V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides and Bioassays
2.3. Detection of the Resistance Allele of SeVGSC
2.4. Genetic and Linkage Analysis of Resistance to SCBIs
3. Results
3.1. The Indoxacarb Resistance Level of AQ-23 Strain
3.2. Identification and Frequency of the SeVGSC V1848I Mutation in the AQ-23 Strain
3.3. Introgression of the 1848I Allele into the Susceptible WH-S Strain
3.4. Inheritance of SCBI Resistance in the Near-Isogenic WH-1848I Strain
3.5. Genetic Linkage between the V1848I Mutation of SeVGSC and SCBI Resistance
3.6. No Cross-Resistance to Broflanilide and Spinosad in the WH-1848I Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Catterall, W.A. Structure and function of voltage-sensitive ion channels. Science 1988, 242, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000, 26, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Noda, M.; Shimizu, S.; Tanabe, T.; Takai, T.; Kayano, T.; Ikeda, T.; Takahashi, H.; Nakayama, H.; Kanaoka, Y.; Minamino, N.; et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984, 312, 121–127. [Google Scholar] [CrossRef]
- Noda, M.; Ikeda, T.; Kayano, T.; Suzuki, H.; Takeshima, H.; Kurasaki, M.; Takahashi, H.; Numa, S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 1986, 320, 188–192. [Google Scholar] [CrossRef]
- Goldin, A.L. Evolution of voltage-gated Na+ channels. J. Exp. Biol. 2002, 205, 575–584. [Google Scholar] [CrossRef]
- Loughney, K.; Kreber, R.; Ganetzky, B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 1989, 58, 1143–1154. [Google Scholar] [CrossRef]
- Williamson, M.S.; Martinez-Torres, D.; Hick, C.A.; Devonshire, A.L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. MGG 1996, 252, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Dong, K. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem. Mol. Biol. 1997, 27, 93–100. [Google Scholar] [CrossRef]
- Shao, Y.M.; Dong, K.; Tang, Z.H.; Zhang, C.X. Molecular characterization of a sodium channel gene from the Silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2009, 39, 145–151. [Google Scholar] [CrossRef]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358. [Google Scholar] [CrossRef]
- Shen, H.Z.; Zhou, Q.; Pan, X.J.; Li, Z.Q.; Wu, J.P.; Yan, N. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 2017, 355, eaal4326. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhou, Q.; Wang, L.; Wu, J.P.; Zhao, Y.Y.; Huang, G.X.; Peng, W.; Shen, H.Z.; Lei, J.L.; Yan, N. Structure of the Na(v)1.4-beta1 complex from Electric eel. Cell 2017, 170, 470–482.e11. [Google Scholar] [CrossRef] [PubMed]
- Silver, K.S.; Du, Y.; Nomura, Y.; Oliveira, E.E.; Salgado, V.L.; Zhorov, B.S.; Dong, K. Voltage-gated sodium channels as insecticide targets. Adv. Insect Physiol. 2014, 46, 389–433. [Google Scholar]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wing, K.D.; Schnee, M.E.; Sacher, M.; Connair, M. A novel oxadiazine insecticide is bioactivated in lepidopteran larvae. Arch. Insect Biochem. Physiol. 1998, 37, 91–103. [Google Scholar] [CrossRef]
- Wing, K.D.; Sacher, M.; Kagaya, Y.; Tsurubuchi, Y.; Mulderig, L.; Connair, M.; Schnee, M. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot. 2000, 19, 537–545. [Google Scholar] [CrossRef]
- Wang, X.L.; Su, W.; Zhang, J.H.; Yang, Y.H.; Dong, K.; Wu, Y.D. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella. Insect Sci. 2016, 23, 50–58. [Google Scholar] [CrossRef]
- Salgado, V.L.; Hayashi, J.H. Metaflumizone is a novel sodium channel blocker insecticide. Vet. Parasitol. 2007, 150, 182–189. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, J.H.; Yang, Y.H.; Wu, Y.D. Equivalent intensity but differential dominance of sodium channel blocker insecticide resistance conferred by F1845Y and V1848I mutations of the voltage-gated sodium channel in Plutella xylostella. Insect Sci. 2023, 30, 125–134. [Google Scholar] [CrossRef]
