Bridging Knowledge and Data Gaps in Odonata Rarity: A South Korean Case Study Using Multispecies Occupancy Models and the Rabinowitz Framework
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Building Occupancy Models
2.4. The Rabinowitz Rarity Framework and Results Validation
3. Results
3.1. Occupancy Model Results
3.2. Rarity of Odonata Species and Results Validation
4. Discussion
4.1. Discussion on Occupancy Model Results
4.2. The Gap Between the Model Outputs and Existing Data
4.3. Gap Between Existing Knowledge and a Data-Based Rarity Assessment
4.4. Addressing Data Limitations and Improving Survey Strategies for a Reliable Rarity Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, J.C.; Bota-Sierra, C.A.; Guralnick, R.; Kalkman, V.; González-Soriano, E.; Novelo-Gutiérrez, R.; Bybee, S.; Ware, J.; Belitz, M.W. Diversity of Nearctic Dragonflies and Damselflies (Odonata). Diversity 2022, 14, 575. [Google Scholar] [CrossRef]
- Arnaud, S.; Kari, K.; Lenin, C.; André, M.; Olga, P.; Justin, P.; David, B.; Nedim, T.; Robby, S. Odonata Trophic Ecology: From Hunting Behavior to Cross-Ecosystem Impact. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research, 2nd ed.; Cordoba-Auilar, A., Beatty, C., Bried, J., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 219–232. [Google Scholar]
- Clarke, A.; Prince, P.A.; Clarke, R. The Energy Dontent of Dragonflies (Odonata) in Relation to Predation by Falcons. Bird Study 1996, 43, 300–304. [Google Scholar] [CrossRef]
- Miguel, T.B.; Oliveira-Junior, J.M.B.; Ligeiro, R.; Juen, L. Odonata (Insecta) as a Tool for the Biomonitoring of Environmental Quality. Ecol. Indic. 2017, 81, 555–566. [Google Scholar] [CrossRef]
- Hassall, C. Odonata as Candidate Macroecological Barometers for Global Climate Change. Freshw. Sci. 2015, 34, 1040–1049. [Google Scholar] [CrossRef]
- Souza, N.F.; Leal, J.S.; Tourinho, L.; Farjalla, V.F.; Rocha, D.S.B.; Vale, M.M. Bioindicator Aquatic Insects at Risk from Climate Change in a Biodiversity Hotspot. Sci. Total Environ. 2024, 948, 174824. [Google Scholar] [CrossRef]
- Gómez-Tolosa, M.; Rivera-Velázquez, G.; Rioja-Paradela, T.M.; Mendoza-Cuenca, L.F.; Tejeda-Cruz, C.; López, S. The Use of Odonata Species for Environmental Assessment: A Meta-Analysis for the Neotropical Region. Environ. Sci. Pollut. Res. 2021, 28, 1381–1396. [Google Scholar] [CrossRef]
- Datto-Liberato, F.H.; Felipe, H.; Lopez, V.M.; Quinaia, T.; Farias do Valle Junior, R.; Samways, M.J.; Juen, L.; Valera, C.; Guillermo-Ferreira, R. Total Environment Sentinels: Dragonflies as Ambivalent/Amphibiotic Bioindicators of Damage to Soil and Freshwater. Sci. Total Environ. 2024, 934, 173110. [Google Scholar] [CrossRef]
- Rocha-Ortega, M.; Rodríguez, P.; Bried, J.; Abbott, J.; Córdoba-Aguilar, A. Why Do Bugs Perish? Range Size and Local Vulnerability Traits as Surrogates of Odonata Extinction Risk. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192645. [Google Scholar] [CrossRef]
- Tang, D.H.Y.; Visconti, P. Biases of Odonata in Habitats Directive: Trends, Trend Drivers, and Conservation Status of Europen Threatened Odonata. Insect Conserv. Divers. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- White, E.L.; Hunt, P.D.; Schlesinger, M.D.; Corser, J.D.; De Maynadier, P.G. Prioritizing Odonata for Conservation Action in the Northeastern USA. Freshw. Sci. 2015, 34, 1079–1093. [Google Scholar] [CrossRef]
