Functional Response of Four Phytoseiid Mites to Eggs and First-Instar Larvae of Western Flower Thrips, Frankliniella occidentalis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Colonies of Thrips and Predatory Mites
2.2. Experimental Setup
2.2.1. Experiments with F. occidentalis Larvae
2.2.2. Experiments with F. occidentalis Eggs
2.3. Data Analysis
3. Results
3.1. Functional Response Type
3.2. Prey Consumption, Maximum Attack Rate, and Handling Time
3.3. Searching Efficiency
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Zhi, J.; Zhang, R.; Li, C.; Liu, Y.; Lv, Z.; Gao, Y. Different population performances of Frankliniella occidentalis and thrips hawaiiensis on flowers of two horticultural plants. J. Pest Sci. 2018, 91, 79–91. [Google Scholar] [CrossRef]
- Coll, M.; Shakya, S.; Shouster, I.; Nenner, Y.; Steinberg, S. Decision-making tools for Frankliniella occidentalis management in strawberry: Consideration of target markets. Entomol. Exp. Appl. 2007, 122, 59–67. [Google Scholar] [CrossRef]
- Demirozer, O.; Tyler-Julian, K.; Funderburk, J.; Leppla, N.; Reitz, S. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 2012, 68, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Kirk, W.D.J.; Terry, L.I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. Forest Entomol. 2003, 5, 301–310. [Google Scholar] [CrossRef]
- Pearsall, I.A. Damage to Nectarines by the Western Flower Thrips (Thysanoptera: Thripidae) in the Interior of British Colombia, Canada. J. Econ. Entomol. 2000, 93, 1207–1215. [Google Scholar] [CrossRef]
- Maris, P.C.; Joosten, N.N.; Goldbach, R.W.; Peters, D. Tomato spotted wilt virus infection improves host suitability for its vector Frankliniella occidentalis. Phytopathology 2007, 94, 706–711. [Google Scholar] [CrossRef]
- Prins, M.; Goldbach, R. The emerging problem of tospovirus infection and non-conventional methods of control. Trends Microbiol. 1998, 6, 31–35. [Google Scholar] [CrossRef]
- Wan, Y.; Hussain, S.; Merchant, A.; Xu, B.; Xie, W.; Wang, S.; Zhang, Y.; Zhou, X.; Wu, Q. Tomato spotted wilt orthotospovirus influences the reproduction of its insect vector, western flower thrips, Frankliniella occidentalis, to facilitate transmission. Pest Manag. Sci. 2020, 76, 2406–2414. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.S.; Nguyen, T.M.P.; Ho, N.C.; Nguyen, X.D.; Do, T.D.; Vu, N.H.; Vuong, T.K.H.; Nguyen, C.T.; Tran, T.T.T. Vietnamese agriculture before and after opening economy. Mod. Econ. 2020, 11, 894–907. [Google Scholar]
- Poushkova, S.V.; Kasatkin, D.G. Materials to the knowledge of the fauna of thrips (Thysanoptera) in Vietnam as a result of the expedition of FGBU “VNIIKR”. Plant Quar. Nr 2 2020, 2, 55–68. [Google Scholar]
- Mai, H.T.; Shamim, S.; Pham, D.K.H. Consumer concern about food safety in Hanoi, Vietnam. Food Control 2019, 98, 238–244. [Google Scholar]
- Pham, V.H.; Mol, A.; Oosterveer, P. State governance of pesticide use and trade in Vietnam. NJAS-Wagen J. Life Sci. 2013, 67, 19–26. [Google Scholar]
- Nguyen, D.T.; Than, T.A.; Jonckheere, W.; Nguyen, V.H.; Van Leeuwen, T.; De Clercq, P. Life tables and feeding habits of Proprioseiopsis lenis (Acari: Phytoseiidae) and implications for its biological control potential in Southeast Asia. Syst. Appl. Acarol. 2019, 24, 857–865. [Google Scholar]
- Nguyen, V.H.; Nguyen, D.T.; Van Leeuwen, T.; De Clercq, P. Life table parameters of Amblyseius largoensis, Amblyseius swirskii and Proprioseiopsis lenis (Acari: Phytoseiidae) fed on eggs and larvae of Frankliniella occidentalis. Exp. Appl. Acarol. 2024, 93, 99–114. [Google Scholar] [CrossRef]
- Liao, J.R.; Ho, C.C.; Ko, C.C. Checklist of Phytoseiidae (Acari: Mesostigmata) from Taiwan. Formosan Entomol. 2013, 33, 67–90. [Google Scholar]
- Kreiter, S.; Bopp, M.; Douin, M.; Nguyen, D.T.; Wyckhuys, K. Phytoseiidae of Vietnam (Acari: Mesostigmata) with description of a new species. Acarologia 2020, 60, 75–110. [Google Scholar] [CrossRef]
- Nguyen, D.T. (Entomology Department, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam). Identification and biological control potential of phytoseiid predatory mites against thrips and spider mite pests in Vietnam, 2016–2018. (phase: Unpublished work).