- Roditakis, E.; Mavridis, K.; Riga, M.; Vasakis, E.; Morou, E.; Rison, J.L.; Vontas, J. Identification and detection of indoxacarb resistance mutations in the para sodium channel of the tomato leafminer, Tuta absoluta. Pest Manag. Sci. 2017, 73, 1679–1688. [Google Scholar] [CrossRef]
- Li, F.; Gong, X.Y.; Yuan, L.L.; Pan, X.L.; Jin, H.F.; Lu, R.C.; Wu, S.Y. Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China. Pestic. Biochem. Physiol. 2022, 183, 105054. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Yu, M.; Liu, R.; Liu, N.; Teng, H.; Pei, Y.; Hu, Z.; Zuo, Y. Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua. Pestic. Biochem. Physiol. 2024, 203, 105991. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.Y.; Shi, Y.; Zhang, F.; Guan, F.; Zhang, J.P.; Feyereisen, R.; Fabrick, J.A.; Yang, Y.H.; Wu, Y.D. Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm. PLoS Genet. 2021, 17, e1009680. [Google Scholar] [CrossRef]
- Mei, W.J.; Zuo, Y.Y.; Su, T.; Yuan, J.; Wu, Y.D.; Yang, Y.H. The ryanodine receptor mutation I4728M confers moderate-level resistance to diamide insecticides in Spodoptera litura. Pest Manag. Sci. 2023, 79, 3693–3699. [Google Scholar] [CrossRef]
- Payton, M.E.; Greenstone, M.H.; Schenker, N. Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J. Insect Sci. 2003, 3, 34. [Google Scholar] [CrossRef]
- Stone, B.F. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. World Health Organ. 1968, 38, 325–326. [Google Scholar] [PubMed]
- Miyazaki, M.; Ohyama, K.; Dunlap, D.Y.; Matsumura, F. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet. MGG 1996, 252, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Schuler, T.H.; Martinez-Torres, D.; Thompson, A.J.; Denholm, I.; Devonshire, A.L.; Duce, I.R.; Williamson, M.S. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic. Biochem. Physiol. 1998, 59, 169–182. [Google Scholar] [CrossRef]
- Sonoda, S.; Igaki, C.; Tsumuki, H. Alternatively spliced sodium channel transcripts expressed in field strains of the diamondback moth. Insect Biochem. Mol. Biol. 2008, 38, 883–890. [Google Scholar] [CrossRef]
- Dong, K. Insect sodium channels and insecticide resistance. Invertebr. Neurosci. 2007, 7, 17. [Google Scholar] [CrossRef]
- Hadiatullah, H.; Zhang, Y.; Samurkas, A.; Xie, Y.; Sundarraj, R.; Zuilhof, H.; Qiao, J.; Yuchi, Z. Recent progress in the structural study of ion channels as insecticide targets. Insect Sci. 2022, 29, 1522–1551. [Google Scholar] [CrossRef]
- Wang, X.L.; Cao, X.W.; Jiang, D.; Yang, Y.H.; Wu, Y.D. CRISPR/Cas9 mediated ryanodine receptor I4790M knockin confers unequal resistance to diamides in Plutella xylostella. Insect Biochem. Mol. Biol. 2020, 125, 103453. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Qian, C.; Wang, D.H.; Wang, F.L.; Zhao, S.; Yang, Y.H.; Baxter, S.W.; Wang, X.L.; Wu, Y.D. Varying contributions of three ryanodine receptor point mutations to diamide insecticide resistance in Plutella xylostella. Pest Manag. Sci. 2021, 77, 4874–4883. [Google Scholar] [CrossRef]
- Zuo, Y.Y.; Wang, H.; Xu, Y.J.; Huang, J.L.; Wu, S.W.; Wu, Y.D.; Yang, Y.H. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochem. Mol. Biol. 2017, 89, 79–85. [Google Scholar] [CrossRef]
- Zuo, Y.Y.; Ma, H.H.; Lu, W.J.; Wang, X.L.; Wu, S.W.; Nauen, R.; Wu, Y.D.; Yang, Y.H. Identification of the ryanodine receptor mutation I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae). Insect Sci. 2020, 27, 791–800. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.L.; Lansdell, S.J.; Zhang, J.H.; Millar, N.S.; Wu, Y.D. A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella. Insect Biochem. Mol. Biol. 2016, 71, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Ma, Y.M.; Wang, F.L.; Yang, Y.H.; Wu, S.W.; Wu, Y.D. Disruption of nicotinic acetylcholine receptor α6 mediated by CRISPR/Cas9 confers resistance to spinosyns in Plutella xylostella. Pest Manag. Sci. 2020, 76, 1618–1625. [Google Scholar] [CrossRef]