- Elo, M.; Penttinen, J.; Kotiaho, J.S. The Effect of Peatland Drainage and Restoration on Odonata Species Richness and Abundance. BMC Ecol. 2015, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Kass, J.M.; Ware, J. Dynamic Distribution Modelling of the Swamp Tigertail Dragonfly Synthemis eustalacta (Odonata: Anisoptera: Synthemistidae) over a 20-Year Bushfire Regime. Ecol. Entomol. 2023, 48, 209–225. [Google Scholar] [CrossRef]
- Kašák, J.; Holuša, O.; Mazalová, M. Artificial habitat—A Chance for Survival of a Rare Montane Dragonfly (Odonata): Case Study on an Alpine Emerald (Somatochlora alpestris). J. Insect Conserv. 2023, 27, 315–321. [Google Scholar] [CrossRef]
- Pires, M.; Martins, F.; del Palacio, A.; Muzón, J.; Vareira, L.; Juen, L.; Périco, E. Assessing the Spatial Knowledge Gaps of Odonata Diversity and Conservation in the South American Pampa. Aquat. Conserv. 2024, 34, e4161. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, X.; Zhang, Y.; Wang, Y.; Zhou, Z. Species Diversity, Hotspot Congruence, and Conservation of North American Damselflies (Odonata: Zygoptera). Front. Ecol. Evol. 2023, 10, 1087866. [Google Scholar] [CrossRef]
- Beaujour, P.M.; Loranger-Merciris, G.; Cézilly, F. Sites and Species Contribution to the β-Diversity of Odonata Assemblages in Haiti: Implications for Conservation. Glob. Ecol. Conserv. 2024, 50, e02816. [Google Scholar] [CrossRef]
- Kim, H.G.; Jang, R.H.; Kim, S.; Tho, J.H.; Jung, J.W.; Cheong, S.; Yoon, Y.J. Developing Habitat Suitability Index for Habitat Evaluation of Nannophya koreana Bae (Odonata: Libellulidae). J. Ecol. Environ. 2022, 46, 33. [Google Scholar] [CrossRef]
- Hong, J.; Kwon, S.J.; Lee, C.S.; Choi, J.Y.; Cho, K.; Kim, H.G. Potential Distribution of the Critically Endangered Dragonfly Libellula angelina (Odonata: Libellulidae) under Shared Socio-Economic Pathways. Entomol. Res. 2023, 53, 367–379. [Google Scholar] [CrossRef]
- Shin, S.; Jung, K.S.; Kang, H.G.; Dang, J.H.; Kang, D.; Han, J.E.; Kim, J.H. Northward Expansion Trends and Future Potential Distribution of a Dragonfly Ischnura senegalensis Rambur under Climate Change Using Citizen Science Data in South Korea. J. Ecol. Environ. 2021, 45, 33. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, S.K.; Kim, J.C.; Kwon, S.J. Habitat Preferences and Trophic Position of Brachydiplax chalybea flavovittata Ris, 1911 (Insecta: Odonata) Larvae in Youngsan River Wetlands of South Korea. Insects 2020, 11, 273. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, E.; Choi, E.Y.; Choi, J.B.; Park, J.K. Insect Diversity in Gonggeom-Ji, the First Protected Paddy Field Wetland in Korea. Entomol. Res. 2020, 50, 221–228. [Google Scholar] [CrossRef]
- Lee, S.D.; Bae, S.H.; Lee, G.G. Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland. Korean J. Environ. Ecol. 2020, 34, 515–529. (In Korean) [Google Scholar] [CrossRef]
- Shin, I.C.; Kim, M.H.; Eo, J. Analysis of Community Stability and Characteristics of Macroinvertebrates in Paddy Fields by Cultivation Method. Ecol. Resil. Infrastruct. 2022, 9, 15–23. (In Korean) [Google Scholar]
- National Institute of Biological Resources. Red Data Book of Republic of Korea Volume 9. Insect III; National Institute of Biological Resources: Incheon, Republic of Korea, 2023; pp. 14–61. (In Korean) [Google Scholar]
- Cuevas-Yáñez, K.; Rivas, M.; Muñoz, J.; Córdoba-Aguilar, A. Conservation Status Assessment of Paraphlebia Damselflies in Mexico. Insect Conserv. Divers. 2015, 8, 517–524. [Google Scholar] [CrossRef]
- Collins, S.D.; McIntyre, N.E. Modeling the Distribution of Odonates: A Review. Freshw. Sci. 2015, 34, 1144–1158. [Google Scholar] [CrossRef]
