Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Insecticides
2.3. Mortality Bioassays
2.4. Sublethal Effects on Demographic Features
2.5. P450 and GST Activity
2.6. Statistical Analysis
3. Results
3.1. Toxicity of Chlorantraniliprole on Ae. aegypti Larvae
3.2. Sublethal Effects of Chlorantraniliprole on the Parental (F0) Generation
3.3. Transgenerational Effects of Chlorantraniliprole on Different Biological Parameters
3.4. Population Parameters
3.5. Age-Stage Specific Maternity (lxmx)
3.6. Effect of Chlorantraniliprole Exposure on Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Statement
References
- Wang, G.-H.; Gamez, S.; Raban, R.R.; Marshall, J.M.; Alphey, L.; Li, M.; Rasgon, J.L.; Akbari, O.S. Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. 2021, 12, 4388. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, B.; Pampaka, D.; Suárez-Sánchez, P.; Figuerola, J.; Sierra, M.J.; León-Gomez, I.; Del Aguila, J.; Gómez-Barroso, D. Spatial analysis for risk assessment of dengue in Spain. Enferm. Infecc. Microbiol. Clin. 2024, 42, 406–413. [Google Scholar] [CrossRef]
- Radke, E.G.; Gregory, C.J.; Kintziger, K.W.; Sauber-Schatz, E.K.; Hunsperger, E.A.; Gallagher, G.R.; Barber, J.M.; Biggerstaff, B.J.; Stanek, D.R.; Tomashek, K.M. Dengue outbreak in key west, Florida, USA, 2009. Emerg. Infect. Dis. 2012, 18, 135. [Google Scholar] [CrossRef] [PubMed]
- Furuya, H. Estimation of reproduction number and probable vector density of the first autochthonous dengue outbreak in Japan in the last 70 years. Environ. Health Prev. Med. 2015, 20, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F.; Lynch, P.A.; Thomas, M.B. How to make evolution-proof insecticides for malaria control. PLoS Biol. 2009, 7, e1000058. [Google Scholar] [CrossRef]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef]
- Rahman, R.U.; Souza, B.; Uddin, I.; Carrara, L.; Brito, L.P.; Costa, M.M.; Mahmood, M.A.; Khan, S.; Lima, J.B.P.; Martins, A.J. Insecticide resistance and underlying targets-site and metabolic mechanisms in Aedes aegypti and Aedes albopictus from Lahore, Pakistan. Sci. Rep. 2021, 11, 4555. [Google Scholar] [CrossRef]
- Cordova, D.; Benner, E.; Sacher, M.; Rauh, J.; Sopa, J.; Lahm, G.; Selby, T.; Stevenson, T.; Flexner, L.; Gutteridge, S. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Han, Z.; Zhu, Y.; Xie, Z.; Wang, J.; Liu, Y.; Li, X. Molecular characterization of a ryanodine receptor gene in the rice leaffolder, Cnaphalocrocis medinalis (Guenée). PLoS ONE 2012, 7, e36623. [Google Scholar] [CrossRef]
- Lahm, G.P.; Selby, T.P.; Freudenberger, J.H.; Stevenson, T.M.; Myers, B.J.; Seburyamo, G.; Smith, B.K.; Flexner, L.; Clark, C.E.; Cordova, D. Insecticidal anthranilic diamides: A new class of potent ryanodine receptor activators. Bioorg. Med. Chem. Lett. 2005, 15, 4898–4906. [Google Scholar] [CrossRef]
- Lanka, S.; Ottea, J.; Beuzelin, J.; Stout, M. Effects of chlorantraniliprole and thiamethoxam rice seed treatments on egg numbers and first instar survival of Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). J. Econ. Entomol. 2013, 106, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Adamczyk, J.; Rinderer, T.; Yao, J.; Danka, R.; Luttrell, R.; Gore, J. Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 2015, 108, 2640–2647. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.L.; Redmond, C.T.; Potter, D.A. Impacts of a neonicotinoid, neonicotinoid–pyrethroid premix, and anthranilic diamide insecticide on four species of turf-inhabiting beneficial insects. Ecotoxicology 2014, 23, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Whalen, R.; Herbert, D.; Malone, S.; Kuhar, T.; Brewster, C.; Reisig, D. Effects of diamide insecticides on predators in soybean. J. Econ. Entomol. 2016, 109, 2014–2019. [Google Scholar] [CrossRef]
- Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Dubas, C.M.; Smith, B.K.; Cordova, D.; Flexner, L.; Clark, C.E.; Bellin, C.A. RynaxypyrTM: A new anthranilic diamide insecticide acting at the ryanodine receptor. In Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety; Wiley: New York, NY, USA, 2007; pp. 111–120. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Liang, G.; Lu, Y. Chlorantraniliprole as a candidate pesticide used in combination with the attracticides for lepidopteran moths. PLoS ONE 2017, 12, e0180255. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Lee, C.-Y. Sublethal effects of insecticides on longevity, fecundity and behaviour of insect pests: A review. J. Biosci. 2000, 11, 107–112. Available online: https://www.ucrleelab.com/uploads/2/4/3/5/24359966/034.pdf (accessed on 5 August 2024).
- Gong, Y.; Xu, B.; Zhang, Y.; Gao, X.; Wu, Q. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: A hormetic-dose response. Ecotoxicology 2015, 24, 1141–1151. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Zheng, X.-S.; Gao, X.-W. Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Bull. Entom. Res. 2016, 106, 551–559. [Google Scholar] [CrossRef]
- Ayyanath, M.-M.; Cutler, G.C.; Scott-Dupree, C.D.; Sibley, P.K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 2013, 8, e74532. [Google Scholar] [CrossRef]
- Calabrese, E.J. Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ. Pollut. 2005, 138, 378–411. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Baldwin, L.A. Toxicology rethinks its central belief. Nature 2003, 421, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Cutler, G.C. Insects, insecticides and hormesis: Evidence and considerations for study. Dose Response 2013, 11, 154–177. [Google Scholar] [CrossRef] [PubMed]
- Andreazza, F.; Oliveira, E.E.; Martins, G.F. Implications of sublethal insecticide exposure and the development of resistance on mosquito physiology, behavior, and pathogen transmission. Insects 2021, 12, 917. [Google Scholar] [CrossRef]
- Hariprasad, T.; Shetty, N. Sublethal and transgenerational effects of alphamethrin on life history traits of Anopheles stephensi (Diptera: Culicidae), a malaria mosquito. Can. Entomol. 2017, 149, 251–264. [Google Scholar] [CrossRef]
- Shafi, M.S.; Iqbal, N.; Naqqash, M.N.; Saeed, S.; Usman, M.; Abid, A.D.; Shahzad, M.S.; Riaz, H.; Bashir, M.A.; Alajmi, R.A. Transgenerational effect of Afidopyropen on Bemisia tabaci Gennadius (Homoptera: Aleyrodidae). Sci. Rep. 2023, 13, 19988. [Google Scholar] [CrossRef]
- Maimusa, H.A.; Ahmad, A.H.; Kassim, N.F.A.; Rahim, J. Age-stage, two-sex life table characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia. J. Am. Mosq. Control Assoc. 2016, 32, 1–11. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Kristensen, M.; Jespersen, J.B.; Knorr, M. Cross-resistance potential of fipronil in Musca domestica. Pest Manag. Sci. 2004, 60, 894–900. [Google Scholar] [CrossRef]
- LeOra Software. Polo-Plus, POLO for Windows, Version 107 B St, 94952; LeOra Software: Petaluma, CA, USA, 2007. [Google Scholar]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. Available online: http://140.120.197.173/ecology/Papers/04-1985-Chi-Liu-2011%20ver.pdf (accessed on 5 August 2024).
