De Novo Transcriptome Profiling of Mustard Aphid (Lipaphis erysimi) and Differential Expression of Transcripts Associated with Feeding and Non-Feeding Conditions and Developmental Stages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Maintenance of Aphids
2.2. Collection of Biological Material
2.3. Preparation of cDNA Libraries, Sequencing and Data Analysis
2.4. Real-Time Quantitative PCR
3. Results and Discussion
3.1. Analyses of Sequencing Data and De Novo Transcriptome Assembly
3.2. Annotation of Assembled Transcripts of L. erysimi and Its Endosymbiont, Buchnera aphidicola
3.3. Differential Expression of Genes
3.3.1. Differentially Expressed Transcripts under Feeding and Non-Feeding/Starvation Conditions
3.3.2. Biological Processes Associated with Differentially Expressed Genes in Feeding and Non-Feeding Conditions
3.3.3. Differentially Expressed Transcripts between Nymphs and Adults
3.4. Differential Expression of Putative Effectors
3.5. Validation of Differentially Expressed Transcripts by qRT-PCR
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Remaudière, G.; Remaudière, M. Catalogue des Aphididae du Monde; INRA: Paris, France, 1997. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; Wiley: Chichester, UK, 2000; ISBN 978-0-471-85191-2. [Google Scholar]
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, S. Aphids as transport devices for plant viruses. Comptes Rendus Biol. 2010, 333, 524–538. [Google Scholar] [CrossRef]
- Bera, S.; Blundell, R.; Liang, D.; Crowder, D.W.; Casteel, C.L. The oxylipin signaling pathway is required for increased aphid attraction and retention on virus-infected plants. J. Chem. Ecol. 2020, 46, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Clark, R.E.; Bera, S.; Casteel, C.L.; Crowder, D.W. Responses of pea plants to multiple antagonists are mediated by order of attack and phytohormone crosstalk. Mol. Ecol. 2021, 30, 4939–4948. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yu, E.; Nihranz, C.T.; Prakash, V.; Varsani, S.; Casteel, C.L. Engineering aphid transmission of foxtail mosaic virus in the presence of potyvirus helper component proteinase through coat protein modifications. J. Gen. Virol. 2023, 104, 001844. [Google Scholar] [CrossRef] [PubMed]
- Grover, A.; Pental, D. Breeding objectives and requirements for producing transgenics for major field crops of India. Curr. Sci. 2003, 84, 3. [Google Scholar]
- Singh, S.P.; Singh, H.; Hegde, D.M.; Tahir, T.A. Past progress, present scenario, nutritional value and strategies to enhance yield potential of rapeseed-mustard: An overview. Indian J. Crop Sci. 2007, 2, 245–257. [Google Scholar]
- Bhakhetia, D.R.C. Chemical control of Lipaphis erysimi (Kalt.) on rapeseed and mustard crops. Punjab J. Res. Punjab Agric. Univ. 1984, 21, 63–75. [Google Scholar]
- Verma, S.N.; Singh, O.P. Estimation of avoidable losses to mustard by aphid, Lipaphis erysimi in Madhya Pradesh. Indian J. Plant Prot. 1987, 15, 87–89. [Google Scholar]
- Banerjee, S.; Hess, D.; Majumdar, P.; Roy, D.; Das, S. The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J. Biol. Chem. 2004, 279, 23782–23789. [Google Scholar] [CrossRef]
- Hardie, J. Spectral specificity for targeted flight in the black bean aphid, Aphis fabae. J. Insect Physiol. 1989, 35, 619–626. [Google Scholar] [CrossRef]
- Nottingham, S.F.; Hardie, J. Flight behaviour of the black bean aphid, Aphis fabae, and the cabbage aphid, Brevicoryne brassicae, in host and non-host plant odour. Physiol. Entomol. 1993, 18, 389–394. [Google Scholar] [CrossRef]