- Boys, W.A.; Siepielski, A.M.; Smith, B.D.; Patten, M.A.; Bried, J.T. Predicting the Distributions of Regional Endemic Dragonflies Using a Combined Model Approach. Insect Conserv. Divers. 2021, 14, 52–66. [Google Scholar] [CrossRef]
- Hassall, C. Predicting the Distributions of Under-Recorded Odonata Using Species Distribution Models. Insect Conserv. Divers. 2012, 5, 192–201. [Google Scholar] [CrossRef]
- Domisch, S.; Jähnig, S.C.; Haase, P. Climate-Change Winners and Losers: Stream Macroinvertebrates of a Submontane Region in Central Europe. Freshw. Biol. 2011, 56, 2009–2020. [Google Scholar] [CrossRef]
- Mackenzie, D.I.; Royle, J.A. Designing Occupancy Studies: General Advice and Allocating Survey Effort. J. Appl. Ecol. 2005, 42, 1105–1114. [Google Scholar] [CrossRef]
- Veloz, S.D. Spatially Autocorrelated Sampling Falsely Inflates Measures of Accuracy for Presence-Only Niche Models. J. Biogeogr. 2009, 36, 2290–2299. [Google Scholar] [CrossRef]
- Hayward, M.W.; Child, M.F.; Kerley, G.I.H.; Lindsey, P.A.; Somers, M.J.; Burns, B. Ambiguity in Guideline Definitions Introduces Assessor Bias and Influences Consistency in IUCN Red List Status Assessments. Front. Ecol. Evol. 2015, 3, 148930. [Google Scholar] [CrossRef]
- Bachman, S.P.; Field, R.; Reader, T.; Raimondo, D.; Donaldson, J.; Schatz, G.E.; Lughadha, E.N. Progress, Challenges and Opportunities for Red Listing. Biol. Conserv. 2019, 234, 45–55. [Google Scholar] [CrossRef]
- Breiner, F.T.; Guisan, A.; Bergamini, A.; Nobis, M.P. Overcoming Limitations of Modelling Rare Species by Using Ensembles of Small Models. Methods Ecol. Evol. 2015, 6, 1210–1218. [Google Scholar] [CrossRef]
- van Proosdij, A.S.J.; Sosef, M.S.M.; Wieringa, J.J.; Raes, N. Minimum Required Number of Specimen Records to Develop Accurate Species Distribution Models. Ecography 2016, 39, 542–552. [Google Scholar] [CrossRef]
- Belmont, J.; Miller, C.; Scott, M.; Wilkie, C. A New Statistical Approach for Identifying Rare Species under Imperfect Detection. Divers. Distrib. 2022, 28, 882–893. [Google Scholar] [CrossRef]
- Doser, J.W.; Leuenberger, W.; Sillett, T.S.; Hallworth, M.T.; Zipkin, E.F. Integrated Community Occupancy Models: A Framework to Assess Occurrence and Biodiversity Dynamics Using Multiple Data Sources. Methods Ecol. Evol. 2022, 13, 919–932. [Google Scholar] [CrossRef]
- Roberts, D.L.; Hinsley, A.; Fiennes, S.; Veríssimo, D. Understanding the Drivers of Expert Opinion When Classifying Species as Extinct. Conserv. Biol. 2023, 37, e13968. [Google Scholar] [CrossRef]
- Samways, M.J.; Grant, P.B.C. Honing Red List Assessments of Lesser-Known Taxa in Biodiversity Hotspots. Biodivers. Conserv. 2007, 16, 2575–2586. [Google Scholar] [CrossRef]
- Lahti, K.; Schulman, L.; Piirainen, E.; Riihikoski, V.-M.; Juslén, A. In ‘As Open as Possible, as Closed as Necessary’—Managing Legal and Owner-Defined Restrictions to Openness of Biodiversity Data. BISS 2019, 3, e37395. [Google Scholar] [CrossRef]
- Higgs, P.; Slatyer, C. Restricted Access Species Data Systems: A Starting Point. BISS 2023, 7, e111746. [Google Scholar] [CrossRef]
- Choe, H.; Thorne, J.H.; Hijmans, R.; Seo, C. Integrating the Rabinowitz Rarity Framework with a National Plant Inventory in South Korea. Ecol. Evol. 2019, 9, 1353–1363. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. The Climatic Characteristics of South Korea. Available online: https://www.weather.go.kr/w/climate/statistics/korea-char.do (accessed on 15 September 2024).
