Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Aphid Preference for TMX-Coated Versus Uncoated Wheat Plants
2.3. Aphids’ Olfactory Behavioral Reactions to Individual Chemicals
2.4. Analysis of Volatile Chemicals in Wheat Plants Treated with TMX-Coated and Untreated Plants
2.4.1. Sample Preparation and Treatment
2.4.2. Gas Chromatography–Mass Spectrometry Conditions
2.4.3. Data Analysis
2.4.4. Differential Metabolites Selected
2.4.5. Analysis of S. miscanthi’s Olfactory Preference
3. Results
3.1. Preference of S. miscanthi for TMX-Coated and Uncoated Wheat Plants
3.2. Analysis of Volatile Compounds Emitted by TMX-Coated and Untreated Wheat Plants
3.2.1. OPLS-DA and PCA
3.2.2. Metabolite Hierarchical Clustering and Difference Significance Analysis
3.3. Quantification of Aphids’ Olfactory Response to Specific Chemicals
3.3.1. The Behavioral Reactions of S. miscanthi to Three Terpenoids
3.3.2. The Behavioral Reactions of S. miscanthi to Two Esters
3.3.3. The Behavioral Reactions of S. miscanthi to Alcohols
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, X.; Zhang, Q.; Qin, Y.; Yin, H.; Zhang, S.; Li, Q.; Zhang, Y.; Fan, J.; Chen, J. A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Gigascience 2019, 8, giz101. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, A.; Cini, E. Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Wang, Q.; Liu, H.; Cheng, Y.; Li, H.; Zhang, Y.; Chen, J. Two salivary proteins Sm10 and SmC002 from grain aphid Sitobion miscanthi modulate wheat defense and enhance aphid performance. Front. Plant Sci. 2023, 14, 1104275. [Google Scholar] [CrossRef]
- Wang, Y.; Hereward, J.P.; Zhang, G. High Spatial Genetic Structure and Genetic Diversity in Chinese Populations of Sitobion miscanthi (Hemiptera: Aphididae). J. Econ. Entomol. 2016, 109, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Fu, Y.; Crespo-Herrera, L.; Liu, H.; Wang, Q.; Zhang, Y.; Chen, J. Salivary Effector Sm9723 of Grain Aphid Sitobion miscanthi Suppresses Plant Defense and Is Essential for Aphid Survival on Wheat. Int. J. Mol. Sci. 2022, 23, 6909. [Google Scholar] [CrossRef]
- Picimbon, J.F. Interpopulational Variations of Odorant-Binding Protein Expression in the Black Cutworm Moth, Agrotis ipsilon. Insects 2020, 11, 798. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef]
- Fleischer, J.; Pregitzer, P.; Breer, H.; Krieger, J. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cell Mol. Life Sci. 2018, 75, 485–508. [Google Scholar] [CrossRef]
- Syed, Z. Chemical ecology and olfaction in arthropod vectors of diseases. Curr. Opin. Insect Sci. 2015, 10, 83–89. [Google Scholar] [CrossRef]
- Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C. Plant volatiles and the environment. Plant Cell Environ. 2014, 37, 1905–1908. [Google Scholar] [CrossRef]
