Sublethal Effects of α-Cypermethrin on the Behavioral Asymmetries and Mating Success of Alphitobius diaperinus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Alphitobius diaperinus Colonies
2.2. Sex Recognition
2.3. Insecticide
2.4. Insecticide Contact Toxicity Bioassays
2.5. Behavioral Experiments
2.6. Statistical Analysis
3. Results
3.1. Contact Toxicity on A. diaperinus
3.2. Impact of α-Cypermethrin on A. diaperinus Mating Behavior and Laterality
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertola, M.; Mutinelli, F. A systematic review on viruses in mass-reared edible insect species. Viruses 2021, 13, 2280. [Google Scholar] [CrossRef]
- Eidson, C.S.; Schmittle, S.C.; Goode, R.B.; Lal, J.B. Induction of leukosis tumors with the beetle Alphitobius diaperinus. Am. J. Vet. Res. 1966, 27, 1053–1057. [Google Scholar] [PubMed]
- de las Casas, E.; Pomeroy, B.S.; Harein, P.K. Infection and quantitative recovery of Salmonella typhimurium and Escherichia coli from within the lesser mealworm, Alphitobius diaperinus (Panzer). Poul. Sci. 1968, 47, 1871–1875. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.A.; Waltman, W.D. Transmission of Eimeria, viruses, and bacteria to chicks: Darkling beetles (Alphitobius diaperinus) as vectors of pathogens. J. Appl. Poult. Res. 1996, 5, 51–55. [Google Scholar] [CrossRef]
- Litrup, E.; Torpdahl, M.; Malorny, B.; Huehn, S.; Helms, M.; Christensen, H.; Nielsen, E.M. DNA microarray analysis of Salmonella serotype Typhimurium strains causing different symptoms of disease. BMC Microbiol. 2010, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, J.; Zhang, X.; Bourgeois, A.L.; Harro, C.; Sack, D.A.; Chakraborty, S. Intestinal and systemic inflammation induced by symptomatic and asymptomatic enterotoxigenic E. coli infection and impact on intestinal colonization and ETEC specific immune responses in an experimental human challenge model. Gut Microbes 2021, 13, e1891852. [Google Scholar] [CrossRef]
- Schroeckenstein, D.C.; Meier-Davis, S.; Graziano, F.M.; Falomo, A.; Bush, R.K. Occupational sensitivity to Alphitobius diaperinus (Panzer) (lesser mealworm). J. Allergy Clin. Immunol. 1988, 82, 1081–1088. [Google Scholar] [CrossRef]
- Singh, N. Chemical Ecology, Population Dynamics and Insecticide Susceptibility of Lesser Mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Ph.D. Dissertation, University of Arkansas, Fayetteville, AR, USA, 2011. [Google Scholar]
- Hagstrum, D.W.; Subramanyam, B. Stored-Product Insect Resource; AACC International, Inc.: St. Paul, MN, USA, 2009. [Google Scholar]
- Kaufman, P.E.; Strong, C.; Rutz, D.A. Susceptibility of lesser mealworm (Coleoptera: Tenebrionidae) adults and larvae exposed to two commercial insecticides on unpainted plywood panels. Pest Manag. Sci. 2008, 64, 108–111. [Google Scholar] [CrossRef]
- Szołyga, B.; Gniłka, R.; Szczepanik, M.; Szumny, A. Chemical composition and insecticidal activity of Thuja occidentalis and Tanacetum vulgare essential oils against larvae of the lesser mealworm, Alphitobius diaperinus. Entomol. Exp. Appl. 2014, 151, 1–10. [Google Scholar] [CrossRef]
- Wolf, J.; Potrich, M.; Lozano, E.R.; Gouvea, A.; Pegorini, C.S. Combined physical and chemical methods to control lesser mealworm beetles under laboratory conditions. Poult. Sci. 2015, 94, 1145–1149. [Google Scholar] [CrossRef]
- Zorzetti, J.; Constanski, K.; Santoro, P.H.; Fonseca, I.C.; Neves, P.M. Growth regulator insecticides for the control of the lesser mealworm beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae). Rev. Colomb. Entomol. 2015, 41, 24–32. [Google Scholar]
- Volpato, A.; Baretta, D.; Zortéa, T.; Campigotto, G.; Galli, G.M.; Glombowsky, P.; Santos, R.C.V.; Quatrin, P.M.; Ourique, A.F.; Baldissera, M.D.; et al. Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J. Asia-Pac. Entomol. 2016, 19, 1159–1165. [Google Scholar] [CrossRef]
