Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. RNA Sample Preparation and RNA-Sequencing (RNA-Seq) Data
2.3. lncRNA Identification Pipeline
2.4. Gene Ontology (GO) Analysis of lncRNA for Functional Annotation
2.5. lncRNA Expression Analysis
2.6. Identification of lncRNA and Analysis of Detoxification-Related Genes
2.7. Phylogenetic Analysis of Cytochrome P450 and Cuticle Proteins (CPs)
2.8. Statistical Analysis
3. Results
3.1. Identification and Characterization of lncRNAs in H. armigera
3.2. Differentially Expressed lncRNAs and Their Putative Functional Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, C.; Shen, G.; Guo, D.; Wang, S.; Ma, X.; Xiao, H.; Liu, J.; Zhang, Z.; Liu, Y.; Zhang, Y. InsectBase: A Resource for Insect Genomes and Transcriptomes. Nucleic Acids Res. 2016, 44, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, G.A.; De Oliveira, J.C.; Salviano-Silva, A.; Lobo-Alves, S.C.; Lemos, D.S.; Oliveira, L.C.; Jucoski, T.S.; Mathias, C.; Pedroso, G.A.; Zambalde, E.P. Long Non-Coding RNAs in Multifactorial Diseases: Another Layer of Complexity. Non-Coding RNA 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Satyavathi, V.; Ghosh, R.; Subramanian, S. Long Non-Coding RNAs Regulating Immunity in Insects. Non-Coding RNA 2017, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xu, M.; Shi, H.; Gao, X.; Liang, P. Genome-Wide Identification of LncRNAs Associated with Chlorantraniliprole Resistance in Diamondback Moth Plutella xylostella (L.). BMC Genom. 2017, 18, 380. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Mattick, J.S. Structure and Function of Long Noncoding RNAs in Epigenetic Regulation. Nat. Struct. Mol. Biol. 2013, 20, 300–307. [Google Scholar] [CrossRef]
- Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long Noncoding RNAs: Past, Present, and Future. Genetics 2013, 193, 651–669. [Google Scholar] [CrossRef]
- Lee, J.T. Epigenetic Regulation by Long Noncoding RNAs. Science 2012, 338, 1435–1439. [Google Scholar] [CrossRef]
- Choudhary, C.; Sharma, S.; Meghwanshi, K.K.; Patel, S.; Mehta, P.; Shukla, N.; Do, D.N.; Rajpurohit, S.; Suravajhala, P.; Shukla, J.N. Long Non-Coding RNAs in Insects. Animals 2021, 11, 1118. [Google Scholar] [CrossRef] [PubMed]
- Zafar, J.; Huang, J.; Xu, X.; Jin, F. Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. Int. J. Mol. Sci. 2023, 24, 2605. [Google Scholar] [CrossRef]
- Bunch, H. Gene Regulation of Mammalian Long Non-Coding RNA. Mol. Genet. Genom. 2018, 293, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, T.; He, W.; Shen, X.; Zhao, Q.; Bai, J.; You, M. Genome-Wide Identification and Characterization of Putative LncRNAs in the Diamondback Moth, Plutella xylostella (L.). Genomics 2018, 110, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Fok, E.T.; Scholefield, J.; Fanucchi, S.; Mhlanga, M.M. The Emerging Molecular Biology Toolbox for the Study of Long Noncoding RNA Biology. Epigenomics 2017, 9, 1317–1327. [Google Scholar] [CrossRef]
- Humann, F.C.; Tiberio, G.J.; Hartfelder, K. Sequence and Expression Characteristics of Long Noncoding RNAs in Honey Bee Caste Development–Potential Novel Regulators for Transgressive Ovary Size. PLoS ONE 2013, 8, e78915. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, T.; Liu, C.; Liu, D.; Zhang, Q.; Long, R.; Zhao, P.; Xia, Q. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm, Bombyx mori. PLoS ONE 2016, 11, e0147147. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yue, S.; Huang, Y.; Zhao, X.; Cao, H.; Liao, M. Genome-Wide Identification of the Long Noncoding RNAs of Tribolium castaneum in Response to Terpinen-4-Ol Fumigation. Insects 2022, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Yuan, Z.; Guo, D.; Hou, B.; Yin, C.; Zhang, W.; Li, F. Genome-Wide Identification of Long Noncoding RNA Genes and Their Potential Association with Fecundity and Virulence in Rice Brown Planthopper, Nilaparvata lugens. BMC Genom. 2015, 16, 749. [Google Scholar] [CrossRef]