- Fathipour, Y.; Maleknia, B. Mite predators. In Ecofriendly Pest Management for Food Security; Elsevier: Amsterdam, The Netherlands, 2016; Volume 11, pp. 329–366. [Google Scholar]
- Holling, C.S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Juliano, S.A. Nonlinear curve fitting: Predation and functional response curves. In Design and Analysis of Ecological Experiments, 2nd ed.; Oxford University Press: London, UK, 2001; pp. 178–196. [Google Scholar]
- Nguyen, V.H.; Jonckheere, W.; Nguyen, D.T.; De Moraes, G.J.; Van Leeuwen, T.; De Clercq, P. Phytoseiid mites prey effectively on thrips eggs: Evidence from predation trials and molecular analyses. Biol. Control 2019, 137, 104012. [Google Scholar] [CrossRef]
- Vangansbeke, D.; Pijnakker, J.; Arijs, Y.; Waeckers, F. Thrips egg predation by phytoseiids: An overlooked pest control mechanism. IOBC/WPRS Bull. 2018, 124, 184–189. [Google Scholar]
- World Bank. Climate Change Knowledge Portal. Available online: https://www.climatecentre.org/wp-content/uploads/RCCC-ICRC-Country-profiles-Region_Asia_Pacific.pdf (accessed on 1 October 2024).
- Xiao, Y.; Fadamiro, H.Y. Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Biol. Control 2010, 53, 345–352. [Google Scholar] [CrossRef]
- Rogers, D. Random search and insect population models. J. Anim. Ecol. 1972, 41, 369–383. [Google Scholar] [CrossRef]
- Beddington, J.R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 1975, 44, 331–340. [Google Scholar] [CrossRef]
- Golsteyn, L.; Mertens, H.; Audenaert, J.; Verhoeven, R.; Gobin, B.; De Clercq, P. Intraguild Interactions between the Mealybug Predators Cryptolaemus montrouzieri and Chrysoperla carnea. Insects 2021, 12, 655. [Google Scholar] [CrossRef]
- Madadi, H.; Enkegaard, A.; Brodsgaard, H.F.; Kharrazi-Pakdel, A.; Mohaghegh, J.; Ashouri, A. Host plant effects on the functional response of Neoseiulus cucumeris to onion thrips larvae. J. Appl. Entomol. 2007, 131, 728–733. [Google Scholar] [CrossRef]
- Shipp, J.L.; Whitfield, G.H. Functional response of the predatory mite, Amblyseius cucumeris (Acari: Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 1991, 20, 694–699. [Google Scholar] [CrossRef]
- Yao, H.; Zheng, W.; Tariq, K.; Zhang, H. Functional and numerical responses of three species of predatory Phytoseiid mites (Acari: Phytoseiidae) to Thrips flavidulus (Thysanoptera: Thripidae). Neotrop. Entomol. 2014, 43, 437–445. [Google Scholar] [CrossRef]
- Lam, W.; Paynter, Q.; Zhang, Z.Q. Functional response of Amblyseius herbicolus (Acari: Phytoseiidae) on Sericothrips staphylinus (Thysanoptera: Thripidae), an ineffective biocontrol agent of gorse. Biol. Control 2021, 152, 104468. [Google Scholar] [CrossRef]