- Volpato, A.; Lorenzetti, W.R.; Zortea, T.; Giombelli, L.C.D.D.; Baretta, D.; Santos, R.C.V.; Vaucher, R.A.; Raffin, R.P.; Souza, M.E.; Stefani, L.M.; et al. Melaleuca alternifolia essential oil against the lesser mealworm (Alphitobius diaperinus) and its possible effect on the soil fauna. Rev. Bras. Ciênc. Avíc. 2016, 18, 41–46. [Google Scholar] [CrossRef]
- Tomasi, T.; Zortéa, T.; dos Reis, T.R.; Lopes, L.Q.S.; Baldissera, M.D.; Santos, R.C.V.; Baretta, D.; Stefani, L.M.; da Silva, A.S. Insecticidal action of glycerol monolaurate against the lesser mealworm (Alphitobius diaperinus) and its ecotoxicological effect on Enchytraeus crypticus. Acta Sci. Vet. 2018, 46, 6. 1581. [Google Scholar] [CrossRef]
- Fernandes, T.A.P.; Marcomini, M.C.; Ferreira, F.P.; Guide, B.A.; Alves, V.S.; Neves, P.M.O.J. Native isolates and the effect of aviary litter on the pathogenicity and virulence of entomopathogenic nematodes for the control of the lesser mealworm, Alphitobius diaperinus (panzer) (Coleoptera: Tenebrionidae). Semin. Ciênc. Agrar. 2021, 42, 1–18. [Google Scholar] [CrossRef]
- Hassemer, M.J.; Lopes, R.B.; Borges, M.; Alves, L.F.; Withall, D.M.; Pickett, J.A.; Laumann, R.A.; Birkett, M.A.; Blassioli-Moraes, M.C. Development of an attract-and-infect device for biological control of lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae) in poultry houses. Biol. Control 2020, 149, 104326. [Google Scholar] [CrossRef]
- Pessoa, G.C.D.; Lopes, J.V.; Roch, M.F.; Pinheiro, L.C.; Rosa, A.C.L.; Michalsky, É.M.; Dias, E.S. Baseline susceptibility to alpha-cypermethrin in Lutzomyia longipalpis (Lutz & Neiva, 1912) from Lapinha Cave (Brazil). Parasit. Vectors 2015, 8, 469. [Google Scholar]
- Arena, M.; Auteri, D.; Barmaz, S.; Brancato, A.; Brocca, D.; Villamar-Bouza, L. Peer review of the pesticide risk assessment of the active substance alpha-cypermethrin. EFSA J. 2018, 16, e05403. [Google Scholar]
- Ngufor, C.; Agbevo, A.; Fagbohoun, J.; Fongnikin, A.; Rowland, M. Efficacy of Royal Guard, a new alpha-cypermethrin and pyriproxyfen treated mosquito net, against pyrethroid-resistant malaria vectors. Sci. Rep. 2020, 10, 12227. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Alpha-Cypermethrin; Environmental Health Criteria 142; WHO: Geneva, Switzerland, 1992. [Google Scholar]
- World Health Organization (WHO). Specifications and Evaluations for Public Health Pesticides Alpha-Cypermethrin Long-Lasting (Incorporated into Filaments) Insecticidal Net; A racemic mixture of: (S)-α-cyano-3-phenoxybenzyl-(1R,3R)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate and (R)-α-cyano-3-phenoxybenzyl-(1S,3S)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Abbas, N.; Hafez, A.M. Alpha-cypermethrin resistance in Musca domestica: Resistance instability, realized heritability, risk assessment, and insecticide cross-resistance. Insects 2023, 14, 233. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, R.; Pérez-Otáñez, X.; Garcés-Carrera, S.; Vanwambeke, S.O.; Madder, M.; Benítez-Ortiz, W. The current status of resistance to alpha-cypermethrin, ivermectin, and amitraz of the cattle tick (Rhipicephalus microplus) in Ecuador. PLoS ONE 2017, 12, e0174652. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Bouhsira, E.; Liénard, E.; Mélou, A.B.; Jacquiet, P.; Franc, M. Susceptibility of two European strains of Stomoxys calcitrans (L.) to cypermethrin, deltamethrin, fenvalerate, lambda-cyhalothrin, permethrin and phoxim. Int. J. Appl. Res. Vet. Med. 2012, 10, 249–257. [Google Scholar]
- Tainchum, K.; Shukri, S.; Duvallet, G.; Etienne, L.; Jacquiet, P. Phenotypic susceptibility to pyrethroids and organophosphate of wild Stomoxys calcitrans (Diptera: Muscidae) populations in southwestern France. Parasitol. Res. 2018, 117, 4027–4032. [Google Scholar] [CrossRef]