- Guan, R.; Li, H.; Zhang, H.; An, S. Comparative Analysis of DsRNA Induced LncRNAs in Three Kinds of Insect Species. Arch. Insect Biochem. Physiol. 2020, 103, e21640. [Google Scholar] [CrossRef]
- Rogoyski, O.M.; Pueyo, J.I.; Couso, J.P.; Newbury, S.F. Functions of Long Non-Coding RNAs in Human Disease and Their Conservation in Drosophila Development. Biochem. Soc. Trans. 2017, 45, 895–904. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Lawrie, R.D.; Mitchell III, R.D.; Deguenon, J.M.; Ponnusamy, L.; Reisig, D.; Del Pozo-Valdivia, A.; Kurtz, R.W.; Roe, R.M. Characterization of Long Non-Coding RNAs in the Bollworm, Helicoverpa zea, and Their Possible Role in Cry1Ac-Resistance. Insects 2021, 13, 12. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, C.; Yuan, X.; Kang, S.; Miao, R.; Xiao, H.; Zhao, G.; Luo, H.; Bu, D.; Zhao, H. Large-Scale Prediction of Long Non-Coding RNA Functions in a Coding–Non-Coding Gene Co-Expression Network. Nucleic Acids Res. 2011, 39, 3864–3878. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J. Pfam: The Protein Families Database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Z.; Zhang, B.; Yu, Q.Y.; Zhang, Z. BmncRNAdb: A Comprehensive Database of Non-Coding RNAs in the Silkworm, Bombyx mori. BMC Bioinform. 2016, 17, 370. [Google Scholar] [CrossRef]
- Akpinar, B.A.; Muslu, T.; Reddy, G.V.P.; Dogramaci, M.; Budak, H. Wheat Long Noncoding RNAs from Organelle and Nuclear Genomes Carry Conserved MicroRNA Precursors Which May Together Comprise Intricate Networks in Insect Responses. Int. J. Mol. Sci. 2023, 24, 2226. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.B.; Boley, N.; Eisman, R.; May, G.E.; Stoiber, M.H.; Duff, M.O.; Booth, B.W.; Wen, J.; Park, S.; Suzuki, A.M.; et al. Diversity and Dynamics of the Drosophila Transcriptome. Nature 2014, 512, 393–399. [Google Scholar] [CrossRef]
- Necsulea, A.; Soumillon, M.; Warnefors, M.; Liechti, A.; Daish, T.; Zeller, U.; Baker, J.C.; Grützner, F.; Kaessmann, H. The Evolution of LncRNA Repertoires and Expression Patterns in Tetrapods. Nature 2014, 505, 635–640. [Google Scholar] [CrossRef]
- Etebari, K.; Furlong, M.J.; Asgari, S. Genome Wide Discovery of Long Intergenic Non-Coding RNAs in Diamondback Moth (Plutella xylostella) and Their Expression in Insecticide Resistant Strains. Sci. Rep. 2015, 5, 14642. [Google Scholar] [CrossRef]
- Nauen, R.; Bass, C.; Feyereisen, R.; Vontas, J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Entomol. 2022, 67, 105–124. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Wu, S.; Yue, L.; Wu, Y. Constitutive Overexpression of Multiple Cytochrome P450 Genes Associated with Pyrethroid Resistance in Helicoverpa armigera. J. Econ. Entomol. 2006, 99, 1784–1789. [Google Scholar] [CrossRef]
- Pittendrigh, B.; Aronstein, K.; Zinkovsky, E.; Andreev, O.; Campbell, B.; Daly, J.; Trowell, S.; Ffrench-Constant, R.H. Cytochrome P450 Genes from Helicoverpa armigera: Expression in a Pyrethroid-Susceptible and -Resistant Strain. Insect Biochem. Mol. Biol. 1997, 27, 507–512. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, T.; Cheng, Y.; Shui, R.; Zhang, W.; Qiu, L. Cloning and Expression of Cytochrome P450 CYP6B7 in Fenvalerate-resistant and Susceptible Helicoverpa armigera (Hübner) from China. J. Appl. Entomol. 2010, 134, 754–761. [Google Scholar] [CrossRef]
