Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insecticidal Formulations
2.2. Sitophilus oryzae and Sitophilus zeamais Rearing
2.3. Bioassays on Contact Toxicity
2.4. Sublethal Effects on Mobility
2.4.1. Mobility in the Absence of Food
2.4.2. Mobility in the Presence of Food
2.5. Statistical Analysis
3. Results
3.1. Contact Toxicity on S. oryzae and S. zeamais
3.2. Mobility in the Absence of Food
3.3. Mobility in the Presence of Food
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, D.S. Pests of Stored Foodstuffs and Their Control; Kluwer Academic Publishers: New York, NY, USA, 2003. [Google Scholar]
- Rees, D.P. Insects of Stored Products; CSIRO Publishing: Clayton, Australia, 2004. [Google Scholar]
- Hagstrum, D. Atlas of Stored-Product Insects and Mites; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.R.; Thomas, A.; Rebijith, K.B.; Ramamurthy, V.V. Biology, morphology and molecular characterization of Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae). J. Stored Prod. Res. 2017, 73, 135–141. [Google Scholar] [CrossRef]
- Trematerra, P.; Sciarreta, A.; Tamasi, E. Behavioural responses of Oryzaephilus surinamensis, Tribolium castaneum and Tribolium confusum to naturally and artificially damaged durum wheat kernels. Entomol. Exp. Appl. 2000, 94, 195–200. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Ahmad, S. Management strategies for control of stored grain insect pests in farmer stores and public ware houses. WJAS 2011, 7, 527–549. [Google Scholar]
- Kim, B.; Song, J.E.; Park, J.S.; Park, Y.; Shin, E.M.; Yang, J. Insecticidal effects of fumigants (EF, MB, and PH3) towards phosphine-susceptible and-resistant Sitophilus oryzae (Coleoptera: Curculionidae). Insects 2019, 10, 327. [Google Scholar] [CrossRef]
- John, E.M.; Shaike, J.M. Chlorpyrifos: Pollution and remediation. Environ. Chem. Lett. 2015, 13, 269–291. [Google Scholar] [CrossRef]
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos occurrence and toxicological risk assessment: A review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Athanassiou, C.G.; Arthur, F.H. Efficacy of deltamethrin against stored-product beetles at short exposure intervals or on a partially treated rice mass. J. Econ. Entomol. 2015, 108, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Safety of Pyrethroids for Public Health Use; No. WHO/CDS/WHOPES/GCDPP/2005.10; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Palmquist, K.; Salatas, J.; Fairbrother, A. Pyrethroid insecticides: Use, environmental fate, and ecotoxicology. In Insecticides-Advances in Integrated Pest Management; Perveen, F.K., Ed.; IntechOpen: London, UK, 2012; pp. 251–278. [Google Scholar]
- Arthur, F.H. Residual efficacy of deltamethrin as assessed by rapidity of knockdown of Tribolium castaneum on a treated surface: Temperature and seasonal effects in field and laboratory settings. J. Stored Prod. Res. 2018, 76, 151–160. [Google Scholar] [CrossRef]
- Vayias, B.J.; Kavallieratos, N.G.; Athanassiou, C.G.; Tatsi, G. Insecticidal action of the combined use of spinosad and deltamethrin against three stored-product pests in two stored hard-wheat varieties. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010. [Google Scholar]
- Arthur, F.H. Residual efficacy of a deltamethrin emulsifiable concentrate formulation against Rhyzopertha dominica (F.) and Sitotroga cerealella (Oliver) after partial treatment of brown rice. Insects 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H.; Domingue, M.J.; Scheff, D.S.; Myers, S.W. Bioassays and methodologies for insecticide tests with larvae of Trogoderma granarium (Everts), the khapra beetle. Insects 2019, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C.; Guedes, N.M.P.; Rosi-Denadai, C.A. Sub-lethal effects of insecticides on stored-product insects: Current knowledge and future needs. Stewart Postharvest Rev. 2011, 7, 1–5. [Google Scholar]
- Zinhoum, R. Sublethal Effects of malathion on biology and population growth of khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 57–72. [Google Scholar]