- Costa, É.C.; Teodoro, A.V.; Rêgo, A.S.; Pedro-Neto, M.; Sarmento, R.A. Functional response of Euseius concordis to densities of different developmental stages of the cassava green mite. Entomol. Exp. Appl. 2014, 64, 277–286. [Google Scholar] [CrossRef]
- Afshar, F.R.; Latifi, M. Functional response and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) at three constant temperatures. Persian J. Acarol. 2017, 6, 299–314. [Google Scholar]
- Gotoh, T.; Yamaguchi, K.; Mori, K. Effect of temperature on life history of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 2004, 32, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Zhang, Z.Q. Can supplementary food (pollen) modulate the functional response of a generalist predatory mite (Neoseiulus cucumeris) to its prey (Tetranychus urticae)? BioControl 2020, 65, 165–174. [Google Scholar] [CrossRef]
- Ganjisaffar, F.; Perring, T.M. Prey stage preference and functional response of the predatory mite Galendromus flumenis to Oligonychus pratensis. Biol. Control 2015, 85, 40–45. [Google Scholar] [CrossRef]
- Mendes, J.A.; Lima, D.B.; Neto, E.P.D.S.; Gondim, M.G.C., Jr.; Melo, J.W.S. Functional response of Amblyseius largoensis to Raoiella indica eggs is mediated by previous feeding experience. Syst. Appl. Acarol. 2018, 23, 1907–1914. [Google Scholar] [CrossRef]
- Wijk, V.M.; De Bruijn, P.J.A.; Sabelis, M.W. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. J. Chem. Ecol. 2008, 34, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, J.S.; Schausberger, P.; Croft, B.A. Prey-Stage preference in generalist and specialist Phytoseiid mites (Acari: Phytoseiidae) when offered Tetranychus urticae (Acari: Tetranychidae) eggs and larvae. Environ. Entomol. 2001, 30, 1103–1111. [Google Scholar] [CrossRef]
- Filgueiras, R.M.C.; Mendes, J.A.; Neto, E.P.S.; Monteiro, N.V.; Melo, J.W.S. Neoseiulus barkeri Hughes (Acari: Phytoseiidae) as a potential control agent for Raoiella indica Hirst (Acari: Tenuipalpidae). Syst. Appl. Acarol. 2020, 25, 593–606. [Google Scholar]
- Kasap, I.; Atlihan, R. Consumption rate and functional response of the predaceous mite Kampimodromus aberrans to two-spotted spider mite Tetranychus urticae in the laboratory. Exp. Appl. Acarol. 2011, 53, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Messelink, G.J.; van Steenpaal, S.E.F.; Ramakers, P.M.J. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 2006, 51, 753–768. [Google Scholar] [CrossRef]
- Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef]
- Dicke, M. Herbivore-induced plant volatiles as a rich source of information for arthropod predators: Fundamental and applied aspects. J. Indian Inst. Sci. 2015, 95, 35–42. [Google Scholar]
- Shimoda, T.; Ozawa, R.; Sano, K.; Yano, E.; Takabayashi, J. The involvement of volatile infochemicals from spider mites and from food plants in prey location of the generalist predatory mite Neoseiulus californicus. J. Chem. Ecol. 2005, 31, 2019–2032. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, J.; Dicke, M.; Posthumus, M.A. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 1994, 20, 1329–1354. [Google Scholar] [CrossRef] [PubMed]
- Drukker, B.; Bruin, J.; Jacobs, G.; Kroon, A.; Sabelis, M.W. How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp. Appl. Acarol. 2000, 24, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.; Hofker, C.; Braun, A. Preselecting predatory mites for biological control: The use of an olfactometer. Bull. Entomol. Res. 1990, 80, 177–181. [Google Scholar] [CrossRef]
- Oliveira, H.; Fadini, M.; Venzon, M. Evaluation of the predatory mite Phytoseiulus macropilis (Acari: Phytoseiidae) as a biological control agent of the two-spotted spider mite on strawberry plants under greenhouse conditions. Exp. Appl. Acarol. 2009, 47, 275–283. [Google Scholar] [CrossRef]
- Martini, X.; Guvvala, H.; Nansen, C. The search behavior of omnivorous thrips larvae is influenced by spider mite cues. J. Insect Behav. 2015, 28, 593–603. [Google Scholar] [CrossRef]
- Schausberger, P.; Seiter, M.; Raspotnig, G. Innate and learned responses of foraging predatory mites to polar and non-polar fractions of thrips’ chemical cues. Biol. Control 2020, 151, 104371. [Google Scholar] [CrossRef]
- Li, Q.; Cui, Q.; Jiang, C.X.; Wang, H.J.; Yang, Q.F. Control efficacy of Chinese Neoseiulus californicus (McGregor) population on Tetranychus cinnabarinus (Boisduval). Acta Phytophyl. Sin. 2014, 41, 257–262. [Google Scholar]
- Beretta, G.M.; Zandbergen, L.; Deere, J.A.; Messelink, G.J.; Cárdenas, K.M.; Janssen, A. Predator-prey interactions: How thrips avoid predation. Biol. Control 2024, 188, 105437. [Google Scholar] [CrossRef]
- Sabelis, M.W.; Van Rijn, P.C.J. Predation by Insects and Mites; CAB International: London, UK, 1997; pp. 259–354. [Google Scholar]
- Reis, P.R.; Teodoro, A.V.; Neto, M.P. Predatory activity of Phytoseiid mites on the developmental stages of coffee ringspot mite (Acari: Phytoseiidae: Tenuipalpidae). Biol. Control 2000, 29, 547–553. [Google Scholar] [CrossRef]