- Park, K.C.; Hardie, J. Electrophysiological characterisation of olfactory sensilla in the black bean aphid, Aphis fabae. J. Insect Physiol. 2004, 50, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Tjallingii, W.F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 2006, 57, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Jenks, M.A.; Eigenbrode, S.D.; Lemieux, B. Cuticular Waxes of Arabidopsis. Arab. Book 2002, 1, e0016. [Google Scholar] [CrossRef]
- Wagner, G.J.; Wang, E.; Shepherd, W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 2004, 93, 3–11. [Google Scholar] [CrossRef]
- Kuśnierczyk, A.; Winge, P.; Jørstad, T.S.; Troczyńska, J.; Rossiter, J.T.; Bones, A.M. Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 2008, 31, 1097–1115. [Google Scholar] [CrossRef]
- Bones, A.M.; Rossiter, J.T. Glucosinolates in cruciferous crops. In New Horizons in Oilseed Rape; Scarisbrick, D.H., Ferguson, A.J., Eds.; Semundo: Cambridge, UK, 1995; pp. 46–67. [Google Scholar]
- Harrison, R.L.; Bonning, B.C. Proteases as Insecticidal Agents. Toxins 2010, 2, 935–953. [Google Scholar] [CrossRef]
- Wieczorek, M.; Otlewski, J.; Cook, J.; Parks, K.; Leluk, J. The squash family of serine proteinase inhibitors. Amino acid sequences and association equilibrium constants of inhibitors from squash, summer squash, zucchini, and cucumber seeds. Biochem. Biophys. Res. Commun. 1985, 126, 646–652. [Google Scholar] [CrossRef]
- Gaupels, F.; Knauer, T.; van Bel, A.J.E. A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA facilitated exudation and aphid stylectomy. J. Plant Physiol. 2008, 165, 95–103. [Google Scholar] [CrossRef]
- Hao, P.; Liu, C.; Wang, Y.; Chen, R.; Tang, M.; Du, B.; Zhu, L.; He, G. Herbivore-induced callose deposition on the sieve plates of rice: An important mechanism for host resistance. Plant Physiol. 2008, 146, 1810–1820. [Google Scholar] [CrossRef]
- da Silva, S.E.B.; Franca, J.F.; Pareja, M. Olfactory response of four aphidophagous insects to aphid- and caterpillar-induced plant volatiles. Arthropod-Plant Interact. 2016, 10, 331–340. [Google Scholar] [CrossRef]
- Tjallingii, W.F.; Esch, T.H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 1993, 18, 313–328. [Google Scholar] [CrossRef]
- Navazio, L.; Moscatiello, R.; Bellincampi, D.; Baldan, B.; Meggio, F.; Brini, M.; Bowler, C.; Mariani, P. The role of calcium in oligogalacturonide-activated signalling in soybean cells. Planta 2002, 215, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Will, T.; Tjallingii, W.F.; Thonnessen, A.; van Bel, A.J.E. Molecular sabotage of plant defence by aphid saliva. Proc. Natl. Acad. Sci. USA 2007, 104, 10536–10541. [Google Scholar] [CrossRef]
- Carolan, J.C.; Caragea, D.; Reardon, K.T.; Mutti, N.S.; Dittmer, N.; Pappan, K.; Cui, F.; Castaneto, M.; Poulain, J.; Dossat, C.; et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. J. Proteome Res. 2011, 10, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Wang, Y.; Cheng, Y.; Zhang, M.; Zhang, H.-B.; Zhu, L.; Fang, J.; Zhu-Salzman, K. Transcriptome analysis of green peach aphid (Myzus persicae): Insight into developmental regulation and inter-species divergence. Front. Plant Sci. 2016, 7, 1562. [Google Scholar] [CrossRef] [PubMed]
- Brisson, J.A.; Ishikawa, A.; Miura, T. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Mol. Biol. 2010, 19, 63–73. [Google Scholar] [CrossRef]