- Campbell, B.; Baldwin, R.; Koehler, P. Locomotion inhibition of Cimex lectularius L. following topical, sublethal dose application of the chitin synthesis inhibitor lufenuron. Insects 2017, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Boukouvala, M.C.; Kavallieratos, N.G.; Žikić, V.; Stanković, S.S.; Ilić Milošević, M.; Skourti, A.; Lazarević, M. Sub-lethal effects of pirimiphos-methyl are expressed to different levels in wings of three stored-product coleopterans: A geometric morphometrics investigation. Insects 2023, 14, 430. [Google Scholar] [CrossRef]
- Benelli, G.; Ceccarelli, C.; Zeni, V.; Rizzo, R.; Verde, G.L.; Sinacori, M.; Boukouvala, M.C.; Kavallieratos, N.G.; Ubaldi, M.; Tomassoni, D.; et al. Lethal and behavioural effects of a green insecticide against an invasive polyphagous fruit fly pest and its safety to mammals. Chemosphere 2022, 287, 132089. [Google Scholar] [CrossRef] [PubMed]
- Zalucki, M.P.; Furlong, M.J. Behavior as a mechanism of insecticide resistance: Evaluation of the evidence. Curr. Opin. Insect Sci. 2017, 21, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Wright, S.E.; Leskey, T.C. Impact of insecticide residue exposure on the invasive pest, Halyomorpha halys (Hemiptera: Pentatomidae): Analysis of adult mobility. J. Econ. Entomol. 2013, 106, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.R., III; Arthur, F.H.; Bruce, A. Characterizing and predicting sublethal shifts in mobility by multiple stored product insects over time to an old and novel contact insecticide in three key stored commodities. Pest Manag. Sci. 2021, 77, 1990–2006. [Google Scholar] [CrossRef]
- Cordova, D.; Benner, E.A.; Sacher, M.D.; Rauh, J.J.; Sopa, J.S.; Lahm, G.P.; Selby, T.P.; Stevenson, T.M.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Phys. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- Bhuvaneswari, K.; Mani, M.; Suganthi, A.; Manivannan, A. Novel insecticides and their application in the management of horticultural crop pests. In Trends in Horticultural Entomology; Mani, M., Ed.; Springer Nature: Berlin, Germany, 2022; pp. 419–454. [Google Scholar]
- Meesters, C.; Van Kerckvoorde, V.; Beliën, T.; Bylemans, D.; Herman, L.; Clymans, R.; Jacquemyn, H.; Lievens, B. Efficacy of pesticides against Nesidiocoris tenuis Reuter (Hemiptera: Miridae), an emerging threat in the cultivation of tomato in Northwest Europe. Crop Prot. 2024, 180, 106663. [Google Scholar] [CrossRef]
- Hackmeyer, E.J.; Washburn, T.J.; Delaplane, K.S.; Bartlett, L.J. Successful application of anthranilic diamides in preventing small hive beetle (Coleoptera: Nitidulidae) infestation in honey bee (Hymenoptera: Apidae) colonies. J. Insect Sci. 2023, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Behera, R.K.; Muralimohan, K. Seed treatment with diamides provides protection against early and mid-stage larvae of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in maize. J. Asia Pac. Entomol. 2024, 27, 102187. [Google Scholar] [CrossRef]
- Yadav, S.P.S.; Pokhrel, S.; Poudel, A.; Devkota, S.; Katel, S.; Bhattarai, N.; Gautam, P. Evaluation of different insecticides against Liriomyza sativae (Diptera: Agromyzidae) on cucumber plants. J. Agric. Food Res. 2024, 15, 100987. [Google Scholar]
- Akbar, M.S.; Sajjad, F.; Afzal, M.; Luqman, M.; Riaz, M.A.; Majeed, M.Z. Field evaluation of promising botanical extracts, plant essential oils and differential chemistry insecticides against subterranean termites Odontotermes obesus (Isoptera: Termitidae). SJA 2021, 37, 120–127. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G. Evaluation of two formulations of chlorantraniliprole as maize protectants for the management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae). Insects 2021, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Boukouvala, M.C.; Nika, E.P.; Eleftheriadou, N.; Avtzis, D.N. Immediate and delayed mortality of four stored-product pests on concrete surfaces treated with chlorantraniliprole. Insects 2021, 12, 1088. [Google Scholar] [CrossRef]