- Lorn, S.; Klakankhai, W.; Nusen, P.; Sumarnrote, A.; Tainchum, K. Pyrethroid susceptibility in Stomoxys calcitrans and Stomoxys indicus (Diptera: Muscidae) collected from cattle farms in southern Thailand. Insects 2022, 13, 711. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C.; Guedes, N.M.P.; Rosi-Denadai, C.A. Sub-lethal effects of insecticides on stored-product insects: Current knowledge and future needs. Stewart Postharvest Rev. 2011, 3, 5. [Google Scholar]
- Zinhoum, R. Sublethal effects of malathion on biology and population growth of khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 57–72. [Google Scholar]
- Campbell, B.; Baldwin, R.; Koehler, P. Locomotion inhibition of Cimex lectularius L. following topical, sublethal dose application of the chitin synthesis inhibitor lufenuron. Insects 2017, 8, 94. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Maggi, F.; Angeloni, S.; Ricciutelli, M.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Canale, A.; Benelli, G. Being exposed to Acmella oleracea-based insecticides extract reduces mobility and mating success in Prostephanus truncatus, the major pest of maize in storages. J. Stored Prod. Res. 2023, 104, 102151. [Google Scholar] [CrossRef]
- Rogers, L.J.; Zucca, P.; Vallortigara, G. Advantages of having a lateralized brain. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 420–422. [Google Scholar] [CrossRef]
- Bisazza, A.; Rogers, L.J.; Vallortigara, G. The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci. Biobehav. Rev. 1998, 22, 411–426. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J.; Bisazza, A. Possible evolutionary origins of cognitive brain lateralization. Brain Res. Rev. 1999, 30, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Vallortigara, G. Comparative neuropsychology of the dual brain: A stroll through animals’ left and right perceptual worlds. Brain Lang. 2000, 73, 189–219. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Andrew, R.J. Comparative Vertebrate Lateralization; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 2005, 28, 575–633. [Google Scholar] [CrossRef] [PubMed]
- MacNeilage, P.F.; Rogers, L.J.; Vallortigara, G. Origins of the left and right brain. Sci. Am. 2009, 301, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Vallortigara, G.; Chiandetti, C.; Sovrano, V.A. Brain asymmetry (animal). Wiley Interdiscip. Rev. Cogn. Sci. 2011, 2, 146–157. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain lateralization: A comparative perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef]
- Letzkus, P.; Boeddeker, N.; Wood, J.T.; Zhang, S.W.; Srinivasan, M.V. Lateralization of visual learning in the honeybee. Biol. Lett. 2007, 4, 16–19. [Google Scholar] [CrossRef]
- Frasnelli, E.; Anfora, G.; Trona, F.; Tessarolo, F.; Vallortigara, G. Morphofunctional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behav. Brain Res. 2010, 209, 221–225. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Response competition associated with right-left antennal asymmetries of new and old olfactory memory traces in honeybees. Behav. Brain Res. 2010, 209, 36–41. [Google Scholar] [CrossRef]
- Anfora, G.; Frasnelli, E.; Maccagnani, B.; Rogers, L.J.; Vallortigara, G. Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav. Brain Res. 2010, 206, 236–239. [Google Scholar] [CrossRef]
- Anfora, G.; Rigosi, E.; Frasnelli, E.; Ruga, V.; Trona, F.; Vallortigara, G. Lateralization in the invertebrate brain: Left-right asymmetry of olfaction in bumble bee, Bombus terrestris. PLoS ONE 2011, 6, 18903. [Google Scholar] [CrossRef]