- Liu, S.; Chougule, N.P.; Vijayendran, D.; Bonning, B.C. Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts. PLoS ONE 2012, 7, e45161. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Jones, H.D.; Bruce, T.; Xia, L. Comparative transcriptomic analyses revealed divergences of two agriculturally important aphid species. BMC Genom. 2014, 15, 1023. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, S.; Luo, J.-Y.; Wang, C.-Y.; Lv, L.-M.; Dong, S.-L.; Cui, J.-J. Ecological adaptation analysis of the cotton aphid (Aphis gossypii) in different phenotypes by transcriptome comparison. PLoS ONE 2013, 8, e83180. [Google Scholar] [CrossRef]
- Coppola, V.; Coppola, M.; Rocco, M.; Digilio, M.C.; D’Ambrosio, C.; Renzone, G.; Martinelli, R.; Scaloni, A.; Pennacchio, F.; Rao, R.; et al. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genom. 2013, 14, 515. [Google Scholar] [CrossRef]
- Dubey, N.K.; Goel, R.; Ranjan, A.; Idris, A.; Singh, S.K.; Bag, S.K.; Chandrashekar, K.; Pandey, K.D.; Singh, P.K.; Sawant, S.V. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: Aphid and whitefly. BMC Genom. 2013, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Jaouannet, M.; Morris, J.A.; Hedley, P.E.; Bos, J.I.B. Characterization of Arabidopsis transcriptional responses to different aphid species reveals genes that contribute to host susceptibility and non-host resistance. PLoS Pathog. 2015, 11, e1004918. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-Seq: Reference generation and analysis with Trinity. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.R.; Hu, J. SeqNLS: Nuclear localization signal prediction based on frequent pattern mining and linear motif scoring. PLoS ONE 2013, 8, e76864. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Continuous recording of stylet penetration activities by aphids. In Aphid-Plant Genotype Interactions; Campbell, R.K., Eikenbary, R.D., Eds.; Elsevier Science Publishers BV: Amsterdam, The Netherlands, 1990; pp. 89–99. [Google Scholar]
- Van Emden, H.F. Failure of the aphid, Myzus persicae, to compensate for poor diet during early growth. Physiol. Entomol. 1977, 2, 53–58. [Google Scholar] [CrossRef]
- The International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 2010, 8, e1000313. [Google Scholar] [CrossRef]
- Nicholson, S.J.; Nickerson, M.L.; Dean, M.; Song, Y.; Hoyt, P.R.; Rhee, H.; Kim, C.; Puterka, G.J. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genom. 2015, 16, 429. [Google Scholar] [CrossRef]
- Braendle, C.; Miura, T.; Bickel, R.; Shingleton, A.W.; Kambhampati, S.; Stern, D.L. Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol. 2003, 1, e21. [Google Scholar] [CrossRef]
- Smith, T.E.; Moran, N.A. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc. Natl. Acad. Sci. USA 2020, 117, 2113–2121. [Google Scholar] [CrossRef]
- Nikoh, N.; Nakabachi, A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 2009, 7, 1–13. [Google Scholar] [CrossRef]
- Will, T.; Schmidtberg, H.; Skaljac, M.; Vilcinskas, A. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity and fecundity of the pea aphid Acyrthosiphon pisum. Dev. Genes Evol. 2017, 227, 1–9. [Google Scholar] [CrossRef]
- Dunbar, H.E.; Wilson, A.C.C.; Ferguson, N.R.; Moran, N.A. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 2007, 5, e96. [Google Scholar] [CrossRef]
- Cai, Q.-N.; Han, Y.; Cao, Y.-Z.; Hu, Y.; Zhao, X.; Bi, J.-L. Detoxification of gramine by the cereal aphid Sitobion avenae. J. Chem. Ecol. 2009, 35, 320–325. [Google Scholar] [CrossRef]
- Lei, J.; Zhu-Salzman, K. Enhanced aphid detoxification when confronted by a host with elevated ROS production. Plant Signal. Behav. 2015, 10, e1010936. [Google Scholar]