- Magano, D.A.; Carvalho, I.R.; Doberstein, A.P.; Louro, M.V.; Bubans, V.; Drebes, L.; Guedes, J.V.C.; Launtenchleger, F.; Ferreira, L.L.; Boller, W. Efficiency and persistence of insecticides with different action mechanisms applied on wheat stored pest Sitophilus zeamais. Aust. J. Crop Sci. 2021, 15, 618–621. [Google Scholar] [CrossRef]
- Nawaz, M.; Cai, W.; Jing, Z.; Zhou, X.; Mabubu, J.I.; Hua, H. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 2017, 178, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Plata-Rueda, A.; Martínez, L.C.; Costa, N.C.R.; Zanuncio, J.C.; de Sena Fernandes, M.E.; Serrão, J.E.; Guedes, R.N.C.; Fernandes, F.L. Chlorantraniliprole–mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicol. Environ. Saf. 2019, 172, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, Y.; Mu, W.; Zhang, Z. Sublethal effects of anthranilic diamide insecticides on the demographic fitness and consumption rates of the Coccinella septempunctata (Coleoptera: Coccinellidae) fed on Aphis craccivora. Environ. Sci. Pollut. Res. 2020, 27, 4178–4189. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Hafeez, M.; Elgizawy, K.; Wang, H.; Zhao, J.; Cai, W.; Ma, W.; Hua, H. Sublethal effects of chlorantraniliprole on Paederus fuscipes (Staphylinidae: Coleoptera), a general predator in paddle field. Environ. Pollut. 2021, 291, 118171. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Deng, X.; Tao, W.; Zhang, Z.; Zhang, H.; Li, Q.; Jiang, C. Sublethal effects of chlorantraniliprole on immunity in Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae): Promote encapsulation by upregulating a heat shock protein 70 family gene SfHSP68.1. Pestic. Biochem. Phys. 2024, 201, 105892. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhang, H.; Tan, Y.; Ni, R.; Shan, Y.; Li, F.; Dai, G.; Li, F.; Li, Y.; Pang, B. Sublethal effects of chlorantraniliprole on biological characteristics, detoxifying enzyme activity and gene expression profile in the Allium mongolicum Regel leaf beetle Galeruca daurica (Coleoptera: Chrysomelidae). J. Appl. Entomol. 2024, 148, 287–303. [Google Scholar] [CrossRef]
- Zhang, D.W.; Dai, C.C.; Ali, A.; Liu, Y.Q.; Pan, Y.; Desneux, N.; Lu, Y.H. Lethal and sublethal effects of chlorantraniliprole on the migratory moths Agrotis ipsilon and A. segetum: New perspectives for pest management strategies. Pest Manag. Sci. 2022, 78, 4105–4113. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, M.; Ibrahim, N.D.; Majeed, Q. Control of Sitophilus zeamais (Motsch) (Coleoptera: Curculionidae) on sorghum using some plant powders. Int. J. Agric. For. 2012, 2, 53–57. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Skourti, A.; Filintas, C.S.; Eleftheriadou, N.; Gidari, D.L.S.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Cianfaglione, K.; et al. Essential oils from three Cupressaceae species as stored wheat protectants: Will they kill different developmental stages of nine noxious arthropods? J. Stored Prod. Res. 2024, 105, 102232. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Benelli, G. Carlina acaulis essential oil: A candidate product for agrochemical industry due to its pesticidal capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
- Trematerra, P.; Ianiro, R.; Athanassiou, C.G.; Kavallieratos, N.G. Behavioral interactions between Sitophilus zeamais and Tribolium castaneum: The first colonizer matters. J. Pest Sci. 2015, 88, 573–581. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Pappa, A.P.A.; Canale, A.; Benelli, G. Being exposed to low concentrations of pirimiphos-methyl and chlorfenapyr has detrimental effects on the mobility of Trogoderma granarium. Pest Manag. Sci. 2023, 79, 5230–5236. [Google Scholar] [CrossRef] [PubMed]
- Boukouvala, M.C.; Kavallieratos, N.G.; Maggi, F.; Angeloni, S.; Ricciutelli, M.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Canale, A.; Benelli, G. Being exposed to Acmella oleracea-based insecticide extract reduces mobility and mating success in Prostaphanus truncatus, the major pest of maize in storages. J. Stored Prod. Res. 2023, 104, 102151. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971; p. 333. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.Rproject.org/ (accessed on 10 January 2024).