- Romano, D.; Kavallieratos, N.G.; Athanassiou, C.G.; Canale, A.; Stefanini, C.; Benelli, G. Impact of geographical origin and rearing medium on mating success and lateralization in the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 2016, 69, 106–112. [Google Scholar] [CrossRef]
- Benelli, G.; Romano, D.; Kavallieratos, N.G.; Conte, G.; Stefanini, C.; Mele, M.; Athanassiou, C.G.; Canale, A. Multiple behavioural asymmetries impact male mating success in the khapra beetle, Trogoderma granarium. J. Pest Sci. 2017, 90, 901–909. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Romano, D.; Kavallieratos, N.G.; Athanassiou, C.G.; Stefanini, C.; Canale, A.; Benelli, G. Asymmetric courtship boosts male mating success in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2019, 81, 1–6. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Romano, D.; Kavallieratos, N.G.; Athanassiou, C.G.; Stefanini, C.; Canale, A.; Benelli, G. Does geographical origin affect lateralization and male mating success in Rhyzopertha dominica beetles? J. Stored Prod. Res. 2020, 88, 101630. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Romano, D.; Kavallieratos, N.G.; Stefanini, C.; Canale, A.; Benelli, G. Behavioral asymmetries affecting male mating success in Tenebrio molitor (Coleoptera: Tenebrionidae), an important edible species. J. Econ. Entomol. 2021, 114, 454–461. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Romano, D.; Kavallieratos, N.G.; Stefanini, C.; Canale, A.; Benelli, G. Do asymmetric sexual interactions affect copulation in the saw-toothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae)? J. Stored Prod. Res. 2022, 96, 101946. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Benelli, G. Functional asymmetries routing the mating behavior of the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Insects 2022, 13, 699. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Gidari, D.L.S.; Di Giuseppe, G.; Canale, A.; Benelli, G. Does cross-mating affect behavioral asymmetries and mating success of khapra beetle (Trogoderma granarium) strains? Entomol. Gen. 2023, 43, 409–419. [Google Scholar] [CrossRef]
- Renault, D. Long-term after-effects of cold exposure in adult Alphitobius diaperinus (Tenebrionidae): The need to link survival ability with subsequent reproductive success. Ecol. Entomol. 2011, 36, 36–42. [Google Scholar] [CrossRef]
- Calla-Quispe, E.; Martel, C.; Ibañez, A.J. Gender identity and sexual experience affect mating behaviour and chemical profile in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). bioRxiv 2021. [Google Scholar] [CrossRef]
- Calla-Quispe, E.; Irigoin, E.; Mansurova, M.; Martel, C.; Ibáñez, A.J. Lateralized movements during the mating behavior, which are associated with sex and sexual experience, increase the mating success in Alphitobius diaperinus (Coleoptera: Tenebrionidae). Insects 2023, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Subekti, N.; Cahyaningrum, S.H.; Maulana, S. Effective control of Alphitobius diaperinus using natural bioinsecticides. J. Trop. Life Sci. 2022, 12, 289–297. [Google Scholar] [CrossRef]
- Renault, D.; Nedved, O.; Hervant, F.; Vernon, P. The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiol. Entomol. 2004, 29, 139–145. [Google Scholar] [CrossRef]
- Rice, S.J.; Lambkin, T.A. A new culture method for lesser mealworm, Alphitobius diaperinus. J. Appl. Entomol. 2009, 133, 67–72. [Google Scholar] [CrossRef]
- Esquivel, J.F.; Crippen, T.L.; Ward, L.A. Improved Visualization of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)—Part I: Morphological Features for Sex Determination of Multiple Stadia. Psyche. J. Entomol. 2012, 7, 328478. [Google Scholar]
- Finney, D.J. Statistical Methods in Biological Assay; Charles Griffin: London, UK, 1978. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.Rproject.org/ (accessed on 30 June 2024).