- Martins, D.; Kathiresan, M.; English, A.M. Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defence. Free Radic. Biol. Med. 2013, 65, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Zhao, Z. Influence of catalase gene silencing on the survivability of Sitobion avenae. Arch. Insect Biochem. Physiol. 2014, 86, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.B.; Williams, I.S.; Hardie, J. The role of nutrition, crowding and interspecifc interactions in the development of winged aphids. Ecol. Entomol. 2001, 26, 330–340. [Google Scholar] [CrossRef]
- Weisser, W.W.; Braendle, C. Body colour and genetic variation in winged morph production in the pea aphid. Entomol. Exp. Appl. 2001, 99, 217–223. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef]
- Prasain, K.; Nguyen, T.D.H.; Gorman, M.J.; Barrigan, L.M.; Peng, Z.; Kanost, M.R.; Syed, L.U.; Li, J.; Zhu, K.Y.; Hua, D.H. Redox potentials, laccase oxidation, and antilarval activities of substituted phenols. Bioorg. Med. Chem. 2012, 20, 1679–1689. [Google Scholar] [CrossRef]
- Bansal, R.; Mian, M.A.R.; Mittapalli, O.; Michel, A.P. RNA-Seq reveals a xenobiotic stress response in the soybean aphid, Aphis glycines, when fed aphid-resistant soybean. BMC Genom. 2014, 15, 972. [Google Scholar] [CrossRef]
- Douglas, A.E.; van Emden, H.F. Nutrition and symbiosis. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: London, UK, 2007; pp. 115–134. [Google Scholar] [CrossRef]
- Nakabachi, A.; Shigenobu, S.; Miyagishima, S. Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Mol. Biol. 2010, 19 (Suppl. 2), 175–185. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.A.K.; Carolan, J.C.; Wilkinson, T.L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS ONE 2013, 8, e57413. [Google Scholar] [CrossRef] [PubMed]
- Elzinga, D.A.; De Vos, M.; Jander, G. Suppression of plant defences by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant Microbe Interact. 2014, 27, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Parizad, S.; Bera, S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. Environ. Sci. Pollut. Res. 2023, 30, 71665–71676. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Lu, W.; Yin, X.; An, S. Application progress of plant-mediated RNAi in pest control. Front. Bioeng. Biotechnol. 2022, 10, 963026. [Google Scholar] [CrossRef]
- Luo, X.; Nanda, S.; Zhang, Y.; Zhou, X.; Yang, C.; Pan, H. Risk assessment of RNAi-based biopesticides. New Crops 2024, 18, 100019. [Google Scholar] [CrossRef]
Parameter | Adult Feeding (AF) | Adult Non-Feeding (ANF) | Nymph (NF) |
---|---|---|---|
Total Raw Reads | 178,820,582 | 167,784,082 | 276,267,716 |
HQ Filtered Reads | 165,696,944 | 155,298,042 | 215,410,036 |
Number of transcripts | 51,491 | 51,715 | 49,868 |
Percent reads mapped to the transcriptome (%) | 88.70 | 88.80 | 88.20 |
Parameter | Primary Assembly Values | Final Assembly Values |
---|---|---|
Number of Final Transcripts | 110,556 | 52,652 |
Final Transcriptome Length | 89,232,845 (~89 Mbp) | 56,027,788 (~56 Mbp) |
Minimum Transcript Length | 224 | 224 |
Maximum Transcript Length | 26,824 | 26,824 |
Average Transcript Length | 807.13 | 1064.12 |
N50 | 1475 | 1806 |
(G + C)% | 34.75 | 34.52 |
Assembly Values | |
---|---|
Complete BUSCOs | 96.8% |
Complete and single-copy BUSCOs | 64.7% |
Complete and duplicated BUSCOs | 32.1% |
Fragmented BUSCOs | 1.0% |
Missing BUSCOs | 2.2% |
KEGG ID | Pathway | No. of Transcripts |
---|---|---|
ko01100 | Metabolic pathways | 1123 |
ko03010 | Ribosome | 257 |
ko03013 | RNA transport | 190 |
ko03040 | Spliceosome | 138 |
ko04141 | Protein processing in the endoplasmic reticulum | 136 |
Number of ‘Upregulated’ Putative Effector Transcripts | Number of ‘Specific’ Putative Effector Transcripts | |
---|---|---|