- Zar, J.H. Biostatistical Analysis; Pearson: Essex, UK, 2014. [Google Scholar]
- Sall, J.; Lehman, A.; Creighton, L. JMP start statistics. In A Guide to Statistics and Data Analysis Using JMP and JMP in Software; Duxbury Press: Belmont, ON, Canada, 2001. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W. H. Freeman and Co.: New York, NY, USA, 1995. [Google Scholar]
- SAS Institute Inc. Using JMP 14; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Kumar, R. Insect Pests of Stored Grain: Biology, Behavior, and Management Strategies; Apple Academic Press: Burlington, ON, Canada, 2017. [Google Scholar]
- Rosentrater, K.A. Insects in grains: Identification, damage, and detection. In Storage of Cereal Grains and their Products; Rosentrater, K.A., Ed.; Elsevier: Duxford, UK, 2022; pp. 261–292. [Google Scholar]
- Nguyen, T.T.; Collins, P.J.; Ebert, P.R. Inheritance and characterization of strong resistance to phosphine in Sitophilus oryzae (L.). PLoS ONE 2015, 10, e0124335. [Google Scholar] [CrossRef] [PubMed]
- Manal, A.A.; Trandil, F.W.; Marwa, I.M.; Shawir, M.S. Resistance status and associated resistance mechanisms to certain insecticides in rice weevil Sitophilus oryzae (Coleoptera: Curculionidae). Alex. J. Agric. Sci. 2017, 62, 331–340. [Google Scholar] [CrossRef]
- de Andrade Melo Junior, J.L.; da Silva, J.A.; Santoro, K.R.; Badji, C.A. Insecticide resistance of corn weevil populations from semi-arid regions. Aust. J. Crop Sci. 2018, 12, 430–434. [Google Scholar] [CrossRef]
- Bell, C.H. Food safety assurance systems: Infestation management in food production premises. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 189–200. [Google Scholar]
- Boukouvala, M.C.; Kavallieratos, N.G.; Nika, E.P. Insecticidal properties of etofenprox for the control of Ephestia kuehniella, Rhyzopertha dominica, Sitophilus oryzae, and Tribolium confusum on stored barley, maize, oats, rice, and wheat. Environ. Sci. Pollut. Res. 2022, 29, 84256–84267. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, J.; Zheng, Y.; Weng, Q.; Biondi, A.; Desneux, N.; Wu, K. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 2013, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Hannig, G.T.; Ziegler, M.; Marcon, P.G. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag. Sci. 2009, 65, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Baltzegar, J.; Jones, M.S.; Willcox, M.; Ramsey, J.M.; Gould, F. Population genetic structure of the maize weevil, Sitophilus zeamais, in southern Mexico. PLoS ONE 2023, 18, e0264469. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.R., III; Poling, B.; Leskey, T.C. The consequences of sublethal exposure to insecticide on the survivorship and mobility of Halyomorpha halys (Hemiptera: Pentatomidae). Pest Manag. Sci. 2017, 73, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Silva Barros, L.; Takao Yamamoto, P.; Merten, P.; Naranjo, S.E. Sublethal effects of diamide insecticides on development and flight performance of Chloridea virescens (Lepidoptera: Noctuidae): Implications for Bt soybean refuge area management. Insects 2020, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- De Castro e Castro, B.M.; Martínez, L.C.; Plata-Rueda, A.; Soares, M.A.; Wilcken, C.F.; Zanuncio, A.J.V.; Fiaz, M.; Zanuncio, J.C.; Serrão, J.E. Exposure to chlorantraniliprole reduces locomotion, respiration, and causes histological changes in the midgut of velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere 2021, 263, 128008. [Google Scholar] [CrossRef] [PubMed]