- Soleymani, S.; Hakimitabar, M.; Seiedy, M. Prey preference of predatory mite Amblyseius swirskii (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae) and Bemisia tabaci (Hemiptera: Aleyrodidae). Biocontrol Sci. Technol. 2016, 26, 562–569. [Google Scholar] [CrossRef]
- Song, Z.; Zheng, Y.; Zhang, B.; Li, D. Prey consumption and functional response of Neoseiulus californicus and Neoseiulus longispinosus (Acari: Phytoseiidae) on Tetranychus urticae and Tetranychus kanzawai (Acari: Tetranychidae). Syst. Appl. Acarol. 2016, 21, 936–946. [Google Scholar]
- Devasia, J.; Ramani, N. Observations on the feeding preference of the phytoseiid predator, Neoseiulus longispinosus (Evans) on the different life stages of the spider mite, Oligonychu sbiharensis (Hirst). Int. J. Acarol. 2020, 46, 401–404. [Google Scholar] [CrossRef]
- Menon, A.; Flinn, P.W.; Dover, B.A. Influence of temperature on the functional response of Anisopteromalus calandrae (Hymenoptera: Pteromalidae), a parasitoid of Rhyzopertha dominica (Coleopeta: Bostrichidae). J. Stored Prod. Res. 2002, 38, 463–469. [Google Scholar] [CrossRef]
- Rall, B.C.; Vucic-Pestic, O.; Ehnes, R.B.; Emmerson, M.; Brose, U. Temperature, predator-prey interaction strength and population stability. Glob. Change Biol. 2010, 16, 2145–2157. [Google Scholar] [CrossRef]
- Stavrinides, M.C.; Mills, N.J. Influence of temperature on the reproductive and demographic parameters of two spider mite pests of vineyards and their natural predator. BioControl 2011, 56, 315–325. [Google Scholar] [CrossRef]
- Ahn, J.J.; Kim, K.W.; Lee, J.H. Functional response of Neoseiulus californicus (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae) on strawberry leaves. J. Appl. Entomol. 2010, 134, 98–104. [Google Scholar] [CrossRef]
Species | Parameters | F. occidentalis Larvae | F. occidentalis Eggs | ||||
---|---|---|---|---|---|---|---|
Estimate | χ2 | p | Estimate | χ2 | p | ||
A. largoensis | P0 | 4.2715 ± 0.7718 | 30.63 | <0.0001 | −2.7792 ± 0.8430 | 10.87 | 0.0010 |
P1 | −0.2971 ± 0.0875 | 11.52 | 0.0007 | 0.1109 ± 0.1036 | 1.16 | 0.2845 | |
P2 | 0.00648 ± 0.00303 | 4.56 | 0.0328 | −0.00341 ± 0.00377 | 0.82 | 0.3649 | |
P3 | −5 × 10−5 ± 3.2 × 10−5 | 2.86 | 0.0908 | 28 × 10−6 ± 41 × 10−6 | 0.47 | 0.4917 | |
P. lenis | P0 | 3.4007 ± 0.5822 | 34.11 | <0.0001 | −4.2545 ± 1.3476 | 9.97 | 0.0016 |
P1 | −0.4023 ± 0.0776 | 26.89 | <0.0001 | 0.1607 ± 0.1588 | 1.02 | 0.3116 | |
P2 | 0.0113 ± 0.00295 | 14.55 | 0.0001 | −4.67 × 10−3 ± 0.00563 | 0.69 | 0.4073 | |
P3 | −11 × 10−5 ± 3.3 × 10−5 | 10.88 | 0.0010 | 3.9 × 10−5 ± 6.1 × 10−5 | 0.42 | 0.5173 | |