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lee, C.C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis; National Chung Hsing University in Taiwan: Taichung City, Taiwan, 2023. [Google Scholar]
- Sudhakar, N.; Thajuddin, N.; Murugesan, K. Plant growth-promoting rhizobacterial mediated protection of tomato in the field against cucumber mosaic virus and its vector Aphis gossypii. Biocontrol Sci. 2011, 21, 367–386. [Google Scholar] [CrossRef]
- Lutz, A.L.; Bertolaccini, I.; Scotta, R.R.; Curis, M.C.; Favaro, M.A.; Fernandez, L.N.; Sánchez, D.E. Lethal and sublethal effects of chlorantraniliprole on Spodoptera cosmioides (Lepidoptera: Noctuidae). Pest Manag. Sci. 2018, 74, 2817–2821. [Google Scholar] [CrossRef]
- Naqqash, M.N.; Gökçe, A.; Bakhsh, A.; Salim, M. Demographic features and population projection of resistant and susceptible populations of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Phytoparasitica 2023, 51, 559–568. [Google Scholar] [CrossRef]
- Nawaz, M.; Cai, W.; Jing, Z.; Zhou, X.; Mabubu, J.I.; Hua, H. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 2017, 178, 496–503. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, C.; Wu, L.; Chen, W. Transgenerational sublethal effects of chlorantraniliprole and emamectin benzoate on the development and reproduction of Spodoptera frugiperda. Insects 2023, 14, 537. [Google Scholar] [CrossRef]
- Sial, A.A.; Brunner, J.F. Toxicity and residual efficacy of chlorantraniliprole, spinetoram, and emamectin benzoate to obliquebanded leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 2010, 103, 1277–1285. [Google Scholar] [CrossRef]
- Jager, T.; Barsi, A.; Ducrot, V. Hormesis on life-history traits: Is there such thing as a free lunch? Ecotoxicology 2013, 22, 263–270. [Google Scholar] [CrossRef]
- Han, W.; Zhang, S.; Shen, F.; Liu, M.; Ren, C.; Gao, X. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag. Sci. 2012, 68, 1184–1190. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Shen, A.; Wu, Y. Baseline susceptibility of the diamondback moth (Lepidoptera: Plutellidae) to chlorantraniliprole in China. J. Econ. Entomol. 2010, 103, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, K.; Li, F.; Liang, P.; Liu, Y.; Guo, T.; Song, D.; Desneux, N.; Gao, X. Sublethal and transgenerational effects of sulfoxaflor on the biological traits of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology 2016, 25, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Jones, C.; Devine, G.; Zhang, F.; Denholm, I.; Gorman, K. Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot. 2010, 29, 429–434. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Rane, R.V.; Ghodke, A.B.; Hoffmann, A.A.; Edwards, O.R.; Walsh, T.K.; Oakeshott, J.G. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 2019, 31, 131–138. [Google Scholar] [CrossRef]