- Water Environment Information System. Biomonitoring Survey: Macrobenthic Invertebrate. Available online: http://water.nier.go.kr/ (accessed on 10 September 2024).
- EcoBank. Open API Data: The Point-Based Macrobenthic Invertebrate Data from National Ecosystem Survey. Available online: https://nie-ecobank.kr (accessed on 10 September 2024).
- Engelhardt, E.K.; Biber, M.F.; Dolek, M.; Fartmann, T.; Hochkirch, A.; Leidinger, J.; Löffler, F.; Pinkert, S.; Poniatowski, D.; Voith, J.; et al. Consistent Signals of a Warming Climate in Occupancy Changes of Three Insect Taxa over 40 Years in Central Europe. Glob. Change Biol. 2022, 28, 3998–4012. [Google Scholar] [CrossRef]
- Cerini, F.; Vignoli, L.; Blust, M.; Strona, G. Functional Traits Predict Species Co-Occurrence Patterns in a North American Odonata Metacommunity. Ecosphere 2023, 14, e4732. [Google Scholar] [CrossRef]
- O’Neill, D.; Shaffrey, L.; Neumann, J.; Cheffings, C.; Norris, K.; Pettorelli, N. Investigating Odonates’ Response to Climate Change in Great Britain: A Tale of Two Strategies. Divers. Distrib. 2024, 30, e13816. [Google Scholar] [CrossRef]
- Pinkert, S.; Zeuss, D.; Dijkstra, K.D.B.; Kipping, J.; Clausnitzer, V.; Brunzel, S.; Brandl, R. Climate–Diversity Relationships Underlying Cross-Taxon Diversity of the African Fauna and Their Implications for Conservation. Divers. Distrib. 2020, 26, 1330–1342. [Google Scholar] [CrossRef]
- Deacon, C.; Samways, M.J.; Pryke, J.S. Determining Drivers of Dragonfly Diversity Patterns and the Implications for Conservation in South Africa. Biol. Conserv. 2020, 245, e13816. [Google Scholar] [CrossRef]
- Acquah-Lamptey, D.; Brändle, M.; Brandl, R.; Pinkert, S. Temperature-Driven Color Lightness and Body Size Variation Scale to Local Assemblages of European Odonata but Are Modified by Propensity for Dispersal. Ecol. Evol. 2020, 10, 8936–8948. [Google Scholar] [CrossRef]
- Kalkman, V.J.; Boudot, J.P.; Futahashi, R.; Abbott, J.C.; Bota-Sierra, C.A.; Guralnick, R.; Bybee, S.M.; Ware, J.; Belitz, M.W. Diversity of Palaearctic Dragonflies and Damselflies (Odonata). Diversity 2022, 14, 966. [Google Scholar] [CrossRef]
- Li, F.; Park, Y.S. Habitat Availability and Environmental Preference Drive Species Range Shifts in Concordance with Climate Change. Divers. Distrib. 2020, 26, 1343–1356. [Google Scholar] [CrossRef]
- Gil-Tapetado, D.; López-Collar, D.; Gómez, J.F.; Mañani-Pérez, J.; Cabrero-Sañudo, F.J.; Muñoz, J. Climate Change as a Driver of Insect Invasions: Dispersal Patterns of a Dragonfly Species Colonizing a New Region. PLoS ONE 2023, 18, e0291270. [Google Scholar] [CrossRef]
- Saxton, N.A.; Paxman, E.M.; Dean, A.M.; Jensen, C.R.; Powell, G.S.; Bybee, S.M. Factors Influencing the Distribution of Endemic Damselflies in Vanuatu. Insects 2021, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Viza, A.; Garcia-Raventós, A.; Riera, J.L.; Maynou, X.; Martín, R.; Prunier, F.; El Haissoufi, M.; Múrria, C. Species-Specific Functional Traits Rather than Phylogenetic Relatedness Better Predict Future Range-Shift Responses of Odonates. Insect Conserv. Divers. 2023, 16, 574–587. [Google Scholar] [CrossRef]