A. swirskii | P0 | 5.2190 ± 0.9361 | 31.09 | <0.0001 | −3.2677 ± 0.9578 | 11.64 | 0.0006 |
P1 | −0.3558 ± 0.1013 | 12.32 | 0.0004 | 0.1297 ± 0.1152 | 1.27 | 0.2601 | |
P2 | 0.00755 ± 0.00340 | 4.92 | 0.0266 | −0.00368 ± 0.00413 | 0.79 | 0.3727 | |
P3 | −6 × 10−5 ± 3.5 × 10−5 | 8.16 | 0.0920 | 29 × 10−6 ± 45 × 10−6 | 0.42 | 0.5180 | |
P. cracentis | P0 | 4.7736 ± 0.7958 | 35.98 | <0.0001 | −2.7074 ± 0.8448 | 10.27 | 0.0014 |
P1 | −0.3852 ± 0.0897 | 18.43 | <0.0001 | 0.1024 ± 0.1047 | 0.96 | 0.3280 | |
P2 | 0.00933 ± 0.00310 | 9.06 | 0.0026 | −0.00331 ± 0.00382 | 0.75 | 0.3872 | |
P3 | −8 × 10−5 ± 3.3 × 10−5 | 6.08 | 0.0137 | 28 × 10−6 ± 42 × 10−6 | 0.45 | 0.5001 |
Species | Parameters | F. occidentalis Larvae | F. occidentalis Eggs | ||||
---|---|---|---|---|---|---|---|
Estimate | χ2 | p | Estimate | χ2 | p | ||
A. largoensis | P0 | 3.8361 ± 0.6977 | 30.23 | <0.0001 | −2.4671 ± 0.7656 | 10.39 | 0.0013 |
P1 | −0.2813 ± 0.0818 | 11.84 | 0.0006 | 0.0967 ± 0.0941 | 1.06 | 0.3040 | |
P2 | 0.00619 ± 0.00290 | 4.56 | 0.0327 | −0.00279 ± 0.00342 | 0.67 | 0.4145 | |
P3 | −5 × 10−5 ± 3.1 × 10−5 | 2.89 | 0.0893 | 21 × 10−6 ± 37 × 10−6 | 0.33 | 0.5652 | |
P. lenis | P0 | 2.0119 ± 0.5225 | 14.82 | <0.0001 | −3.0444 ± 0.9614 | 10.03 | 0.0015 |
P1 | −0.2201 ± 0.0714 | 9.50 | 0.0021 | 0.0972 ± 0.1176 | 0.68 | 0.4088 | |
P2 | 0.00480 ± 0.00277 | 3.01 | 0.0828 | −0.00286 ± 0.00426 | 0.45 | 0.5022 | |
P3 | −4 × 10−5 ± 3.1 × 10−5 | 1.73 | 0.1887 | 23 × 10−6 ± 46 × 10−6 | 0.24 | 0.6223 | |
A. swirskii | P0 | 5.2074 ± 0.9345 | 31.05 | <0.0001 | −2.5559 ± 0.8055 | 10.07 | 0.0015 |
P1 | −0.3541 ± 0.1017 | 12.12 | 0.0005 | 0.0874 ± 0.0987 | 0.78 | 0.3763 | |
P2 | 0.00716 ± 0.00343 | 4.36 | 0.0369 | −0.00246 ± 0.00357 | 0.47 | 0.4916 | |
P3 | −5 × 10−5 ± 3.6 × 10−5 | 2.28 | 0.1310 | 19 × 10−6 ± 39 × 10−6 | 0.24 | 0.6270 | |
P. cracentis | P0 | 5.5762 ± 0.8561 | 42.43 | <0.0001 | −2.5366 ± 0.8142 | 9.71 | 0.0018 |
P1 | −0.4771 ± 0.0956 | 24.92 | <0.0001 | 0.0844 ± 0.1006 | 0.70 | 0.4015 | |
P2 | 0.0124 ± 0.00328 | 14.22 | 0.0002 | −0.00250 ± 0.00366 | 0.47 | 0.4946 | |
P3 | −11 × 10−5 ± 3.3 × 10−5 | 10.73 | 0.0011 | 19 × 10−6 ± 40 × 10−6 | 0.23 | 0.6288 |
Species | F. occidentalis Larvae | F. occidentalis Eggs | ||
---|---|---|---|---|
Th (h) | T/Th | Th (h) | T/Th | |
A. largoensis | 1.80 ± 0.08 (1.64–1.96) | 13.33 | 2.15 ± 0.68 (0.79–3.51) | 11.15 |
P. lenis | 4.31 ± 0.19 (3.95–4.67) | 5.53 | 3.24 ± 1.89 (−0.55–7.02) | 7.41 |
A. swirskii | 1.83 ± 0.07 (1.70–1.95) | 13.14 | 2.10 ± 0.60 (0.89–3.31) | 11.43 |