- Shi, T.L.; Tang, P.; Wang, X.L.; Yang, Y.H.; Wu, Y.D. CRISPR-mediated knockout of nicotinic acetylcholine receptor (nAChR) α6 subunit confers high levels of resistance to spinosyns in Spodoptera frugiperda. Pestic. Biochem. Physiol. 2022, 187, 105191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Z.; Zhang, X.L.; Shen, J.; Li, D.Y.; Wan, H.; You, H.; Li, J.H. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pestic. Biochem. Physiol. 2017, 140, 85–89. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, S.H.; Ren, M.M.; Tian, X.R.; Wei, Q.; Mburu, D.K.; Su, J.Y. The expression of Spodoptera exigua P450 and UGT genes: Tissue specificity and response to insecticides. Insect Sci. 2019, 26, 199–216. [Google Scholar] [CrossRef]
- Hafez, A.M.; Mota-Sanchez, D.; Hollingworth, R.M.; Vandervoort, C.; Wise, J.C. Metabolic mechanisms of indoxacarb resistance in field populations of Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Pestic. Biochem. Physiol. 2020, 168, 104636. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.T.; Staehelin, C.; Elzaki, M.E.A.; Hafeez, M.; Luo, Y.S.; Wang, R.L. Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 2021, 178, 104946. [Google Scholar] [CrossRef] [PubMed]
- Bird, L.J.; Walker, P.W.; Drynan, L.J. Frequency and diversity of indoxacarb resistance in Australian Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 2154–2165. [Google Scholar] [CrossRef] [PubMed]
Strain | N | Slope ± SE a | LC50 (95%FL) (mg/L) b | RR c |
---|---|---|---|---|
WH-S | 288 | 5.60 ± 0.60 | 0.213 (0.186–0.243) | |
AQ-23 | 288 | 1.74 ± 0.20 | 35.036 (27.645–46.811) | 165 |
Strain/Cross | N | Slope ± SE a | LC50 (95%FL) (mg/L) b | RR c | D d |
---|---|---|---|---|---|
Toxicity of indoxacarb | |||||
WH-S (S) | 288 | 5.60 ± 0.60 | 0.213 (0.186–0.243) | ||
WH-1848I (R) | 288 | 2.72 ± 0.29 | 31.174 (20.490–46.453) | 146 | |
F1a (R♂ × S♀) | 288 | 3.52 ± 0.38 | 5.522 (4.771–6.394) | 26 | 0.31 |
F1b (R♀ × S♂) | 288 | 3.07 ± 0.34 | 6.139 (5.246–7.227) | 29 | 0.35 |
Pooled F1 | 576 | 3.27 ± 0.25 | 5.819 (4.399–7.775) | 27 | 0.33 |
Toxicity of metaflumizone | |||||
WH-S (S) | 288 | 3.76 ± 0.43 | 0.881 (0.765–1.020) | ||
WH-1848I (R) | 288 | 2.22 ± 0.25 | 379.278 (307.929–460.023) | 431 | |
F1a (R♂ × S♀) | 288 | 1.97 ± 0.25 | 14.815 (11.914–19.278) | 17 | −0.07 |
F1b (R♀ × S♂) | 288 | 2.27 ± 0.29 | 18.298 (14.933–23.587) | 21 | 0.00 |
Pooled F1 | 576 | 2.08 ± 0.19 | 16.545 (14.198–19.750) | 19 | −0.03 |
Treatment | Survival (%) | Number of Larvae Genotyped | Number of Larvae for Each Genotype | |
---|---|---|---|---|
1848V/I (Mutant) | 1848V/V (Wild Type) | |||
Indoxacarb | ||||
Untreated group | 30 | 18 | 12 | |
Survivors at 2 mg/L | 46.7 (112/240) | 30 | 30 | 0 |
Survivors at 4 mg/L | 31.7 (76/240) | 30 | 30 | 0 |
Metaflumizone | ||||
Untreated group | 30 | 18 | 12 | |
Survivors at 2 mg/L | 53.3 (128/240) | 30 | 30 | 0 |
Survivors at 4 mg/L | 40.4 (97/240) | 30 | 30 | 0 |
Strain | Insecticide | N | Slope ± SE a | LC50 (95%FL) (mg/L) b | RR c |
---|---|---|---|---|---|
WH-S | Broflanilide | 288 | 4.53 ± 0.53 | 0.034 (0.030–0.039) | |
Spinosad | 288 | 2.95 ± 0.28 | 0.734 (0.546–0.990) | ||
WH-1848I | Broflanilide | 240 | 3.32 ± 0.35 | 0.047 (0.041–0.055) | 1.4 |
Spinosad | 240 | 2.51 ± 0.27 | 1.079 (0.903–1.292) | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Cao, M.; Mei, W.; Wang, X.; Wu, Y. V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua. Insects 2024, 15, 777. https://doi.org/10.3390/insects15100777
Liu X, Cao M, Mei W, Wang X, Wu Y. V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua. Insects. 2024; 15(10):777. https://doi.org/10.3390/insects15100777
Chicago/Turabian StyleLiu, Xiangjie, Minhui Cao, Wenjuan Mei, Xingliang Wang, and Yidong Wu. 2024. "V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua" Insects 15, no. 10: 777. https://doi.org/10.3390/insects15100777
APA StyleLiu, X., Cao, M., Mei, W., Wang, X., & Wu, Y. (2024). V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua. Insects, 15(10), 777. https://doi.org/10.3390/insects15100777