- Maienfisch, P.; Huerlimann, H.; Rindlisbacher, A.; Gsell, L.; Dettwiler, H.; Haettenschwiler, J.; Sieger, E.; Walti, M. The discovery of thiamethoxam: A second-generation neonicotinoid. Pest Manag. Sci. 2001, 57, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Maienfisch, P.; Angst, M.; Brandl, F.; Fischer, W.; Hofer, D.; Kayser, H.; Kobel, W.; Rindlisbacher, A.; Senn, R.; Steinemann, A.; et al. Chemistry and biology of thiamethoxam: A second generation neonicotinoid. Pest Manag. Sci. 2001, 57, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Stamm, M.D.; Enders, L.S.; Donze-Reiner, T.J.; Baxendale, F.P.; Siegfried, B.D.; Heng-Moss, T.M. Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genom. 2014, 15, 1055. [Google Scholar] [CrossRef]
- Cataneo, A.C.; Ferreira, L.C.; Carvalho, J.C.; Andreo-Souza, Y.; Corniani, N.; Mischan, M.M.; Nunes, J.C. Improved germination of soybean seed treated with thiamethoxam under drought conditions. Seed Sci. Technol. 2010, 38, 248–251. [Google Scholar] [CrossRef]
- Xu, T.; Lou, K.; Song, D.; Zhu, B.; Liang, P.; Gao, X. Resistance Mechanisms of Sitobion miscanthi (Hemiptera: Aphididae) to Malathion Revealed by Synergist Assay. Insects 2022, 13, 1043. [Google Scholar] [CrossRef] [PubMed]
- Margaritopoulos, J.T.; Skouras, P.J.; Nikolaidou, P.; Manolikaki, J.; Maritsa, K.; Tsamandani, K.; Kanavaki, O.M.; Bacandritsos, N.; Zarpas, K.D.; Tsitsipis, J.A. Insecticide resistance status of Myzus persicae (Hemiptera: Aphididae) populations from peach and tobacco in mainland Greece. Pest Manag. Sci. 2007, 63, 821–829. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Chen, A.; Ma, K.; Liang, P.; Liu, Y.; Song, D.; Gao, X. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pestic. Biochem. Physiol. 2017, 141, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Søgaard Jørgensen, P.; Folke, C.; Henriksson, P.J.G.; Malmros, K.; Troell, M.; Zorzet, A. Coevolutionary Governance of Antibiotic and Pesticide Resistance. Trends Ecol. Evol. 2020, 35, 484–494. [Google Scholar] [CrossRef]
- Brosset, A.; Blande, J.D. Volatile-mediated plant-plant interactions: Volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. J. Exp. Bot. 2022, 73, 511–528. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M.M.; Fan, Y. Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 2017, 246, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.L.; Cao, M.; Liu, F.; Wang, Y.B.; Wan, J.P.; Wang, R.L.; Zhou, H.K.; Wang, W.Y.; Xu, J. The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant Soil 2020, 456, 207–221. [Google Scholar] [CrossRef]
- Chang, X.; Wang, F.; Fang, Q.; Chen, F.; Yao, H.; Gatehouse, A.M.R.; Ye, G. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. Plant Cell Environ. 2021, 44, 2700–2715. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.S.; Rouseff, R.L.; Smoot, J.M.; Castle, W.S.; Stelinski, L.L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles. Bull. Entomol. Res. 2011, 101, 89–97. [Google Scholar] [CrossRef]