In feeding adults (with respect to non-feeding adults) | 4 | 1 |
In feeding adults (with respect to nymphs) | 8 | 23 |
In nymphs (with respect to feeding adults) | 8 | 0 |
Transcript Id | Gene Ontology (Biological Process) | Expression Regulation |
---|---|---|
TR52991|c0_g1_i1 | [GO:0005975] carbohydrate metabolic process | Not regulated with significant differences |
TR59106|c0_g1_i1 | [GO:0042744] hydrogen peroxide catabolic process [GO:0006979] response to oxidative stress | Not regulated with significant differences |
TR35912|c0_g1_i1 | [GO:0006979] response to oxidative stress | Adult specific (Nymph vs. Adult) |
TR35912|c0_g2_i1 | [GO:0006979] response to oxidative stress | Adult specific (Nymph vs. Adult) |
TR35286|c0_g1_i1 | [GO:0006979] response to oxidative stress | Upregulated (feeding adult vs. non-feeding adult) |
TR35286|c0_g1_i2 | [GO:0006979] response to oxidative stress | Not regulated with significant differences |
TR35875|c0_g1_i1 | [GO:0007475] apposition of dorsal and ventral imaginal disc-derived wing surfaces. [GO:0040005] chitin-based cuticle attachment to epithelium. [GO:0008362] chitin-based embryonic cuticle biosynthetic process. [GO:0002064] epithelial cell development. [GO:0046331] lateral inhibition [GO:0007424] open tracheal system development | Upregulated (Nymph vs. Adult) |
TR35875|c0_g1_i5 | [GO:0007475] apposition of dorsal and ventral imaginal disc-derived wing surfaces [GO:0040005] chitin-based cuticle attachment to epithelium [GO:0008362] chitin-based embryonic cuticle biosynthetic process [GO:0002064] epithelial cell development; [GO:0046331] lateral inhibition [GO:0007424] open tracheal system development | Upregulated (Nymph vs. Adult) |
TR35875|c0_g1_i8 | [GO:0007475] apposition of dorsal and ventral imaginal disc-derived wing surfaces [GO:0040005] chitin-based cuticle attachment to epithelium; [GO:0008362] chitin-based embryonic cuticle biosynthetic process [GO:0002064] epithelial cell development [GO:0046331] lateral inhibition [GO:0007424] open tracheal system development | Upregulated (Nymph vs. Adult) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chongtham, R.; Sharma, M.; Shukla, R.N.; Joshi, G.; Kumar, A.; Goel, S.; Agarwal, M.; Jagannath, A. De Novo Transcriptome Profiling of Mustard Aphid (Lipaphis erysimi) and Differential Expression of Transcripts Associated with Feeding and Non-Feeding Conditions and Developmental Stages. Insects 2024, 15, 682. https://doi.org/10.3390/insects15090682
Chongtham R, Sharma M, Shukla RN, Joshi G, Kumar A, Goel S, Agarwal M, Jagannath A. De Novo Transcriptome Profiling of Mustard Aphid (Lipaphis erysimi) and Differential Expression of Transcripts Associated with Feeding and Non-Feeding Conditions and Developmental Stages. Insects. 2024; 15(9):682. https://doi.org/10.3390/insects15090682
Chicago/Turabian StyleChongtham, Rubina, Manvi Sharma, Rohit Nandan Shukla, Gopal Joshi, Amar Kumar, Shailendra Goel, Manu Agarwal, and Arun Jagannath. 2024. "De Novo Transcriptome Profiling of Mustard Aphid (Lipaphis erysimi) and Differential Expression of Transcripts Associated with Feeding and Non-Feeding Conditions and Developmental Stages" Insects 15, no. 9: 682. https://doi.org/10.3390/insects15090682
APA StyleChongtham, R., Sharma, M., Shukla, R. N., Joshi, G., Kumar, A., Goel, S., Agarwal, M., & Jagannath, A. (2024). De Novo Transcriptome Profiling of Mustard Aphid (Lipaphis erysimi) and Differential Expression of Transcripts Associated with Feeding and Non-Feeding Conditions and Developmental Stages. Insects, 15(9), 682. https://doi.org/10.3390/insects15090682