- Joußen, N.; Agnolet, S.; Lorenz, S.; Schöne, S.E.; Ellinger, R.; Schneider, B.; Heckel, D.G. Resistance of Australian Helicoverpa armigera to Fenvalerate Is Due to the Chimeric P450 Enzyme CYP337B3. Proc. Natl. Acad. Sci. USA 2012, 109, 15206–15211. [Google Scholar] [CrossRef]
- Kim, J.; Rahman, M.-M.; Han, C.; Jeon, J.; Kwon, M.; Lee, S.H.; Omoto, C. Genome-Wide Exploration of Metabolic-Based Pyrethroid Resistance Mechanism in Helicoverpa armigera. bioRxiv 2023. [Google Scholar]
- Han, Y.; Yu, W.; Zhang, W.; Yang, Y.; Walsh, T.; Oakeshott, J.G.; Wu, Y. Variation in P450-Mediated Fenvalerate Resistance Levels Is Not Correlated with CYP337B3 Genotype in Chinese Populations of Helicoverpa armigera. Pestic. Biochem. Physiol. 2015, 121, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Wen, Z. Cytochromes P450 of Insects: The Tip of the Iceberg. Pest Manag. Sci. 2001, 57, 958–967. [Google Scholar] [CrossRef]
- Rasool, A.; Joußen, N.; Lorenz, S.; Ellinger, R.; Schneider, B.; Khan, S.A.; Ashfaq, M.; Heckel, D.G. An Independent Occurrence of the Chimeric P450 Enzyme CYP337B3 of Helicoverpa armigera Confers Cypermethrin Resistance in Pakistan. Insect Biochem. Mol. Biol. 2014, 53, 54–65. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, M.; Park, K.J.; Maharjanm, R. Monitoring of Four Major Lepidopteran Pests in Korean Cornfields and Management of Helicoverpa armigera. Entomol. Res. 2018, 48, 308–316. [Google Scholar] [CrossRef]
- Durigan, M.R.; Corrêa, A.S.; Pereira, R.M.; Leite, N.A.; Amado, D.; de Sousa, D.R.; Omoto, C. High Frequency of CYP337B3 Gene Associated with Control Failures of Helicoverpa armigera with Pyrethroid Insecticides in Brazil. Pestic. Biochem. Physiol. 2017, 143, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Joußen, N.; Heckel, D.G. Saltational Evolution of a Pesticide-metabolizing Cytochrome P450 in a Global Crop Pest. Pest Manag. Sci. 2021, 77, 3325–3332. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hussain, F.; Unnithan, G.C.; Dong, S.; UlAbdin, Z.; Gu, S.; Mathew, L.G.; Fabrick, J.A.; Ni, X.; Carrière, Y.; et al. A Long Non-Coding RNA Regulates Cadherin Transcription and Susceptibility to Bt Toxin Cry1Ac in Pink Bollworm, Pectinophora gossypiella. Pestic. Biochem. Physiol. 2019, 158, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Guo, D.; Yuan, Z.; Chen, C.; Xiao, H. Genome-Wide Identification of Long Non-Coding RNA Genes and Their Association with Insecticide Resistance and Metamorphosis in Diamondback Moth, Plutella xylostella. Sci. Rep. 2017, 7, 15870. [Google Scholar] [CrossRef]
- Riaz, S.; Johnson, J.B.; Ahmad, M.; Fitt, G.P.; Naiker, M. A Review on Biological Interactions and Management of the Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Appl. Entomol. 2021, 145, 467–498. [Google Scholar] [CrossRef]
- Xu, L.; Li, D.; Qin, J.; Zhao, W.; Qiu, L. Over-Expression of Multiple Cytochrome P450 Genes in Fenvalerate-Resistant Field Strains of Helicoverpa armigera from North of China. Pestic. Biochem. Physiol. 2016, 132, 53–58. [Google Scholar] [CrossRef]
- Teese, M.G.; Campbell, P.M.; Scott, C.; Gordon, K.H.J.; Southon, A.; Hovan, D.; Robin, C.; Russell, R.J.; Oakeshott, J.G. Gene Identification and Proteomic Analysis of the Esterases of the Cotton Bollworm, Helicoverpa armigera. Insect Biochem. Mol. Biol. 2010, 40, 1–16. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, Y.; Ye, Z.Q.; Liu, X.Q.; Zhao, S.Q.; Wei, L.; Gao, G. CPC: Assess the Protein-Coding Potential of Transcripts Using Sequence Features and Support Vector Machine. Nucleic Acids Res. 2007, 35, 345–349. [Google Scholar] [CrossRef]
- Wang, L.; Park, H.J.; Dasari, S.; Wang, S.; Kocher, J.P.; Li, W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013, 41, e74. [Google Scholar] [CrossRef]
