Cyantraniliprole and Thiamethoxam Exposure Changes Expression of Transcripts Associated with Small Non-Coding RNA Processing in the Colorado Potato Beetle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. RNA Isolation
2.3. Synthesis of cDNA
2.4. qRT-PCR Amplification of Transcripts of Interest
2.5. dsRNA Synthesis
2.6. dsRNA Injection
2.7. Ago1 Silencing Analysis
2.8. Insecticide Exposure Response in dsRNA-Injected L. decemlineata
2.9. Quantification and Statistical Analysis
3. Results
3.1. Quantification of Transcripts Associated with Small Non-Coding RNA Processing in L. decemlineata Treated with Cyantraniliprole
3.2. Quantification of Transcripts Associated with Small Non-Coding RNA Processing in L. decemlineata Treated with Thiamethoxam
3.3. L. decemlineata Mortality in Cyantraniliprole-Exposed Insects following dsRNA Injection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, D. Colorado beetle: Pest on the move. Pestic. Outlook 2003, 14, 256. [Google Scholar] [CrossRef]
- Ferro, D.N.; Logan, J.A.; Voss, R.H.; Elkinton, J.S. Colorado Potato Beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environ. Entomol. 1985, 14, 343–348. [Google Scholar] [CrossRef]
- Alyokhin, A.; Mota-Sanchez, D.; Baker, M.; Snyder, W.E.; Menasha, S.; Whalon, M.; Dively, G.; Moarsi, W.F. The Red Queen in a potato field: Integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Manag. Sci. 2015, 71, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Kadoić Balaško, M.; Mikac, K.M.; Bažok, R.; Lemic, D. Modern techniques in Colorado Potato Beetle (Leptinotarsa decemlineata Say) control and resistance management: History review and future perspectives. Insects 2020, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Alyokhin, A.; Divelym, G.; Patterson, M.; Castaldo, C.; Rogers, D.; Mahoney, M.; Wollam, J. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag. Sci. 2007, 63, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-H.; Lu, W.-P.; Guo, W.-C.; Xia, Z.-H.; Fu, W.-J.; Li, G.-Q. Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the North Xinjiang Uygur autonomous region in China. J. Econ. Entomol. 2012, 105, 549–554. [Google Scholar] [CrossRef]
- Scott, I.M.; Tolman, J.H.; MacArthur, D.C. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Manag. Sci. 2015, 71, 712–721. [Google Scholar] [CrossRef]
- Scott, I.M.; Vickruck, J.; Hann, S.; Krolikowsk, S.; MacKinley, P.; Stokes-Rees, J.; Hatten, G.; Moffat, C. Regional differences in susceptibility to spinosyn insecticides registered for Colorado potato beetle management in Canada. Pestic. Biochem. Physiol. 2023, 193, 105459. [Google Scholar] [CrossRef]
- Kaplanoglu, E.; Chapman, P.; Scott, I.M.; Donly, C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci. Rep. 2017, 7, 1762. [Google Scholar] [CrossRef]
- Naqqash, M.N.; Gökçe, A.; Aksoy, E.; Bakhsh, A. Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). Chemosphere 2020, 240, 124857. [Google Scholar] [CrossRef]
- Bouafoura, R.; Bastarache, P.; Ouédraogo, B.C.; Dumas, P.; Moffat, C.E.; Vickruck, J.L.; Morin, P., Jr. Characterization of Insecticide Response-Associated Transcripts in the Colorado Potato Beetle: Relevance of Selected Cytochrome P450s and Clothianidin. Insects 2022, 13, 505. [Google Scholar] [CrossRef]
- Güney, G.; Cedden, D.; Hänniger, S.; Heckel, D.G.; Coutu, C.; Hegedus, D.D.; Mutlu, D.A.; Suludere, Z.; Sezen, K.; Güney, E.; et al. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. Arch. Insect Biochem. Physiol. 2021, 108, e21834. [Google Scholar] [CrossRef]
- Shi, T.F.; Wang, Y.F.; Liu, F.; Qi, L.; Yu, L.S. Influence of the Neonicotinoid Insecticide Thiamethoxam on miRNA Expression in the Honey Bee (Hymenoptera: Apidae). J. Insect Sci. 2017, 17, 96. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, P.; Sun, L.; Cao, C. Integration of miRNA and mRNA expression profiles in Asian spongy moth Lymantria dispar in response to cyantraniliprole. Pestic. Biochem. Physiol. 2023, 191, 105364. [Google Scholar] [CrossRef]