- Cancellario, T.; Miranda, R.; Baquero, E.; Fontaneto, D.; Martínez, A.; Mammola, S. Climate Change Will Redefine Taxonomic, Functional, and Phylogenetic Diversity of Odonata in Space and Time. Npj Biodivers. 2022, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- ESRI. ArcGIS Pro; Version 3.2; Enviornmental Systems Research Institute: Redlands, CA, USA, 2023. [Google Scholar]
- Cho, S.; Seo, C.; Kim, D. Korean Odonata Adult and Larva, 1st ed.; Kwangil Publishing: Seoul, Repulic of Korea, 2021; pp. 29–403. [Google Scholar]
- Jung, K.S. Odonata Larvae of Korea, 1st ed.; Nature and Ecology: Seoul, Republic of Korea, 2007; pp. 106–338. [Google Scholar]
- Doser, J.W.; Finley, A.O.; Kéry, M.; Zipkin, E.F. spOccupancy: An R Package for Single-Species, Multi-Species, and Integrated Spatial Occupancy Models. Methods Ecol. Evol. 2022, 13, 1670–1678. [Google Scholar] [CrossRef]
- Zipkin, E.F.; Doser, J.W.; Davis, C.L.; Leuenberger, W.; Ayebare, S.; Davis, K.L. Integrated Community Models: A Framework Combining Multispecies Data Sources to Estimate the Status, Trends and Dynamics of Biodiversity. J. Anim. Ecol. 2023, 92, 2248–2262. [Google Scholar] [CrossRef]
- Doser, J.W.; Finley, A.O.; Banerjee, S. Joint Species Distribution Models with Imperfect Detection for High-Dimensional Spatial Data. Ecology 2023, 104, e4137. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; Version: 4.3.3; R Foundation for Statistical Computic: Vienna, Austria, 2024. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. R Package, Version 2.1.6; cluster: Cluster Analysis Basics and Extensions: 2023. Available online: https://CRAN.R-project.org/package=cluster (accessed on 26 September 2024).
- Boone, M.L.; Evans, E.; Arnold, T.; Cariveau, D.P. Increasing sampling efficiency of Bombus communities with rare and endangered species by optimizing detection probabilities: A multi-species occupancy modelling approach using roadsides as a case study. Biol. Conserv. 2023, 283, 110122. [Google Scholar] [CrossRef]
- Mourguiart, B.; Couturier, T.; Braud, Y.; Mansons, J.; Combrisson, D.; Besnard, A. Multi-species occupancy models: An effective and flexible framework for studies of insect communities. Ecol. Entomol. 2021, 46, 163–174. [Google Scholar] [CrossRef]
- Butterfield, B.J.; Palmquist, E.C.; Yackulic, C.B. The Hydroclimate Niche: A Tool for Predicting and Managing Riparian Plant Community Responses to Streamflow Seasonality. River. Res. Appl. 2023, 39, 84–94. [Google Scholar] [CrossRef]
- Portela, A.P.; Durance, I.; Vieira, C.; Honrado, J. Environmental Filtering and Environmental Stress Shape Regional Patterns of Riparian Community Assembly and Functional Diversity. Freshw. Biol. 2023, 68, 1428–1441. [Google Scholar] [CrossRef]
- Cadena, J.T.; Boudot, J.P.; Kalkman, V.J.; Marshall, L. Impacts of Climate Change on Dragonflies and Damselflies in West and Central Asia. Divers. Distrib. 2023, 29, 912–925. [Google Scholar] [CrossRef]
- Thompson, D.J. The Effects of Survival and Weather on Lifetime Egg Production in a Model Damselfly. Ecol. Entomol. 1990, 15, 455–462. [Google Scholar] [CrossRef]
- Kéry, M.; Gardner, B.; Monnerat, C. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 2010, 37, 1851–1862. [Google Scholar] [CrossRef]
- EcoBank. DOI Dataset: The Biota Data of National Survey on the Inland Wetlands. 2016–2021. Available online: https://www.nie-ecobank.kr/rdm/rsrchdoi/selectRsrchDtaDtlVw.do?rsrchDtaId=RSD_0000000000012670 (accessed on 15 April 2024).