- Gui, Z.; Hou, C.; Liu, T.; Qin, G.; Li, M.; Jin, B. Effects of insect viruses and pesticides on glutathione S-transferase activity and gene expression in Bombyx mori. J. Econ. Entomol. 2009, 102, 1591–1598. [Google Scholar] [CrossRef]
- Alias, Z. The role of glutathione transferases in the development of insecticide resistance. Insectic. Resist. 2016, 315, 61972. [Google Scholar]
- Aioub, A.A.; Hashem, A.S.; El-Sappah, A.H.; El-Harairy, A.; Abdel-Hady, A.A.; Al-Shuraym, L.A.; Sayed, S.; Huang, Q.; Abdel-Wahab, S.I. Identification and characterization of glutathione S-transferase genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under insecticides stress. Toxics 2023, 11, 542. [Google Scholar] [CrossRef]
- Cao, G.; Jia, M.; Zhao, X.; Wang, L.; Tu, X.; Wang, G.; Nong, X.; Zhang, Z. Effects of chlorantraniliprole on detoxification enzymes activities in Locusta migratoria L. J. Asia Pac. Entomol. 2017, 20, 741–746. [Google Scholar] [CrossRef]
- Haas, J.; Glaubitz, J.; Koenig, U.; Nauen, R. A mechanism-based approach unveils metabolic routes potentially mediating chlorantraniliprole synergism in honey bees, Apis mellifera L., by azole fungicides. Pest Manag. Sci. 2022, 78, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Q.; Qu, C.; Wang, Q.; Wang, J.; Luo, C. Toxicity, baseline of susceptibility, detoxifying mechanism and sublethal effects of chlorogenic acid, a potential botanical insecticide, on Bemisia tabaci. Front. Plant Sci. 2023, 14, 1150853. [Google Scholar] [CrossRef] [PubMed]
- Voudouris, C.C.; Kati, A.N.; Sadikoglou, E.; Williamson, M.; Skouras, P.J.; Dimotsiou, O.; Georgiou, S.; Fenton, B.; Skavdis, G.; Margaritopoulos, J.T. Insecticide resistance status of Myzus persicae in Greece: Long-term surveys and new diagnostics for resistance mechanisms. Pest Manag. Sci. 2016, 72, 671–683. [Google Scholar] [CrossRef] [PubMed]
Insecticide | N | LC10 (95% FL) (mg L−1) | LC30 (95% FL) (mg L−1) | LC50 (95% FL) (mg L−1) | X2 | Df | Slope ± SE | p-Value |
---|---|---|---|---|---|---|---|---|
Chlorantraniliprole | 360 | 0.202 (0.145–0.257) | 0.373 (0.300–0.443) | 0.569 (0.483–0.663) | 3.58 | 16 | 2.85 ± 0.29 | 0.22 |
Parameters | Progeny | Treatments | |||
---|---|---|---|---|---|
Control | LC10 | LC30 | LC50 | ||
Egg (days) | F1 | 2.32 ± 0.25 aA | 2.39 ± 0.28 aA | 2.46 ± 0.33 aA | 2.64 ± 0.38 aA |
F2 | 2.19 ± 0.25 aA | 2.21 ± 0.30 aA | 2.40 ± 0.32 aA | 2.52 ± 0.35 aA | |
Larva (days) | F1 | 6.61 ± 0.07 aA | 6.33 ± 0.08 bA | 6.38 ± 0.07 bA | 6.25 ± 0.09 bA |
F2 | 6.55 ± 0.07 aA | 6.14 ± 0.08 bB | 6.42 ± 0.07 aA | 6.21 ± 0.05 bA | |
Pupa (days) | F1 | 2.71 ± 0.06 aA | 2.42 ± 0.07 aB | 2.53 ± 0.06 aA | 2.44 ± 0.08 aA |
F2 | 2.48 ± 0.08 aA | 2.68 ± 0.07 aA | 2.43 ± 0.06 aA | 2.36 ± 0.07 aA | |