- Bastarache, P.; Wajnberg, G.; Dumas, P.; Chacko, S.; Lacroix, J.; Crapoulet, N.; Moffat, C.E.; Morin, P., Jr. Transcriptomics-based approach identifies spinosad-associated targets in the Colorado Potato Beetle, Leptinotarsa decemlineata. Insects 2020, 11, 820. [Google Scholar] [CrossRef]
- Morin, M.D.; Lyons, P.J.; Crapoulet, N.; Boquel, S.; Morin, P., Jr. Identification of differentially expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say)) exposed to imidacloprid. Int. J. Mol. Sci. 2017, 18, 2728. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ye, W.; Liu, X.; Sun, X.; Guo, Q.; Huang, Y.; Ma, L.; Sun, Y.; Shen, B.; Zhou, D.; et al. piRNA-3312: A Putative Role for Pyrethroid Resistance in Culex pipiens pallens (Diptera: Culicidae). J. Med. Entomol. 2017, 54, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Liu, X.; Guo, J.; Sun, X.; Sun, Y.; Shen, B.; Zhou, D.; Zhu, C. piRNA-3878 targets P450 (CpCYP307B1) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol. Res. 2017, 116, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
- Parekh, F.; Daughenbaugh, K.F.; Flenniken, M.L. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees (Apis mellifera). Front. Immunol. 2021, 12, 747848. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.H.; Wang, Z.T.; Xiong, M.H.; Lu, W.P.; Liu, P.; Guo, W.C.; Li, G.Q. Insecticide resistance status of Colorado potato beetle (Coleoptera: Chrysomelidae) adults in northern Xinjiang Uygur autonomous region. J. Econ. Entomol. 2010, 103, 1365–1371. [Google Scholar] [CrossRef]
- Szendrei, Z.; Grafius, E.; Byrne, A.; Ziegler, A. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2012, 68, 941–946. [Google Scholar] [CrossRef]
- Ben Youssef, M.; Christelle Ouédraogo, B.; Bastarache, P.; Dumas, P.; Moffat, C.E.; Vickruck, J.L.; Morin, P., Jr. Exposure to Temperature and Insecticides Modulates the Expression of Small Noncoding RNA-Associated Transcripts in the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J. Insect Sci. 2022, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.; Huggett, J. qPCR primer design revisited. Biomol. Detect. Quantif. 2017, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Rui, C.; Yang, D.; Wang, Z.; Yuan, H. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. BMC Genom. 2017, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Dong, F.; Qian, K.; Miao, L.; Yang, X.; Ge, H.; Wu, Z.; Wang, J. Transcriptome analysis reveals global gene expression changes of Chilo suppressalis in response to sublethal dose of chlorantraniliprole. Chemosphere 2019, 234, 648–657. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Zhou, X.; Gao, X.; Liang, P. miRNAs regulated overexpression of ryanodine receptor is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Sci. Rep. 2015, 5, 14095. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, A.; Yu, L.; Yang, Y.; Duan, A.; Xue, C.; Zhao, M.; Zhang, J. Systematic identification and characterization of differentially expressed microRNAs under tetraniliprole exposure in the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 2022, 110, e21875. [Google Scholar] [CrossRef]
- Attarianfar, M.; Mikani, A.; Mehrabadi, M. Fenoxycarb exposure affects antiviral immunity and HaNPV infection in the cotton bollworm, Helicoverpa armigera. Pest Manag. Sci. 2023, 79, 1078–1085. [Google Scholar] [CrossRef]
