The Effects of Global Climate Warming on the Developmental Parameters of Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion Criteria
2.3. Statistical Analysis
3. Results
3.1. Literature Search and Screening Results
3.2. Overall Impact of Temperature on Biological Traits
3.3. Effect of Temperature on Developmental Duration
3.4. The Impact of Temperature Variation on Oviposition Physiology of H. armigera
3.5. Effect of Temperature on the Lifespan of Female and Male Adults
3.6. The Effects of Temperature on the Larval Stage, Life Cycle, and Pupal Stage
3.7. Model Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pomari-Fernandes, A.; de Freitas Bueno, A.; Sosa-Gómez, D.R. Helicoverpa armigera: Current status and future perspectives in Brazil. Curr. Agric. Sci. Technol. 2015, 21, 1–7. [Google Scholar]
- Talekar, N.S.; Opena, R.T.; Hanson, P. Helicoverpa armigera management: A review of AVRDC’s research on host plant resistance in tomato. Crop Prot. 2006, 25, 461–467. [Google Scholar] [CrossRef]
- Karim, S. Management of Helicoverpa armigera: A review and prospectus for Pakistan. Pak. J. Biol. Sci. 2000, 3, 1213–1222. [Google Scholar] [CrossRef]
- Czepak, C.; Albernaz, K.C.; Vivan, L.M.; Guimarães, H.O.; Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesqui. Agropecu. Trop. 2013, 43, 110–113. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Zalucki, M.P.; West, S.A. Learning in Helicoverpa armigera (Lepidoptera: Noctuidae): A new look at the behaviour and control of a polyphagous pest. Bull. Entomol. Res. 1999, 89, 201–207. [Google Scholar] [CrossRef]
- Da Silva, F.R.; Trujillo, D.; Bernardi, O.; Verle Rodrigues, J.C.; Bailey, W.D.; Gilligan, T.M.; Carrillo, D. Comparative toxicity of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) to selected insecticides. Insects 2020, 11, 431. [Google Scholar] [CrossRef]
- Wang, Q.; Rui, C.; Wang, L.; Nahiyoon, S.A.; Huang, W.; Zhu, J.; Ji, X.; Yang, Q.; Yuan, H.; Cui, L. Field-evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag. Sci. 2021, 77, 5086–5095. [Google Scholar] [CrossRef]
- Ali, S.; Li, Y.; Haq, I.U.; Abbas, W.; Shabbir, M.Z.; Khan, M.M.; Mamay, M.; Niaz, Y.; Farooq, T.; Skalicky, M. The impact of different plant extracts on population suppression of Helicoverpa armigera (Hub.) and tomato (Lycopersicon esculentum Mill) yield under field conditions. PLoS ONE 2021, 16, e0260470. [Google Scholar] [CrossRef]
- Yogindran, S.; Rajam, M.V. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics 2021, 113, 736–747. [Google Scholar] [CrossRef]
- El Fakhouri, K.; Boulamtat, R.; Sabraoui, A.; El Bouhssini, M. The chickpea Pod borer, Helicoverpa armigera (Hübner): Yield loss estimation and biorational insecticide assessment in Morocco. Agronomy 2022, 12, 3017. [Google Scholar] [CrossRef]
- Habibullah, M.S.; Din, B.H.; Tan, S.; Zahid, H. Impact of climate change on biodiversity loss: Global evidence. Environ. Sci. Pollut. Res. 2022, 29, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, J.M.; Strayer, D.L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. 2008, 1134, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Dillon, M.E.; Wang, G.; Huey, R.B. Global metabolic impacts of recent climate warming. Nature 2010, 467, 704–706. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Zhao, H.; Li, M.; Han, W. Predicting the distribution of the invasive species Leptocybe invasa: Combining MaxEnt and geodetector models. Insects 2021, 12, 92. [Google Scholar] [CrossRef]
- Lee, C.M.; Lee, D.; Kwon, T.; Athar, M.; Park, Y. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 2021, 12, 229. [Google Scholar] [CrossRef]
- Fiaboe, K.; Peterson, A.T.; Kairo, M.; Roda, A.L. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Fla. Entomol. 2012, 95, 659–673. [Google Scholar] [CrossRef]
- Li, A.; Wang, J.; Wang, R.; Yang, H.; Yang, W.; Yang, C.; Jin, Z. MaxEnt modeling to predict current and future distributions of Batocera lineolata (Coleoptera: Cerambycidae) under climate change in China. Ecoscience 2020, 27, 23–31. [Google Scholar] [CrossRef]
