 2012, 21, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Shankarganesh, K.; Naveen, N.C.; Bishwajeet, P. Effect of Insecticides on Different Stages of Predatory Green Lacewing, Chrysoperla zastrowi sillemi (Esben.-Petersen). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 1415–1422. [Google Scholar] [CrossRef]
- Ham, E.; Lee, J.S.; Jang, M.Y.; Park, J.K. Toxic effects of 12 pesticides on green lacewing, Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae). Entomol. Res. 2019, 49, 305–312. [Google Scholar] [CrossRef]
- Golmohammadi, G.; Torshizi, H.-R.R.; Vafaei-Shooshtari, R.; Faravardeh, L.; Rafaei-Karehroudi, Z. Lethal and sublethal effects of three insecticides on first instar larvae of green lacewing, Chrysoperla carnea, Stephens. Int. J. Trop. Insect Sci. 2021, 41, 2351–2359. [Google Scholar] [CrossRef]
- Hsin, C. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Fergani, Y.A.; Elbanna, H.M.; Hamama, H.M. Genotoxicity of some plant essential oils in cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae): The potential role of detoxification enzymes. Egypt. J. Zool. 2020, 73, 53–66. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Abou-Zaid, M.M.; Arnason, J.T.; Liu, R.; Walshe-Roussel, B.; Waye, A.; Liu, S.; Saleem, A.; Caceres, L.A.; et al. Inhibition of insect glutathione S-transferase (GST) by conifer extracts. Arch. Insect Biochem. Physiol. 2014, 87, 234–249. [Google Scholar] [CrossRef]
Insect Species | LC15 (mg/L) (95% Confidence Limits) | LC50 (mg/L) (95% Confidence Limits) | Slope ± SE | ꭓ2 [df] |
---|---|---|---|---|
S. littoralis | 1.958 (0.659–3.404) | 8.175 (5.290–11.362) | 1.66 ± 0.30 | 0.52 [2] |
A. ipsilon | 0.019 (0.004–0.051) | 0.338 (0.160–0.699) | 0.83 ± 0.14 | 0.44 [2] |
Sex | Control | LC15 | LC50 | ||
---|---|---|---|---|---|
Larval duration 1 | S. littoralis | 15.96 ± 1.46 c | 18.6 ± 1.01 b | 19.46 ± 1.93 a | |
A. ipsilon | 19.21 ± 2.3 b | 19.79 ± 2.31 b | 21.38 ± 3.23 a | ||
Pupation % | S. littoralis | 95.1 ± 3.5 a | 95.53 ± 4.15 a | 86.03 ± 3.04 a | |
A. ipsilon | 94.56 ± 1.49 a | 87.96 ± 3.13 a | 90.7 ± 9.47 a | ||
Pupal duration 2 | S. littoralis | 9.56 ± 1.23 c | 11.12 ± 1.68 b | 12.35 ± 1.79 a | |
A. ipsilon | 16.85 ± 0.78 c | 18.09 ± 1.13 b | 19.55 ± 1.31 a | ||
Pupal weight | Male | S. littoralis | 0.36 ± 0.03 a | 0.32 ± 0.06 b | 0.31 ± 0.03 b |
A. ipsilon | 0.37 ± 0.09 ab | 0.39 ± 0.07 a | 0.35 ± 0.03 b | ||
Female | S. littoralis | 0.42 ± 0.03 a | 0.34 ± 0.06 b | 0.33 ± 0.04 b | |
A. ipsilon | 0.42 ± 0.09 a | 0.42 ± 0.07 a | 0.39 ± 0.06 a | ||
Emergency% | S. littoralis | 100 ± 0 a | 100 ± 0 a | 93.33 ± 5.44 a | |
A. ipsilon | 97.7 ± 3.25 a | 97.33 ± 3.77 a | 94.11 ± 8.32 a | ||