- Eberl, F.; Hammerbacher, A.; Gershenzon, J.; Unsicker, S.B. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytol. 2018, 220, 760–772. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Zhang, S.; Zhang, Q.; Dai, H. Olfactory Response and Electroantennal of Two Termites Species to Several Components. J. Nanjing For. Univ. 2007, 31, 55–58. [Google Scholar]
- Bruce, T.J.; Pickett, J.A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 2011, 72, 1605–1611. [Google Scholar] [CrossRef]
- Missbach, C.; Dweck, H.K.; Vogel, H.; Vilcinskas, A.; Stensmyr, M.C.; Hansson, B.S.; Grosse-Wilde, E. Evolution of insect olfactory receptors. eLife 2014, 3, e02115. [Google Scholar] [CrossRef]
- Gouinguené, S.P.; Turlings, T.C. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002, 129, 1296–1307. [Google Scholar] [CrossRef]
- Shekhawat, G.S.; Searchfield, G.D.; Stinear, C.M. The relationship between tinnitus pitch and hearing sensitivity. Eur. Arch. Otorhinolaryngol. 2014, 271, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; He, Y.; Wang, D.; Pan, F.; Luo, Y. Behavioral responses of Trichogrammatoidea bactrae to volatiles of cruciferous vegetables. J. Environ. Entomol. 2011, 33, 74–80. [Google Scholar]
- Dicke, M. Behavioural and community ecology of plants that cry for help. Plant Cell Environ. 2009, 32, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Pickett, J.A.; Woodcock, C.M.; Midega, C.A.; Khan, Z.R. Push-pull farming systems. Curr. Opin. Biotechnol. 2014, 26, 125–132. [Google Scholar] [CrossRef]
Compounds | Formula | CAS | TMX-Coated | Uncoated | VIP | FC | Retention Index |
---|---|---|---|---|---|---|---|
Bornyl acetate | C12H20O2 | 76-49-3 | 2.83 × 103 | 9.45 | 1.24 | 2.99 × 102 | 1285 |
2-Oxepanone | C6H10O2 | 502-44-3 | 7.18 × 104 | 3.58 × 104 | 1.18 | 2.01 | 1065 |
Cyclohexene | C10H16 | 586-62-9 | 5.18 × 103 | 2.42 × 103 | 1.11 | 2.15 | 1088 |
Methyl acrylate | C6H10O2 | 924-50-5 | 1.12 × 105 | 2.40 × 105 | 1.66 | 4.65 × 10−1 | 842 |
α-Pinene | C10H16 | 80-56-8 | 1.99 × 103 | 9.35 | 1.11 | 2.13 × 102 | 937 |
1-Nonanol | C9H20O | 143-08-8 | 4.88 × 105 | 2.09 × 105 | 1.16 | 2.34 | 1173 |
2-Isobutyryloxy-toluol | C11H14O2 | 36438-54-7 | 1.81 × 101 | 3.33 | 1.17 | 5.44 | 1276 |
1,5-Cyclooctadiene,3,4-dimethyl | C10H16 | 21284-05-9 | 4.30 × 103 | 2.12 × 103 | 1.13 | 2.02 | 1046 |
α-Eudesmol | C15H26O | 473-16-5 | 3.38 × 103 | 1.29 × 103 | 1.13 | 2.62 | 1653 |
linalool oxide | C10H18O2 | 14049-11-7 | 3.70 × 105 | 1.55 × 105 | 1.15 | 2.38 | 1173 |
Iso-3-thujyl acetate | C12H20O2 | 62181-90-2 | 4.40 × 101 | 1.17 × 101 | 1.03 | 3.76 | 1298 |
Lavandulyl caproate | C16H28O2 | 59550-36-6 | 1.27 × 104 | 4.94 × 103 | 1.11 | 2.57 | 1650 |
Dehydromevalonic lactone | C6H8O2 | 2381-87-5 | 1.35 × 104 | 4.48 × 103 | 1.18 | 3.01 | 1169 |
a-Terpinen-7-al | C10H14O | 1197-15-5 | 6.34 × 103 | 1.77 × 103 | 1.17 | 3.58 | 1283 |
2-Nonenal | C9H16O | 18829-56-6 | 1.20 × 105 | 5.52 × 104 | 1.16 | 2.17 | 1162 |