- Guedes, N.M.P.; Guedes, R.N.C.; Ferreira, G.H.; Silva, L.B. Flight take-off and walking behavior of insecticide-susceptible and–resistant strains of Sitophilus zeamais exposed to deltamethrin. Bull. Entomol. Res. 2009, 99, 393–400. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, A.M.N.; Faroni, L.R.D.A.; de Oliveira, J.V.; do Amaral Ferraz Navarro, D.M.; e Silva Barbosa, D.R.; Breda, M.O.; de Franca, S.M. Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. J. Pest Sci. 2017, 90, 589–600. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Campbell, J.F. Competition of three species of Sitophilus on rice and maize. PLoS ONE 2017, 12, e0173377. [Google Scholar] [CrossRef] [PubMed]
- Likhayo, P.W.; Hodges, R.J. Field monitoring Sitophilus zeamais and Sitophilus oryzae (Coleoptera: Curculionidae) using refuge and flight traps baited with synthetic pheromone and cracked wheat. J. Stored Prod. Res. 2000, 36, 341–353. [Google Scholar] [CrossRef]
- Lloyd Chesnut, T. Flight habits of the maize weevil as related to field infestation of corn. J. Econ. Entomol. 1972, 65, 434–435. [Google Scholar] [CrossRef]
- Giles, P.H.; Ashman, F. A study of pre-harvest infestation of maize by Sitophilus zeamais Motsch.(Coleoptera: Curculionidae) in the Kenya highlands. J. Stored Prod. Res. 1971, 7, 69–83. [Google Scholar] [CrossRef]
- Vásquez-Castro, J.A.; De Baptista, G.C.; Gadanha, C.D.; Trevizan, L.R. Insecticidal effect and residual action of fenitrothion and esfenvalerate on Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae) in stored maize and wheat. Int. Sch. Res. Netw. 2012, 2012, 158179. [Google Scholar] [CrossRef]
- Subramanyam, B.; Hagstrum, D.W. Resistance measurement and management. In Integrated Management of Insects in Stored products; Subramanyam, B., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 331–397. [Google Scholar]
Insect Species | Concentration | LC10 (95% CI) | LC30 (95% CI) | LC50 (95% CI) | χ2, df, p |
---|---|---|---|---|---|
Sitophilus oryzae | mg a.i./cm2 | 0.000328 (0.0000440–0.00106) | 0.00411 (0.00136–0.00800 | 0.0236 (0.0136–0.0349) | 30.7, 28, 0.331 |
Sitophilus zeamais | mg a.i./cm2 | 0.000319 (0.0000583–0.000907) | 0.00249 (0.000867–0.00484) | 0.0103 (0.00547–0.0159) | 21.3, 28, 0.811 |
Mobility Traits | Species | Concentration | Species × Concentration | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
Walking (s 1) | 1 | 7.9 | 0.01 * | 1 | 0.1 | 0.9 | 1 | 0.3 | 0.61 |
Stops (n 2) | 1 | 16.8 | <0.01 * | 1 | 2.8 | 0.10 | 1 | 0.7 | 0.42 |
Stops (s 1) | 1 | 24.2 | <0.01 * | 1 | 2.7 | 0.10 | 1 | 0.5 | 0.49 |
Climbing (n 2) | 1 | 34.8 | <0.01 * | 1 | 0.2 | 0.66 | 1 | 6.0 | 0.02 * |
Climbing (s 1) | 1 | 22.8 | <0.01 * | 1 | 0.1 | 0.91 | 1 | 3.8 | 0.05 * |
Upturned (n 2) | 1 | 25.9 | <0.01 * | 1 | 5.8 | 0.02 * | 1 | 7.7 | <0.01 * |
Upturned (s 1) | 1 | 13.7 | <0.01 * | 1 | 3.2 | 0.08 | 1 | 4.9 | 0.03 * |
Flying (n 2) | 1 | 5.3 | 0.02 * | 1 | 5.3 | 0.02 * | 1 | 5.3 | 0.02 * |
Flying (s 1) | 1 | 5.7 | 0.02 * | 1 | 5.7 | 0.02 * | 1 | 5.7 | 0.02 * |
Treatment | Walking (s 1) | Stops (n 2) | Stops (s 1) | Climbing (n 2) | Climbing (s 1) | Upturned (n 2) | Upturned (s 1) | Flying (n2) | Flying (s 1) |
---|---|---|---|---|---|---|---|---|---|