P. cracentis | 2.07 ± 0.08 (1.91–2.22) | 11.62 | 2.49 ± 0.60 (1.28–3.69) | 8.39 |
Phytoseiid Species | F. occidentalis Larval Density | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 20 | 30 | 40 | 50 | |||
A. largoensis | 5.00 ± 0.00 a A | 8.20 ± 0.36 a AB | 12.70 ± 0.79 a C | 12.90 ± 0.67 a C | 12.80 ± 0.83 a C | 11.60 ± 0.58 a BC | 39.970 | 1.51 × 10−6 |
P. lenis | 4.50 ± 0.22 b A | 5.50 ± 0.45 b AB | 5.20 ± 0.49 b AB | 6.20 ± 0.36 b B | 5.50 ± 0.22 b AB | 4.80 ± 0.44 b AB | 12.341 | 0.030 |
A. swirskii | 5.00 ± 0.00 a A | 8.90 ± 0.28 a AB | 13.20 ± 0.55 a C | 13.10 ± 0.60 a C | 12.60 ± 0.48 a C | 12.00 ± 0.58 a BC | 41.431 | 7.68 × 10−8 |
P. cracentis | 4.80 ± 0.13 ab A | 8.80 ± 0.42 a AB | 10.20 ± 0.66 ab B | 11.70 ± 0.58 a B | 11.00 ± 0.42 a B | 10.90 ± 0.66 a B | 34.297 | 2.08 × 10−6 |
χ2 | 8.537 | 20.291 | 26.206 | 23.708 | 25.64 | 22.68 | ||
p | 0.036 | 1.48 × 10−4 | 8.64 × 10−6 | 2.88 × 10−5 | 1.13 × 10−5 | 4.71 × 10−5 |
Phytoseiid Species | F. occidentalis Egg Density | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
4–6 | 8–12 | 18–22 | 28–32 | 38–42 | 48–52 | |||
A. largoensis | 0.20 ± 0.13 a A | 1.40 ± 0.22 a A | 2.80 ± 0.29 a AB | 4.70 ± 0.45 a B | 4.60 ± 0.48 a B | 4.90 ± 0.43 a B | 50.380 | 1.16 × 10−9 |
P. lenis | 0.10 ± 0.10 a A | 0.60 ± 0.16 b A | 1.30 ± 0.30 b AB | 2.10 ± 0.23 b B | 2.40 ± 0.22 b B | 2.40 ± 0.27 b B | 46.986 | 5.71 × 10−9 |
A. swirskii | 0.20 ± 0.13 a A | 0.90 ± 0.23 ab A | 2.50 ± 0.31 a AB | 4.20 ± 0.20 a BC | 4.40 ± 0.27 a BC | 4.50 ± 0.17 a C | 51.408 | 7.14 × 10−10 |
P. cracentis | 0.20 ± 0.13 a A | 1.40 ± 0.16 a A | 2.70 ± 0.26 a AB | 4.30 ± 0.37 a B | 4.30 ± 0.33 a B | 4.50 ± 0.31 a B | 48.531 | 2.77 × 10−9 |
χ2 | 0.507 | 9.717 | 11.075 | 19.235 | 17.687 | 19.349 | ||
p | 0.918 | 0.021 | 0.011 | 2.45 × 10−4 | 5.10 × 10−4 | 2.32 × 10−4 |
Species | F. occidentalis Larvae | F. occidentalis Eggs | ||
---|---|---|---|---|
Th (h) | T/Th | Th (h) | T/Th | |
A. largoensis | 2.04 ± 0.07 (1.89–2.18) | 11.78 | 1.44 ± 0.37 (0.71–2.18) | 16.64 |
P. lenis | 3.98 ± 0.20 (3.58–4.38) | 6.03 | 2.27 ± 0.77 (0.73–3.80) | 10.58 |
A. swirskii | 2.06 ± 0.07 (1.92–2.20) | 11.65 | 1.20 ± 0.40 (0.39–2.01) | 19.96 |
P. cracentis | 2.35 ± 0.09 (2.18–2.51) | 10.22 | 1.85 ± 0.48 (0.88–2.82) | 12.98 |
Phytoseiid Species | F. occidentalis Larval Density | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 20 | 30 | 40 | 50 | |||
A. largoensis | 5.00 ± 0.00 a A | 7.70 ± 0.37 ab AC | 11.40 ± 0.40 ab B | 12.10 ± 0.57 a B | 10.90 ± 0.46 a BC | 10.10 ± 0.48 a BC | 43.583 | 2.82 × 10−8 |