- Pearce, S.L.; Clarke, D.F.; East, P.D.; Elfekih, S.; Gordon, K.H.J.; Jermiin, L.S.; McGaughran, A.; Oakeshott, J.G.; Papanikolaou, A.; Perera, O.P. Genomic Innovations, Transcriptional Plasticity and Gene Loss Underlying the Evolution and Divergence of Two Highly Polyphagous and Invasive Helicoverpa Pest Species. BMC Biol. 2017, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.C.; Scott, J.G. Genetics, genomics and mechanisms responsible for high levels of pyrethroid resistance in Musca domestica. Pestic Biochem Physiol. 2024, 198, 105752. [Google Scholar] [CrossRef]
- Ye, M.; Nayak, B.; Xiong, L.; Xie, C.; Dong, Y.; You, M.; Yuchi, Z.; You, S. The Role of Insect Cytochrome P450s in Mediating Insecticide Resistance. Agriculture 2022, 12, 53. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021, 25, 3022–3027. [Google Scholar] [CrossRef]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015, pdb-top084970. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yuan, G.; Chen, M.; Dou, W.; Jing, T.; Zheng, L.; Peng, M.; Bai, W.; Wang, J. Genome-wide Identification of Long Non-coding RNAs (LncRNAs) Associated with Malathion Resistance in Bactrocera dorsalis. Pest Manag. Sci. 2021, 77, 2292–2301. [Google Scholar] [CrossRef]
- Xu, L.; Wu, M.; Han, Z. Overexpression of Multiple Detoxification Genes in Deltamethrin Resistant Laodelphax striatellus (Hemiptera: Delphacidae) in China. PLoS ONE 2013, 8, e79443. [Google Scholar] [CrossRef]
- Balabanidou, V.; Grigoraki, L.; Vontas, J. Insect Cuticle: A Critical Determinant of Insecticide Resistance. Curr. Opin. Insect Sci. 2018, 27, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Bu, D.C.; Luo, H.T.; Jiao, F.; Fang, S.S.; Tan, C.F.; Liu, Z.Y.; Zhao, Y. Evolutionary Annotation of Conserved Long Non-Coding RNAs in Major Mammalian Species. Sci. China Life Sci. 2015, 58, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Zafar, J.; Huang, J.; Xu, X.; Jin, F. Analysis of Long Non-Coding RNA-Mediated Regulatory Networks of Plutella xylostella in Response to Metarhizium Anisopliae Infection. Insects 2022, 13, 916. [Google Scholar] [CrossRef]
- Papapostolou, K.M.; Riga, M.; Samantsidis, G.-R.; Skoufa, E.; Balabanidou, V.; Van Leeuwen, T.; Vontas, J. Over-Expression in Cis of the Midgut P450 CYP392A16 Contributes to Abamectin Resistance in Tetranychus urticae. Insect Biochem. Mol. Biol. 2022, 142, 103709. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential Analysis of Gene Regulation at Transcript Resolution with RNA-Seq. Nat. Biotechnol. 2013, 31, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Brun-Barale, A.; Héma, O.; Martin, T.; Suraporn, S.; Audant, P.; Sezutsu, H.; Feyereisen, R. Multiple P450 Genes Overexpressed in Deltamethrin-resistant Strains of Helicoverpa armigera. Pest Manag. Sci. 2010, 66, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Heckel, D.G.; Gahan, L.J.; Daly, J.C.; Trowell, S. A Genomic Approach to Understanding Heliothis and Helicoverpa Resistance to Chemical and Biological Insecticides. Philos. Trans. R. Soc. B Biol. Sci. 1998, 353, 1713–1722. [Google Scholar] [CrossRef]
- Fang, Z.; Parthasarathy, R.; Hua, B.; Katharina, W.; Martin, K.; Nauen, R.; Harrison, D.A.; Palli, S.R. A Brain-Specific Cytochrome P450 Responsible for the Majority of Deltamethrin Resistance in the QTC279 Strain of Tribolium castaneum. Proc. Natl. Acad. Sci. USA 2010, 107, 8557–8562. [Google Scholar] [CrossRef]