Control | 450.0 ± 33.8 | 3.3 ± 0.5 | 153.6 ± 38.7 | 10.2 ± 0.9 a | 294.1 ± 28.0 a | 2.7 ± 0.6 | 13.9 ± 4.1 | 0.6 ± 0.53 | 15.5 ± 14.0 |
LC10 | 483.1 ± 42.4 | 3.0 ± 0.3 | 260.1 ± 56.5 | 8.4 ± 1.3 ab | 158.2 ± 22.7 b | 3.3 ± 0.8 | 20.0 ± 5.8 | 0.0 ± 0.0 | 0.0 ± 0.0 |
LC30 | 446.9 ± 48.0 | 3.0 ± 0.5 | 324.5 ± 63.3 | 5.4 ± 0.9 b | 130.2 ± 23.0 b | 3.1 ± 0.7 | 26.1 ± 7.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
F | 0.24 | 0.19 | 0.80 | 6.10 | 7.29 | 0.013 | 0.04 | 1.49 | 1.96 |
p | 0.784 | 0.824 | 0.449 | 0.033 * | 0.012 * | 0.987 | 0.957 | 0.232 | 0.146 |
Treatment | Walking (s 1) | Stops (n 2) | Stops (s 1) | Climbing (n 2) | Climbing (s 1) | Upturned (n 2) | Upturned (s 1) | Flying (n 2) | Flying (s 1) |
---|---|---|---|---|---|---|---|---|---|
Control | 413.1 ± 30.3 b | 5.3 ± 0.39 a | 292.7 ± 41.0 a | 9.3 ± 0.9 b | 202.2 ± 19.7 b | 3.8 ± 0.6 b | 19.2 ± 4.6 b | 1.9 ± 0.8 a | 23.8 ± 14.9 a |
LC10 | 569.5 ± 26.1 a | 2.2 ± 0.5 b | 81.6 ± 20.6 b | 11.9 ± 1.1 ab | 225.2 ± 22.3 b | 5.4 ± 1.0 b | 28.0 ± 5.6 ab | 0.3 ± 0.1 ab | 2.0 ± 0.9 ab |
LC30 | 535.9 ± 34.6 a | 1.2 ± 0.3 b | 38.8 ± 10.8 b | 14.7 ± 0.9 a | 309.3 ± 27.8 a | 10.2 ± 1.2 a | 45.1 ± 5.9 a | 0.0 ± 0.0 b | 0.0 ± 0.0 b |
F | 5.80 | 28.50 | 21.68 | 6.07 | 3.69 | 12.21 | 8.25 | 5.64 | 4.8 |
p | 0.004 * | <0.01 * | <0.01 * | 0.034 * | 0.029 * | <0.01 * | 0.05 * | 0.01 * | 0.01 * |
Walking Traits | Species | Concentration | Species × Concentration | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
Time between arena and food | 1 | 1.1 | 0.30 | 1 | 2.3 | 0.14 | 1 | 12.8 | <0.01 * |
Time spent in food | 1 | 1.4 | 0.25 | 1 | 2.6 | 0.11 | 1 | 11.4 | <0.01 * |
Food approach | 1 | 2.1 | 0.15 | 1 | 3.9 | 0.05 * | 1 | 6.1 | 0.01 * |
Treatment | Time between Arena and Food (s 1) | Time Spent in Food (s 1) | Food Approach (n 2) |
---|---|---|---|
Control | 825.7 ± 23.0 a | 74.6 ± 23.4 b | 1.5 ± 0.3 a |
LC10 | 677.2 ± 52.2 b | 225.2 ± 52.0 a | 1.5 ± 0.3 a |
LC30 | 868.3 ± 14.6 a | 33.5 ± 15.8 b | 0.5 ± 0.1 b |
F | 7.55 | 7.17 | 5.92 |
p | 0.009 * | 0.013 * | 0.039 * |
Treatment | Time between Arena and Food (s 1) | Time Spent in Food (s 1) | Food Approach (n 2) |
---|---|---|---|
Control | 783.9 ± 38.7 | 102.5 ± 33.2 | 0.2 ± 0.04 |
LC10 | 846.1 ± 24.9 | 53.0 ± 24.4 | 0.2 ± 0.04 |
LC30 | 754.5 ± 42.6 | 121.8 ± 38.0 | 0.2 ± 0.04 |
F | 1.61 | 0.80 | 0.09 |
p | 0.206 | 0.451 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavallieratos, N.G.; Boukouvala, M.C.; Eleftheriadou, N.; Filintas, C.S.; Gidari, D.L.S.; Kyrpislidi, V.P.C. Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management. Insects 2024, 15, 451. https://doi.org/10.3390/insects15060451
Kavallieratos NG, Boukouvala MC, Eleftheriadou N, Filintas CS, Gidari DLS, Kyrpislidi VPC. Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management. Insects. 2024; 15(6):451. https://doi.org/10.3390/insects15060451
Chicago/Turabian StyleKavallieratos, Nickolas G., Maria C. Boukouvala, Nikoleta Eleftheriadou, Constantin S. Filintas, Demeter Lorentha S. Gidari, and Vasiliki Panagiota C. Kyrpislidi. 2024. "Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management" Insects 15, no. 6: 451. https://doi.org/10.3390/insects15060451
APA StyleKavallieratos, N. G., Boukouvala, M. C., Eleftheriadou, N., Filintas, C. S., Gidari, D. L. S., & Kyrpislidi, V. P. C. (2024). Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management. Insects, 15(6), 451. https://doi.org/10.3390/insects15060451