- SAS Institute Inc. Using JMP 16.2; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Kavallieratos, N.G.; Boukouvala, M.C.; Pappa, A.P.A.; Canale, A.; Benelli, G. Being exposed to low concentrations of pirimiphos-methyl and chlorfenapyr has detrimental effects on the mobility of Trogoderma granarium. Pest Manag. Sci. 2023, 79, 5230–5236. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Eleftheriadou, N.; Filintas, C.S.; Gidari, D.L.S.; Kyrpislidi, V.P.C. Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management. Insects 2024, 15, 451. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Guedes, R.N.; Drempela, J.D.; Boukouvala, M.C. Invader competition with local competitors: Displacement or coexistence among the invasive khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and two other major stored-grain beetles? Front. Plant Sci. 2017, 8, 1837. [Google Scholar] [CrossRef]
- Hardy, I.C.; Ode, P.J.; Siva-Jothy, M. Mating behavior. In Insects as Natural Enemies: A Practical Perspective, 1st ed.; Jervis, M.A., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 219–260. [Google Scholar]
- Hoppe, K.R.; Roush, R.T. Mate finding, dispersal, number released, and the success of biological control introductions. Ecol. Entomol. 1993, 18, 321–331. [Google Scholar] [CrossRef]
- Soares, C.E.D.S.; Weber, A.; Moecke, E.S.; Reiter, M.G.; Scussel, V.M.; De Souza, C.K. Use of ozone gas as a green control alternative to beetles Alphitobius diaperinus (panzer) infestation in aviary bed utilized in the poultry industry. Chem. Eng. Trans. 2018, 64, 589–594. [Google Scholar]
- Rezende, S.R.F.; Curvello, F.A.; Fraga, M.E.; Reis, R.C.S.; Castilho, A.M.C.; Agostinho, T.S.P. Control of the Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) with entomopathogenic fungi. Braz. J. Poult. Sci. 2009, 11, 121–127. [Google Scholar] [CrossRef]
Active Ingredient | Unit | LC10 (95% CI) | LC30 (95% CI) | LC50 (95% CI) | χ2 (df = 23) | p |
---|---|---|---|---|---|---|
α-cypermethrin | mg a.i./cm2 | 0.0000666 (0.000024–0.000109) | 0.000120 (0.0000596–0.000169) | 0.000180 (0.000112–0.000229) | 10.7 | 0.986 |
Treatment | Direction of the Approach | Behavioral Traits | |||
---|---|---|---|---|---|
Laterality | ♂ Mate recognition (s) | ♂ Mounting (s) | Copulation (s) | ||
Control | Back | 46.1 ± 15.5 b | 513.3 ± 80.3 f | 57.7 ± 1.9 abc | |
Front | 123.4 ± 25.4 b | 1046.9 ± 140.4 e | 58.8 ± 1.0 ab | ||
Left | 303.0 ± 112.6 a | 1008.7 ± 156.6 ef | 61.5 ± 3.4 a | ||
Right | 108.4 ± 22.1 b | 1191.7 ± 121.6 de | 60.0 ± 1.5 a | ||
Tested beetles (n = back- + front- + left- + right-biased) | 11 + 18 + 14 + 27 = 70 | 11 + 18 + 14 + 27 = 70 | 11 + 18 + 8 + 25 = 62 | ||
LC10 | Back | 49.8 ± 18.1 b | 1434.1 ± 179.3 bcde | 52.1 ± 0.9 cd | |
Front | 73.4 ± 12.3 b | 1120.7 ± 109.3 de | 51.7 ± 0.8 d | ||
Left | 88.5 ± 18.5 b | 1811.4 ± 159.1 ac | 52.2 ± 0.6 cd | ||