- Desurmont, G.A.; Donoghue, M.J.; Clement, W.L.; Agrawal, A.A. Evolutionary history predicts plant defense against an invasive pest. Proc. Natl. Acad. Sci. USA 2011, 108, 7070–7074. [Google Scholar] [CrossRef]
- Ziska, L.H.; Blumenthal, D.M.; Runion, G.B.; Hunt, E.R., Jr.; Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Change 2011, 105, 13–42. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Furlong, M.J. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bioclimatic based modelling approach. Insect Sci. 2005, 12, 45–56. [Google Scholar] [CrossRef]
- Seethalam, M.; Bapatla, K.G.; Kumar, M.; Nisa, S.; Chandra, P.; Mathyam, P.; Sengottaiyan, V. Characterization of Helicoverpa armigera spatial distribution in pigeonpea crop using geostatistical methods. Pest Manag. Sci. 2021, 77, 4942–4950. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xian, X.; Zhao, Z.; Zhang, G.; Liu, W.; Wan, F. Climate change increases the expansion risk of Helicoverpa zea in China according to potential geographical distribution estimation. Insects 2022, 13, 79. [Google Scholar] [CrossRef]
- Specht, A.; Sosa-Gomez, D.R.; Rios, D.A.M.; Claudino, V.C.M.; Paula-Moraes, S.V.; Malaquias, J.V.; Silva, F.A.M.; Roque-Specht, V.F. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil: The big outbreak monitored by light traps. Neotrop. Entomol. 2021, 50, 53–67. [Google Scholar] [CrossRef]
- Barde, M.P.; Barde, P.J. What to use to express the variability of data: Standard deviation or standard error of mean? Perspect. Clin. Res. 2012, 3, 113–116. [Google Scholar] [CrossRef]
- Dinet, J.; Favart, M.; Passerault, J.M. Searching for information in an online public access catalogue (OPAC): The impacts of information search expertise on the use of Boolean operators. J. Comput. Assist. Learn. 2004, 20, 338–346. [Google Scholar] [CrossRef]
- Lee, D.K.; In, J.; Lee, S. Standard deviation and standard error of the mean. Korean J. Anesthesiol. 2015, 68, 220–223. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Thorlund, K.; Imberger, G.; Johnston, B.C.; Walsh, M.; Awad, T.; Thabane, L.; Gluud, C.; Devereaux, P.J.; Wetterslev, J. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS ONE 2012, 7, e39471. [Google Scholar] [CrossRef] [PubMed]
- Bakbergenuly, I.; Hoaglin, D.C.; Kulinskaya, E. Estimation in meta-analyses of response ratios. BMC Med. Res. Methodol. 2020, 20, 263. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P. Interpretation of tests of heterogeneity and bias in meta-analysis. J. Eval. Clin. Pract. 2008, 14, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Castilla, B.; Declercq, L.; Jamshidi, L.; Beretvas, N.; Onghena, P.; Van den Noortgate, W. Visual representations of meta-analyses of multiple outcomes: Extensions to forest plots, funnel plots, and caterpillar plots. Methodology 2020, 16, 299–315. [Google Scholar] [CrossRef]
- Noor-ul-Ane, M.; Kim, D.; Zalucki, M.P. Fecundity and egg laying in Helicoverpa armigera (Lepidoptera: Noctuidae): Model development and field validation. J. Econ. Entomol. 2018, 111, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Effects of climate change on different geographical populations of the cotton bollworm Helicoverpa armigera (Lepidoptera, Noctuidae). Ecol. Evol. 2021, 11, 18357–18368. [Google Scholar] [CrossRef]
- Mironidis, G.K.; Savopoulou-Soultani, M. Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ. Entomol. 2014, 37, 16–28. [Google Scholar] [CrossRef]
- Mironidis, G.K.; Savopoulou-Soultani, M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. J. Therm. Biol. 2010, 35, 59–69. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Harvey, J.A.; Heinen, R.; Gols, R.; Thakur, M.P. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Glob. Change Biol. 2020, 26, 6685–6701. [Google Scholar] [CrossRef]