- Emmet, R.L.; Benson, T.J.; Allen, M.L.; Stodola, K.W. Integrating Multiple Data Sources Improves Prediction and Inference for Upland Game Bird Occupancy Models. Ornithol. Appl. 2023, 125, duad005. [Google Scholar] [CrossRef]
- Pacifici, K.; Reich, B.J.; Miller, D.A.W.; Gardner, B.; Stauffer, G.; Singh, S.; McKerrow, A.; Collazo, J.A. Integrating Multiple Data Sources in Species Distribution Modeling: A Framework for Data Fusion. Ecology 2017, 98, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.L.; Mota-Ferreira, M.; Aguiar, L.M.S.; Ascensão, F. Predicting Wildlife Road-Crossing Probability from Roadkill Data Using Occupancy-Detection Models. Sci. Total Environ. 2018, 642, 629–637. [Google Scholar] [CrossRef]
- Specht, H.M.; Reich, H.T.; Iannarilli, F.; Edwards, M.R.; Stapleton, S.P.; Weegman, M.D.; Johnson, M.K.; Yohannes, B.J.; Arnold, T.W. Occupancy Surveys with Conditional Replicates: An Alternative Sampling Design for Rare Species. Methods Ecol. Evol. 2017, 8, 1725–1734. [Google Scholar] [CrossRef]
- National Institute of Ecology, The Endangered Species List of South Korea. Available online: https://www.nie.re.kr/nie/pgm/edSpecies/edSpeciesList.do?menuNo=200127 (accessed on 7 November 2024).
- Atlas of Living Australia. National Framework for the Sharing of Restricted Access Species Data in Australia 2023; Atlas Living Australia: Canberra, Australia, 2023; Publication Series No. 6; pp. 17–38. [Google Scholar]
- Dow, R.A. Pseudagrion pilidorsum, The IUCN Red List of Threatened Species. e.T139350609A139403898. 2021. Available online: https://www.iucnredlist.org/species/139350609/139403898 (accessed on 28 August 2024).
- Subramanian, K.A. Rhyothemis variegata. The IUCN Red List of Threatened Species. e.T167133A83384189. 2020. Available online: https://www.iucnredlist.org/species/167133/83384189 (accessed on 28 August 2024).
- Subramanian, K.A. Neurothemis fluctuans. The IUCN Red List of Threatened Species. e.T167488A83383506. 2020. Available online: https://www.iucnredlist.org/species/167488/83383506 (accessed on 28 August 2024).
- Dow, R.A. Gynacantha basiguttata (Amended Version of 2011 Assessment). The IUCN Red List of Threatened Species e.T167287A176402482. 2020. Available online: https://www.iucnredlist.org/species/167287/176402482 (accessed on 28 August 2024).
- Dow, R.A. Orthetrum luzonicum. The IUCN Red List of Threatened Species. e.T167309A6326889. 2010. Available online: https://www.iucnredlist.org/species/167309/6326889 (accessed on 28 August 2024).