Right | 56.7 ± 8.0 b | 1438.4 ± 89.2 bd | 51.3 ± 0.4 d | ||
Tested beetles (n = back- + front- + left- + right-biased) | 13 + 20 + 18 + 47 = 98 | 13 + 20 + 18 + 47 = 98 | 10 + 15 + 16 + 36 = 77 | ||
LC30 | Back | 338.4 ± 33.7 a | 1768.1 ± 165.0 abc | 50.7 ± 0.7 cd | |
Front | 435.6 ± 60.3 a | 1993.4 ± 332.6 abc | 51.0 ± 0.7 bcd | ||
Left | 366.3 ± 28.7 a | 1878.5 ± 131.8 a | 50.4 ± 0.7 d | ||
Right | 355.4 ± 23.9 a | 1745.8 ± 94.8 ac | 48.3 ± 0.7 d | ||
Tested beetles (n = back- + front- + left- + right-biased) | 14 + 5 + 35 + 39 = 93 | 14 + 5 + 35 + 39 = 93 | 6 + 4+ 21 + 29 = 60 | ||
χ2, df, p | 152.32, 11, <0.001 | 69.63, 11, <0.001 | 104.37, 11, <0.001 |
Treatment | Direction of the Approach | Behavioral Traits | |||
---|---|---|---|---|---|
Laterality | ♀ Mate recognition (s) | ♂ Mounting (s) | Copulation (s) | ||
Control | Back | 188.3 ± 76.2 ab | 994.9 ± 170.1 bc | 57.8 ± 1.4 abc | |
Front | 68.7 ± 20.8 b | 813.9 ± 132.5 c | 58.4 ± 1.1 ab | ||
Left | 266.3 ± 157.0 ab | 287.5 ± 74.1 abc | 54.0 ± 2.0 abcd | ||
Right | 226.4 ± 69.5 ab | 1132.7 ± 205.3 abc | 63.0 ± 0.8 a | ||
Tested beetles (n = back- + front- + left- + right-biased) | 16 + 12 + 3 + 9 = 40 | 16 + 12 + 3 + 9 = 40 | 16 + 11 + 2 + 8 = 37 | ||
LC10 | Back | 99.7 ± 39.2 ab | 1038.8 ± 165.5 abc | 50.8 ± 0.6 bcd | |
Front | 69.2 ± 19.0 b | 1656.1 ± 283.0 abc | 51.9 ± 1.4 cd | ||
Left | 121.8 ± 26.1 ab | 1203.3 ± 313.5 abc | 51.0 ± 1.6 cd | ||
Right | 76.7 ± 17.4 b | 1170.0 ± 243.5 abc | 51.0 ± 0.7 d | ||
Tested beetles (n = back- + front- + left- + right-biased) | 6 + 9 + 6 + 11 = 32 | 6 + 9 + 6 + 11 = 32 | 4 + 7 + 5 + 8 = 24 | ||
LC30 | Back | 331.0 ± 81.2 ab | 1717.0 ± 354.9 abc | 51.3 ± 2.6 bcd | |
Front | 320.5 ± 52.4 a | 1809.9 ± 159.4 ab | 49.4 ± 1.6 d | ||
Left | 347.0 ± 22.1 a | 1791.6 ± 111.0 a | 49.6 ± 0.7 d | ||
Right | 349.1 ± 37.4 a | 1716.1 ± 134.9 ab | 46.9 ± 1.4 d | ||
Tested beetles (n = back- + front- + left- + right-biased) | 6 + 11 + 27 + 16 = 60 | 6 + 11 + 27 + 16 = 60 | 3 + 8 + 18 + 12 = 41 | ||
χ2, df, p | 152.32, 11, <0.001 | 69.63, 11, <0.001 | 57.48, 11, <0.001 |
Treatment | Direction of Mounting | Behavioral Traits | |||
---|---|---|---|---|---|
Laterality | ♂ Mate recognition (s) | ♂ Mounting (s) | Copulation (s) | ||
Control | Back | 490.7 ± 368.5 a | 1175.3 ± 51.7 abcde | 58.0 ± 0.0 ab | |
Front | 78.3 ± 41.5 bc | 601.0 ± 26.3 de | 59.8 ± 2.7 a | ||
Left | 144.6 ± 35.7 bc | 982.9 ± 107.6 d | 59.4 ± 1.3 a | ||
Right | 104.7 ± 23.4 bc | 1100.4 ± 115.0 cde | 59.6 ± 1.1 a | ||
Tested beetles (n = back- + front- + left- + right-biased) | 3 + 4 + 38 + 25 = 70 | 3 + 4 + 38 + 25 = 70 | 1 + 4 + 35 + 22 = 62 | ||
LC10 | Back | 57.3 ± 11.7 bc | 1901.7 ± 399.2 abcde | 52.3 ± 1.5 ab | |
Front | 82.2 ± 0.0 abc | 762.0 ± 0.0 abcde | - | ||
Left | 51.5 ± 7.7 c | 1350.2 ± 83.8 bcde | 51.7 ± 0.5 b | ||
Right | 76.5 ± 9.8 c | 1504.7 ± 96.5 abce | 51.6 ± 0.4 b | ||