3-Hexanone, 1-phenyl | C12H16O | 29898-25-7 | 1.74 × 104 | 8.57 × 103 | 1.14 | 2.03 | 1427 |
trans,cis-2,6-Nonadien-1-ol | C9H16O | 28069-72-9 | 3.03 × 105 | 1.39 × 105 | 1.16 | 2.18 | 1170 |
1-p-menthene-8-thiol | C10H18S | 71159-90-5 | 8.38 × 101 | 3.09 × 101 | 1.03 | 2.71 | 1283 |
cis-3-Pinanone | C10H16O | 15358-88-0 | 3.26 × 105 | 1.44 × 105 | 1.15 | 2.26 | 1173 |
p-Mentha-1,5-dien-8-ol | C10H16O | 1686-20-0 | 7.93 × 105 | 3.31 × 105 | 1.14 | 2.39 | 1167 |
Undecane, 2-methyl | C12H26 | 7045-71-8 | 4.00 × 105 | 1.66 × 105 | 1.16 | 2.41 | 1164 |
Levomenthol | C10H20O | 2216-51-5 | 5.71 × 105 | 2.49 × 105 | 1.14 | 2.29 | 1171 |
sec-butyl thioisovalerate | C9H18OS | 2432-91-9 | 8.22 × 105 | 3.66 × 105 | 1.17 | 2.25 | 1174 |
2-Cyclopentylethanol | C7H14O | 766-00-7 | 3.13 × 105 | 5.12 × 104 | 1.09 | 6.11 | 1003 |
3-Hexen-1-ol, acetate | C8H14O2 | 3681-82-1 | 2.00 × 105 | 3.00 × 104 | 1.09 | 6.66 | 1005 |
1-Octanol | C8H18O | 111-87-5 | 1.32 × 105 | 6.29 × 104 | 1.06 | 2.10 | 1072 |
2-Octen-1-ol | C8H16O | 18409-17-1 | 5.94 × 104 | 2.94 × 104 | 1.12 | 2.02 | 1067 |
p-Mentha-1(7),2-dien-8-ol | C10H16O | 65293-09-6 | 8.84 × 105 | 4.10 × 105 | 1.12 | 2.16 | 1163 |
Methyl dihydrojasmonate | C13H22O3 | 24851-98-7 | 3.31 × 104 | 1.41 × 104 | 1.19 | 2.36 | 1656 |
N,N’-Methylenebismethacrylamide | C9H14N2O2 | 2359-15-1 | 1.32 × 104 | 5.87 × 103 | 1.09 | 2.26 | 1651 |
1-Guaiacyl-3-propanol | C10H14O3 | 2305-13-7 | 5.37 × 103 | 2.11 × 103 | 1.14 | 2.54 | 1651 |
Citronellyl tiglate | C15H26O2 | 24717-85-9 | 1.58 × 104 | 7.03 × 103 | 1.18 | 2.25 | 1658 |
1,8,11,14-Heptadecatetraene, (Z,Z,Z) | C17H28 | 10482-53-8 | 1.12 × 104 | 5.03 × 103 | 1.07 | 2.23 | 1664 |
3-Oxo-alpha-ionol | C13H20O2 | 34318-21-3 | 5.56 × 103 | 2.31 × 103 | 1.06 | 2.41 | 1647 |
Substances | Chemical Formula | Cas No. | Category |
---|---|---|---|
Bornyl acetate | C12H20O2 | 76-49-3 | Terpenoids |
α-Pinene | C10H16 | 80-56-8 | Terpenoids |
Cyclohexene | C10H16 | 586-62-9 | Terpenoids |
Methyl acrylate | C6H10O2 | 924-50-5 | Ester |
2-Oxepanone | C6H10O2 | 502-44-3 | Ester |
1-Nonanol | C9H20O | 143-08-8 | Alcohol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Liu, Y.; Fei, S.; Wang, Y.; Liu, J.; Zhang, H. Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi. Insects 2024, 15, 810. https://doi.org/10.3390/insects15100810
Sun J, Liu Y, Fei S, Wang Y, Liu J, Zhang H. Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi. Insects. 2024; 15(10):810. https://doi.org/10.3390/insects15100810
Chicago/Turabian StyleSun, Jiacong, Yonggang Liu, Shaodan Fei, Yixuan Wang, Jinglong Liu, and Haiying Zhang. 2024. "Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi" Insects 15, no. 10: 810. https://doi.org/10.3390/insects15100810
APA StyleSun, J., Liu, Y., Fei, S., Wang, Y., Liu, J., & Zhang, H. (2024). Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi. Insects, 15(10), 810. https://doi.org/10.3390/insects15100810