- Jung, K.S. The Drgonflies and Damselflies in Korea; National Science Museum of Korea: Seoul, Republic of Korea, 2012. [Google Scholar]
Types | Description | Unit | Data Source |
---|---|---|---|
Topographic | Height above sea level | Meter | ALOS DSM: Global 30m v3.2 (https://developers.google.com/earth-engine/datasets (Accessed on 10 April 2024)) |
Land-cover | Forest, agriculture, urban, lentic, and lotic areas | Square meter | Land-cover maps (https://egis.me.go.kr/ (Accessed on 10 April 2024)) |
Bioclimatic variables | Total of 19 variables (bio1–bio19) calculated from monthly temperature and rainfall values | °C, millimeter, and ratio | WorldClim (https://www.worldclim.org (Accessed on 10 April 2024)) |
Covariates | Estimates (Mean ± SD) | R-Hat Convergence Diagnostic | Effective Sample Size | |||
---|---|---|---|---|---|---|
NES | SEAEH | NES | SEAEH | NES | SEAEH | |
(Intercept) | 0.10 ± 0.40 | −1.64 ± 0.24 | 1.06 | 1.03 | 131 | 466 |
bio1 | 0.44 ± 0.21 | 0.54 ± 0.15 | 1.03 | 1.00 | 1080 | 1409 |
bio12 | −0.57 ± 0.21 | −0.40 ± 0.09 | 1.02 | 1.00 | 779 | 1405 |
bio15 | −0.29 ± 0.17 | 0.28 ± 0.09 | 1.02 | 1.00 | 452 | 1765 |
Lentic | −0.10 ± 0.17 | −0.10 ± 0.07 | 1.01 | 1.01 | 1489 | 1152 |
Lotic | 0.10 ± 0.15 | 0.09 ± 0.05 | 1.00 | 1.00 | 1057 | 1567 |
Covariates | Estimates (Mean ± SD) | R-Hat Convergence Diagnostic | Effective Sample Size | |||
---|---|---|---|---|---|---|
NES | SEAEH | NES | SEAEH | NES | SEAEH | |
(Intercept) | −2.59 ± 0.26 | −3.91 ± 0.21 | 1.02 | 1.03 | 410 | 435 |
Visit number | 0.21 ± 0.09 | 0.15 ± 0.02 | 1.000 | 1.00 | 2803 | 2803 |
Data Availability for Modeling | Range | Habitat Specificity | Local Population | Rarity Class | All Species | |
---|---|---|---|---|---|---|
n | % | |||||
Not observed | - | - | - | - | 35 | 26.3 |
Data deficient | 36 | 27.1 | ||||
Available | Narrow | Restricted | Small | NRS (rare) | 16 | 12.0 |
Large | NRL | 1 | 0.8 | |||
Broad | Small | NBS | 8 | 6.0 | ||
Large | NBL | 6 | 4.5 | |||
Wide | Restricted | Small | WRS | 2 | 1.5 | |
Large | WRL | 12 | 9.0 | |||
Broad | Small | WBS | 5 | 3.8 | ||
Large | WBL (common) | 12 | 9.0 |
Reason for Low Data Availability | Data Status | All Species | |
---|---|---|---|
n | % | ||
No occurrence records or reliable recent observations in South Korea | NO | 25 | 71.4 |
DD | 9 | 25.0 | |
Limited and uncommon habitats or low population density | NO | 7 | 20.0 |
DD | 23 | 63.9 | |
Primarily found in lentic habitats | NO | 7 | 20.0 |
DD | 24 | 66.7 | |
Relatively narrow geographic range | NO | 2 | 5.7 |
DD | 9 | 25.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Kang, W. Bridging Knowledge and Data Gaps in Odonata Rarity: A South Korean Case Study Using Multispecies Occupancy Models and the Rabinowitz Framework. Insects 2024, 15, 887. https://doi.org/10.3390/insects15110887
Yoon S, Kang W. Bridging Knowledge and Data Gaps in Odonata Rarity: A South Korean Case Study Using Multispecies Occupancy Models and the Rabinowitz Framework. Insects. 2024; 15(11):887. https://doi.org/10.3390/insects15110887
Chicago/Turabian StyleYoon, Sungsoo, and Wanmo Kang. 2024. "Bridging Knowledge and Data Gaps in Odonata Rarity: A South Korean Case Study Using Multispecies Occupancy Models and the Rabinowitz Framework" Insects 15, no. 11: 887. https://doi.org/10.3390/insects15110887
APA StyleYoon, S., & Kang, W. (2024). Bridging Knowledge and Data Gaps in Odonata Rarity: A South Korean Case Study Using Multispecies Occupancy Models and the Rabinowitz Framework. Insects, 15(11), 887. https://doi.org/10.3390/insects15110887