Male longevity (days) | F1 | 40.95 ± 1.10 aA | 37.25 ± 1.08 bA | 32.83 ± 1.08 bA | 32.58 ± 1.06 cA |
F2 | 40.20 ± 1.15 aA | 37.45 ± 1.13 aA | 34.38 ± 1.01 bA | 33.88 ± 1.17 bA | |
Female longevity (days) | F1 | 40.33 ± 0.82 aA | 36.18 ± 1.30 bA | 34.80 ± 0.87 bA | 33.73 ± 0.98 bA |
F2 | 39.82 ± 0.89 aA | 36.09 ± 1.33 bA | 35.81 ± 0.81 bA | 34.20 ± 1.36 bA | |
Oviposition days | F1 | 2.69 ± 0.11 aA | 2.58 ± 0.13 aA | 2.25 ± 0.16 bA | 1.84 ± 0.14 cA |
F2 | 2.65 ± 0.11 aA | 2.56 ± 0.13 bA | 2.23 ± 0.15 bA | 1.90 ± 0.13 cA | |
APOP (days) | F1 | 2.73 ± 0.09 aA | 2.85 ± 0.11 aA | 2.70 ± 0.08 aA | 2.61 ± 0.06 aA |
F2 | 2.71 ± 0.06 aA | 2.81 ± 0.11 aA | 2.59 ± 0.08 aA | 2.57 ± 0.13 aA | |
TPOP (days) | F1 | 12.66 ± 0.07 aA | 13.78 ± 0.09 aA | 13.30 ± 0.13 aA | 13.90 ± 0.05 aA |
F2 | 12.90 ± 0.07 aA | 13.27 ± 0.08 aA | 13.01 ± 0.05 aB | 12.95 ± 0.07 aB | |
Fecundity (eggs/ female) | F1 | 61.08 ± 3.98 aA | 48.81 ± 3.74 bA | 44.04 ± 3.80 bA | 34.78 ± 3.24 cA |
F2 | 59.34 ± 4.02 aA | 52.81 ± 3.96 aA | 47.18 ± 4.02 bA | 38.55 ± 3.32 bA |
Parameters | Progeny | Treatments | |||
---|---|---|---|---|---|
Control | LC10 | LC30 | LC50 | ||
r | F1 | 0.20 ± 0.01 aA | 0.18 ± 0.02 aA | 0.18 ± 0.02 aA | 0.17 ± 0.01 aA |
F2 | 0.20 ± 0.01 aA | 0.20 ± 0.01 aA | 0.19 ± 0.01 aA | 0.18 ± 0.02 aA | |
λ | F1 | 1.22 ± 0.02 aA | 1.20 ± 0.01 aA | 1.20 ± 0.01 aA | 1.19 ± 0.02 aA |
F2 | 1.22 ± 0.01 aA | 1.22 ± 0.01 aA | 1.21 ± 0.01 aA | 1.20 ± 0.02 aA | |
R0 | F1 | 29.32 ± 4.69 aA | 21.48 ± 3.79 bA | 18.50 ± 3.46 bA | 13.22 ± 2.67 cA |
F2 | 27.30 ± 4.57 aA | 23.24 ± 4.09 bA | 20.76 ± 3.73 bA | 15.42 ± 2.97 cA | |
T | F1 | 16.58 ± 0.27 aA | 16.63 ± 0.21 aA | 15.73 ± 0.29 bA | 14.70 ± 0.33 cA |
F2 | 16.47 ± 0.24 aA | 16.05 ± 0.27 aB | 15.34 ± 0.28 bA | 14.98 ± 0.33 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, N.; Abubakar, M.; Noureldeen, A.; Naqqash, M.N.; Alghamdi, A.; Al Dhafar, Z.M.; Baakdah, F.; Mozūratis, R. Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae). Insects 2024, 15, 851. https://doi.org/10.3390/insects15110851
Batool N, Abubakar M, Noureldeen A, Naqqash MN, Alghamdi A, Al Dhafar ZM, Baakdah F, Mozūratis R. Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae). Insects. 2024; 15(11):851. https://doi.org/10.3390/insects15110851
Chicago/Turabian StyleBatool, Nimra, Muhammad Abubakar, Ahmed Noureldeen, Muhammad Nadir Naqqash, Akram Alghamdi, Zamzam M. Al Dhafar, Fadi Baakdah, and Raimondas Mozūratis. 2024. "Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae)" Insects 15, no. 11: 851. https://doi.org/10.3390/insects15110851
APA StyleBatool, N., Abubakar, M., Noureldeen, A., Naqqash, M. N., Alghamdi, A., Al Dhafar, Z. M., Baakdah, F., & Mozūratis, R. (2024). Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae). Insects, 15(11), 851. https://doi.org/10.3390/insects15110851