- Derecka, K.; Blythe, M.J.; Malla, S.; Genereux, D.P.; Guffanti, A.; Pavan, P.; Moles, A.; Snart, C.; Ryder, T.; Ortori, C.A.; et al. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS ONE 2013, 8, e68191. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.P.; Wei, X.G.; Liu, S.N.; Yang, J.; Fu, B.L.; Liang, J.J.; Huang, M.J.; Du, T.H.; Yin, C.; Ji, Y.; et al. Novel_miR-1517 mediates CYP6CM1 to regulate imidacloprid resistance in Bemisia tabaci (Hemiptera: Gennadius). Pestic. Biochem. Physiol. 2023, 194, 105469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Z.; Hu, G.L.; Lu, L.Y.; Hu, S.F.; Li, Y.S.; Su, X.; Dong, W.Y.; Zhen, C.A.; Liu, R.Q.; Kong, F.B.; et al. Identification of differentially expressed microRNAs under imidacloprid exposure in Sitobion miscanthi. Pestic. Biochem. Physiol. 2021, 177, 104885. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Fu, Y. Diamide insecticides targeting insect ryanodine receptors: Mechanism and application prospect. Biochem. Biophys. Res. Commun. 2023, 670, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Ihara, M.; Sattelle, D.B. Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Camargo, C.; Fishilevich, E.; Narva, K.E.; Chen, X.; Taylor, C.E.; Siegfried, B.D. Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults. PLoS ONE 2017, 12, e0190208. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.L.; Zhang, Q.; Fan, J.Y.; Yue, Y.; Chen, E.H.; Yuan, G.R.; Dou, W.; Wang, J.J. RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest Manag. Sci. 2021, 77, 3921–3933. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Pan, Y.; Li, J.; Yang, F.; Chen, X.; Gao, X.; Wen, S.; Shang, Q. Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. Pestic. Biochem. Physiol. 2022, 184, 105076. [Google Scholar] [CrossRef]
- Guo, L.; Liang, P.; Fang, K.; Chu, D. Silence of inositol 1,4,5-trisphosphate receptor expression decreases cyantraniliprole susceptibility in Bemisia tabaci. Pestic. Biochem. Physiol. 2017, 142, 162–169. [Google Scholar] [CrossRef]
- Ding, Y.; Lv, Y.; Pan, Y.; Li, J.; Yan, K.; Yu, Z.; Shang, Q. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. Int. J. Biol. Macromol. 2023, 253, 126824. [Google Scholar] [CrossRef]
- Petek, M.; Coll, A.; Ferenc, R.; Razinger, J.; Gruden, K. Validating the Potential of Double-Stranded RNA Targeting Colorado Potato Beetle Mesh Gene in Laboratory and Field Trials. Front. Plant Sci. 2020, 11, 1250. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.B.; Mishra, S.K.; Sridharan, K.; Barnes, E.R.; Alyokhin, A.; Tuttle, R.; Kokulapalan, W.; Garby, D.; Skizim, N.J.; Tang, Y.W.; et al. First Sprayable Double-Stranded RNA-Based Biopesticide Product Targets Proteasome Subunit Beta Type-5 in Colorado Potato Beetle (Leptinotarsa decemlineata). Front. Plant Sci. 2021, 12, 728652. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastarache, P.; Timani, K.; Ben Youssef, M.; Omakele, E.; Vickruck, J.L.; Morin, P.J. Cyantraniliprole and Thiamethoxam Exposure Changes Expression of Transcripts Associated with Small Non-Coding RNA Processing in the Colorado Potato Beetle. Insects 2024, 15, 147. https://doi.org/10.3390/insects15030147
Bastarache P, Timani K, Ben Youssef M, Omakele E, Vickruck JL, Morin PJ. Cyantraniliprole and Thiamethoxam Exposure Changes Expression of Transcripts Associated with Small Non-Coding RNA Processing in the Colorado Potato Beetle. Insects. 2024; 15(3):147. https://doi.org/10.3390/insects15030147
Chicago/Turabian StyleBastarache, Pierre, Kenan Timani, Mariem Ben Youssef, Enock Omakele, Jess L. Vickruck, and Pier Jr. Morin. 2024. "Cyantraniliprole and Thiamethoxam Exposure Changes Expression of Transcripts Associated with Small Non-Coding RNA Processing in the Colorado Potato Beetle" Insects 15, no. 3: 147. https://doi.org/10.3390/insects15030147
APA StyleBastarache, P., Timani, K., Ben Youssef, M., Omakele, E., Vickruck, J. L., & Morin, P. J. (2024). Cyantraniliprole and Thiamethoxam Exposure Changes Expression of Transcripts Associated with Small Non-Coding RNA Processing in the Colorado Potato Beetle. Insects, 15(3), 147. https://doi.org/10.3390/insects15030147