P. lenis | 3.60 ± 0.40 b A | 5.80 ± 0.36 b AB | 6.00 ± 0.42 b B | 6.10 ± 0.57 b B | 5.80 ± 0.53 b AB | 5.10 ± 0.35 b AB | 16.299 | 6.04 × 10−3 |
A. swirskii | 5.00 ± 0.00 a A | 8.90 ± 0.35 a AB | 12.70 ± 0.54 a C | 12.10 ± 0.50 a C | 10.80 ± 0.66 a C | 10.30 ± 0.47 a BC | 40.165 | 1.38 × 10−7 |
P. cracentis | 5.00 ± 0.00 a AB | 8.60 ± 0.37 a BC | 9.90 ± 0.57 ab C | 11.10 ± 0.53 a C | 10.10 ± 0.67 a C | 8.90 ± 0.38 a C | 33.332 | 3.23 × 10−6 |
χ2 | 20.526 | 20.513 | 27.093 | 23.244 | 20.447 | 25.121 | ||
p | 1.32 × 10−4 | 1.33 × 10−4 | 5.63 × 10−6 | 3.59 × 10−5 | 1.37 × 10−4 | 1.46 × 10−5 |
Phytoseiid Species | F. occidentalis Egg Density | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
4–6 | 8–12 | 18–22 | 28–32 | 38–42 | 48–52 | |||
A. largoensis | 0.20 ± 0.13 a A | 1.80 ± 0.13 a A | 3.40 ± 0.31 a AB | 5.70 ± 0.37 a B | 6.20 ± 0.29 a B | 6.40 ± 0.34 a B | 50.380 | 1.16 × 10−9 |
P. lenis | 0.20 ± 0.13 a A | 0.90 ± 0.23 b A | 2.20 ± 0.25 a AB | 3.40 ± 0.27 b B | 3.70 ± 0.21 b B | 3.90 ± 0.28 b B | 46.986 | 5.71 × 10−9 |
A. swirskii | 0.20 ± 0.13 a A | 1.50 ± 0.22 ab A | 3.10 ± 0.28 a AB | 4.90 ± 0.23 a BC | 5.80 ± 0.33 a BC | 6.10 ± 0.31 a C | 51.408 | 7.14 × 10−10 |
P. cracentis | 0.20 ± 0.13 a A | 1.50 ± 0.17 ab A | 2.90 ± 0.31 a AB | 4.60 ± 0.31 ab B | 5.10 ± 0.35 ab B | 5.20 ± 0.25 ab B | 48.531 | 2.77 × 10−9 |
χ2 | 0 | 9.731 | 7.699 | 17.495 | 20.339 | 21.083 | ||
p | 1 | 0.021 | 0.053 | 5.59 × 10−4 | 1.44 × 10−4 | 1.01 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.H.; Song, Z.; Nguyen, D.T.; Van Leeuwen, T.; De Clercq, P. Functional Response of Four Phytoseiid Mites to Eggs and First-Instar Larvae of Western Flower Thrips, Frankliniella occidentalis. Insects 2024, 15, 803. https://doi.org/10.3390/insects15100803
Nguyen VH, Song Z, Nguyen DT, Van Leeuwen T, De Clercq P. Functional Response of Four Phytoseiid Mites to Eggs and First-Instar Larvae of Western Flower Thrips, Frankliniella occidentalis. Insects. 2024; 15(10):803. https://doi.org/10.3390/insects15100803
Chicago/Turabian StyleNguyen, Viet Ha, Ziwei Song, Duc Tung Nguyen, Thomas Van Leeuwen, and Patrick De Clercq. 2024. "Functional Response of Four Phytoseiid Mites to Eggs and First-Instar Larvae of Western Flower Thrips, Frankliniella occidentalis" Insects 15, no. 10: 803. https://doi.org/10.3390/insects15100803
APA StyleNguyen, V. H., Song, Z., Nguyen, D. T., Van Leeuwen, T., & De Clercq, P. (2024). Functional Response of Four Phytoseiid Mites to Eggs and First-Instar Larvae of Western Flower Thrips, Frankliniella occidentalis. Insects, 15(10), 803. https://doi.org/10.3390/insects15100803