- Cariño, F.A.; Koener, J.F.; Plapp, F.W.; Feyereisen, R. Constitutive Overexpression of the Cytochrome P450 Gene CYP6A1 in a House Fly Strain with Metabolic Resistance to Insecticides. Insect Biochem. Mol. Biol. 1994, 24, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lluch, S.; Klein, C.C.; Breschi, A.; Ruiz-Romero, M.; Abad, A.; Palumbo, E.; Bekish, L.; Arnan, C.; Guigó, R. BsAS, an Antisense Long Non-Coding RNA, Essential for Correct Wing Development through Regulation of Blistered/DSRF Isoform Usage. PLoS Genet. 2020, 16, e1009245. [Google Scholar] [CrossRef]
- Niu, Z.-S.; Wang, W.-H.; Dong, X.-N. Role of Long Noncoding RNA-Mediated Competing Endogenous RNA Regulatory Network in Hepatocellular Carcinoma. World J. Gastroenterol. 2020, 26, 4240. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, H.T.; Liang, Y.; Trimarchi, T.; Aifantis, I.; Tsirigos, A. LncRNA-Screen: An Interactive Platform for Computationally Screening Long Non-Coding RNAs in Large Genomics Datasets. BMC Genom. 2017, 18, 434. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, J.; Zhou, Y.; Li, X.; Meng, Y.; Ma, L.; Zhou, D.; Shen, B.; Sun, Y.; Zhu, C. CPR63 Promotes Pyrethroid Resistance by Increasing Cuticle Thickness in Culex pipiens pallens. Parasit. Vectors 2022, 15, 54. [Google Scholar] [CrossRef]
- Shi, Y.; Qu, Q.; Wang, C.; He, Y.; Yang, Y.; Wu, Y. Involvement of CYP2 and Mitochondrial Clan P450s of Helicoverpa armigera in Xenobiotic Metabolism. Insect Biochem. Mol. Biol. 2022, 140, 103696. [Google Scholar] [CrossRef] [PubMed]
- Yahouédo, G.A.; Chandre, F.; Rossignol, M.; Ginibre, C.; Balabanidou, V.; Mendez, N.G.A.; Pigeon, O.; Vontas, J.; Cornelie, S. Contributions of Cuticle Permeability and Enzyme Detoxification to Pyrethroid Resistance in the Major Malaria Vector Anopheles gambiae. Sci. Rep. 2017, 7, 11091. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, L.; Liu, J.; Chen, S.; Liu, G.; Nie, Y.; Wang, P.; Yang, W.; Chen, L.; Zhong, X.; et al. The HNF1a-Regulated LncRNA HNF1a-AS1 Is Involved in the Regulation of Cytochrome P450 Expression in Human Liver Tissues and Huh7 Cells. J. Pharmacol. Exp. Ther. 2019, 368, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.M.; Good, R.T.; Appleton, B.; Sherrard, J.; Raymant, G.C.; Bogwitz, M.R.; Martin, J.; Daborn, P.J.; Goddard, M.E.; Batterham, P.; et al. Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus. PLoS Genet. 2010, 6, e1000998. [Google Scholar] [CrossRef]
- Seixas, G.; Grigoraki, L.; Weetman, D.; Vicente, J.L.; Silva, A.C.; Pinto, J.; Vontas, J.; Sousa, C.A. Insecticide Resistance Is Mediated by Multiple Mechanisms in Recently Introduced Aedes aegypti from Madeira Island (Portugal). PLoS Negl. Trop. Dis. 2017, 11, e0005799. [Google Scholar] [CrossRef]
- Shi, L.; Li, W.; Zeng, H.; Shi, Y.; Liao, X. Systematic Identification and Functional Analysis of Long Noncoding RNAs Involved in Indoxacarb Resistance in Spodoptera litura. Insect Sci. 2022, 29, 1721–1736. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, S.; Ren, M.; Tian, X.; Wei, Q.; Mburu, D.K.; Su, J. The Expression of Spodoptera exigua P450 and UGT Genes: Tissue Specificity and Response to Insecticides. Insect Sci. 2019, 26, 199–216. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.-M.; Omoto, C.; Kim, J. Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance. Insects 2024, 15, 146. https://doi.org/10.3390/insects15030146
Rahman M-M, Omoto C, Kim J. Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance. Insects. 2024; 15(3):146. https://doi.org/10.3390/insects15030146
Chicago/Turabian StyleRahman, Md-Mafizur, Celso Omoto, and Juil Kim. 2024. "Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance" Insects 15, no. 3: 146. https://doi.org/10.3390/insects15030146
APA StyleRahman, M. -M., Omoto, C., & Kim, J. (2024). Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance. Insects, 15(3), 146. https://doi.org/10.3390/insects15030146