Fecundity | Female 3 | S. littoralis | 1263.33 ± 267.95 a | 1003.46 ± 291.08 a | 874.86 ± 171.09 a |
A. ipsilon | 393.26 ± 69.05 a | 375.26 ± 31.15 a | 312.73 ± 100.51 a | ||
Hatchability 4 % | S. littoralis | 87.26 ± 2.96 a | 87 ± 2.11 a | 71.43 ± 3.49 b | |
A. ipsilon | 88.23 ± 0.97 a | 80.53 ± 6.38 ab | 75.2 ± 3.16 b |
Sex | Control | Chi-Square (p-Value) | LC15 | Chi-Square (p-Value) | LC50 | Chi-Square (p-Value) | |
---|---|---|---|---|---|---|---|
S. littoralis | Male | 53.69 ± 2.43 | 0.55 (0.45) | 59.26 ± 0.53 | 3.46 (0.06) | 52.63 ± 8.57 | 0.28 (0.59) |
Female | 46.23 ± 2.43 | 40.66 ± 0.53 | 47.3 ± 8.58 | ||||
A. ipsilon | Male | 52.13 ± 1.86 | 0.18 (0.67) | 49.27 ± 1.02 | 0.02 (0.88) | 54.6 ± 5.73 | 0.84 (0.35) |
Female | 47.87 ± 1.86 | 50.72 ± 1.02 | 45.39 ± 5.73 |
Development | Application Method | Control | Concentrations | ||
---|---|---|---|---|---|
0.19 mg/L | 0.37 mg/L | 0.75 mg/L | |||
Larval duration 1 | Contact Method | 9.32 ± 1.44 a | 9.11 ± 0.96 a | 9.28 ± 1.44 a | 9.71 ± 1.67 a |
Feeding Method | 9.18 ± 0.98 a | 8.82 ± 1.26 a | 9.14 ± 1.33 a | 9.55 ± 1.65 a | |
Pupal duration 2 | Contact Method | 9.57 ± 1.34 a | 10.07 ± 2.74 a | 10.04 ± 2.61 a | 10.42 ± 2.64 a |
Feeding Method | 9.64 ± 1.62 a | 9.82 ± 2.53 a | 10.02 ± 2.79 a | 10.41 ± 2.85 a | |
Pupation% | Contact Method | 93.94 ± 7.48 a | 94.16 ± 7.27 a | 85.34 ± 15.1 a | 83.84 ± 10.05 a |
Feeding Method | 95.06 ± 6.14 a | 93.54 ± 8.81 a | 93.54 ± 8.81 a | 91.04 ± 8.39 a | |
Emergence % | Contact Method | 96.1 ± 5.57 a | 68.08 ± 18.95 ab | 56.66 ± 24.95 b | 53 ± 13.26 b |
Feeding Method | 93.46 ± 5.66 a | 74.66 ± 17.71 ab | 68.32 ± 18.56 ab | 58.31 ± 11.46 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, M.; El Kenawy, A.H.; Alfuhaid, N.A.; Ibrahim, E.-D.S.; Jósvai, J.K.; Fónagy, A.; Moustafa, M.A.M. Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae). Insects 2024, 15, 450. https://doi.org/10.3390/insects15060450
Awad M, El Kenawy AH, Alfuhaid NA, Ibrahim E-DS, Jósvai JK, Fónagy A, Moustafa MAM. Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae). Insects. 2024; 15(6):450. https://doi.org/10.3390/insects15060450
Chicago/Turabian StyleAwad, Mona, Ahmed H. El Kenawy, Nawal AbdulAziz Alfuhaid, El-Desoky S. Ibrahim, Júlia Katalin Jósvai, Adrien Fónagy, and Moataz A. M. Moustafa. 2024. "Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae)" Insects 15, no. 6: 450. https://doi.org/10.3390/insects15060450
APA StyleAwad, M., El Kenawy, A. H., Alfuhaid, N. A., Ibrahim, E. -D. S., Jósvai, J. K., Fónagy, A., & Moustafa, M. A. M. (2024). Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae). Insects, 15(6), 450. https://doi.org/10.3390/insects15060450