Tested beetles (n = back- + front- + left- + right-biased) | 3 + 1 + 43 + 51 = 98 | 3 + 1+ 43 + 51 = 98 | 3 + 0 + 33 + 41 = 77 | ||
LC30 | Back | 330.5 ± 74.0 ab | 2139.3 ± 165.9 abcde | 48.3 ± 3.3 b | |
Front | - | - | - | ||
Left | 379.4 ± 25.0 a | 1874.7 ± 115.9 a | 49.7 ± 0.7 b | ||
Right | 363.2 ± 21.5 a | 1735.0 ± 91.0 ab | 49.3 ± 0.6 b | ||
Tested beetles (n = back- + front- + left- + right-biased) | 4 + 0 + 40 + 49 = 93 | 4 + 0 + 40 + 49 = 93 | 3 + 0 + 24 + 33 = 60 | ||
χ2, df, p | 145.61, 10, <0.001 | 59.3, 10, <0.001 | 100.31, 9, <0.001 |
Treatment | Direction of Mounting | Behavioral Traits | |||
---|---|---|---|---|---|
Laterality | ♀ Mate recognition (s) | ♂ Mounting (s) | Copulation (s) | ||
Control | Back | 33.4 ± 12.4 c | 463.6 ± 145.5 c | 57.2 ± 3.2 abc | |
Front | 15.5 ± 18.5 c | 549.5 ± 28.2 c | 59.5 ± 2.5 ab | ||
Left | 191.3 ± 56.1 bc | 1143.4 ± 157.7 c | 58.1 ± 1.3 a | ||
Right | 230.9 ± 76.8 abc | 1061.2 ± 134.8 c | 60.5 ± 1.0 a | ||
Tested beetles (n = back- + front- + left- + right-biased) | 5 + 4 + 18 + 13 = 40 | 5 + 4 + 18 + 13 = 40 | 5 + 4+16+12 = 37 | ||
LC10 | Back | 145.8 ± 40.6 abc | 1248.6 ± 367.3 abc | 53.4 ± 1.1 abcd | |
Front | - | - | - | ||
Left | 65.6 ± 10.1 c | 1446.9 ± 212.4 abc | 49.9 ± 0.7 cd | ||
Right | 88.4 ± 20.1 c | 1132.9 ± 200.4 bc | 51.4 ± 0.8 bcd | ||
Tested beetles (n = back- + front- + left- + right-biased) | 5 + 0 + 14 + 13 = 32 | 5 + 0 + 14 + 13 = 32 | 5 + 0 + 10 + 9 = 24 | ||
LC30 | Back | 287.5 ± 74.1 abc | 1606.3 ± 263.2 abc | 48.7 ± 2.3 d | |
Front | - | - | - | ||
Left | 357.8 ± 24.5 a | 1728.8 ± 91.6 ab | 49.4 ± 0.8 d | ||
Right | 325.6 ± 27.7 ab | 1898.2 ± 145.9 a | 48.0 ± 1.2 d | ||
Tested beetles (n = back- + front- + left- + right-biased) | 6 + 11 + 27 + 16 = 60 | 6 + 11 + 27 + 16 = 60 | 3 + 8 + 18 + 12 = 41 | ||
χ2, df, p | 64.17, 9, <0.001 | 40.99, 9, <0.001 | 57.04, 9, <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidari, D.L.S.; Kavallieratos, N.G.; Boukouvala, M.C. Sublethal Effects of α-Cypermethrin on the Behavioral Asymmetries and Mating Success of Alphitobius diaperinus. Insects 2024, 15, 804. https://doi.org/10.3390/insects15100804
Gidari DLS, Kavallieratos NG, Boukouvala MC. Sublethal Effects of α-Cypermethrin on the Behavioral Asymmetries and Mating Success of Alphitobius diaperinus. Insects. 2024; 15(10):804. https://doi.org/10.3390/insects15100804
Chicago/Turabian StyleGidari, Demeter Lorentha S., Nickolas G. Kavallieratos, and Maria C. Boukouvala. 2024. "Sublethal Effects of α-Cypermethrin on the Behavioral Asymmetries and Mating Success of Alphitobius diaperinus" Insects 15, no. 10: 804. https://doi.org/10.3390/insects15100804
APA StyleGidari, D. L. S., Kavallieratos, N. G., & Boukouvala, M. C. (2024). Sublethal Effects of α-Cypermethrin on the Behavioral Asymmetries and Mating Success of Alphitobius diaperinus. Insects, 15(10), 804. https://doi.org/10.3390/insects15100804