- Sales, K.; Thomas, P.; Gage, M.J.; Vasudeva, R. Experimental heatwaves reduce the effectiveness of ejaculates at occupying female reproductive tracts in a model insect. R. Soc. Open Sci. 2024, 11, 231949. [Google Scholar] [CrossRef] [PubMed]
- Jallow, M.F.; Matsumura, M. Influence of temperature on the rate of development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2001, 36, 427–430. [Google Scholar] [CrossRef]
- Abram, P.K.; Boivin, G.; Moiroux, J.; Brodeur, J. Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biol. Rev. 2017, 92, 1859–1876. [Google Scholar] [CrossRef] [PubMed]
- González-Tokman, D.; Córdoba-Aguilar, A.; Dáttilo, W.; Lira-Noriega, A.; Sánchez-Guillén, R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010, 5, 132–142. [Google Scholar] [CrossRef]
- Andrew, N.R.; Hill, S.J. Effect of climate change on insect pest management. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 195–223. [Google Scholar]
- Wei, X.; Xu, D.; Zhuo, Z. Predicting the impact of climate change on the geographical distribution of leafhopper, Cicadella viridis in China through the MaxEnt model. Insects 2023, 14, 586. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Liao, W.; Xu, Y.; Zhuo, Z. Predicting the current and future distributions of Frankliniella occidentalis (Pergande) based on the MaxEnt species distribution model. Insects 2023, 14, 458. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Han, M.; Li, L.; He, P.; Shi, A.; Bai, M. Using MaxEnt model to predict the potential distribution of three potentially invasive scarab beetles in China. Insects 2023, 14, 239. [Google Scholar] [CrossRef]
- Vitousek, P.M. Beyond global warming: Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Grimm, N.B.; Chapin, F.S., III; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef]
Temperature Range | Control Temperature | Number of Datasets (n) | Variable |
---|---|---|---|
15–38 °C | 20 | 26 | First instar |
15–38 °C | 20 | 26 | Second instar |
15–38 °C | 20 | 26 | Third instar |
15–38 °C | 20 | 26 | Fourth instar |
15–38 °C | 20 | 26 | Fifth instar |
15–35 °C | 20 | 35 | Adult longevity (female) |
15–35 °C | 20 | 35 | Adult longevity (male) |
12–38 °C | 20 | 38 | Egg stage |
15–38 °C | 20 | 20 | Fecundity |
17–38 °C | 20 | 40 | Life cycle |
15–38 °C | 20 | 35 | Oviposition period |
15–38 °C | 20 | 33 | Pre-oviposition period |
15–32 °C | 20 | 50 | Pupal stage |
12–35 °C | 20 | 109 | Larval stage |
12–38 °C | 20 | 525 | H. armigera |
Variable | Estimate | se | z | p | CI.lb | CI.Ub | LogLik | AIC | BIC |
---|---|---|---|---|---|---|---|---|---|
Helicoverpa armigera (Hübner) | −0.2231 | 0.0263 | −8.4808 | <0.0001 | −0.2747 | −0.1716 | −503.4509 | 1010.9017 | 1019.4662 |
Egg | −0.3091 | 0.0776 | −3.9845 | <0.0001 | −0.4612 | −0.1571 | −38.7345 | 81.469 | 85.2114 |
First instar | −0.3309 | 0.0826 | −4.0056 | <0.0001 | −0.4928 | −0.169 | −13.8564 | 31.7128 | 34.1505 |
Second instar | −0.2187 | 0.0965 | −2.2668 | <0.0001 | −0.4079 | −0.0296 | −14.7668 | 39.5337 | 41.9714 |
Third instar | −0.2058 | 0.0885 | −2.3257 | <0.0001 | −0.3792 | −0.0324 | −15.5972 | 35.1943 | 37.6321 |
Fourth instar | −0.2614 | 0.074 | −3.5314 | <0.0001 | −0.4065 | −0.1163 | −11.0511 | 26.1022 | 28.5399 |
Fifth instar | −0.4531 | 0.1049 | −4.3194 | <0.0001 | −0.6587 | −0.2475 | −19.8645 | 43.729 | 46.1668 |
Adult longevity (female) | 0.104 | 0.0525 | 1.979 | <0.0478 | 0.001 | 0.207 | −9.2596 | 22.5192 | 22.9063 |
Adult longevity (male) | −0.3409 | 0.0574 | −5.9345 | <0.0001 | −0.4535 | −0.2283 | −11.8951 | 27.7901 | 30.8429 |
Life cycle | −0.2171 | 0.0558 | −3.8902 | 0.0001 | −0.3265 | −0.1077 | −14.7148 | 33.4296 | 36.7567 |
Pre-oviposition period | −1.3465 | 0.1034 | −13.024 | <0.0001 | −1.5491 | −1.1438 | −28.7279 | 61.4558 | 64.3873 |
Oviposition period | 0.1203 | 0.0304 | 3.9516 | <0.0001 | 0.0606 | 0.1799 | −86.4086 | 174.8172 | 176.3725 |
Pupal stage | −0.4748 | 0.0561 | −8.4578 | <0.0001 | −0.5849 | −0.3648 | −24.4508 | 52.9017 | 56.6853 |
Fecundity | 1.1927 | 0.2185 | 5.4593 | <0.0001 | 0.7645 | 1.6209 | −26.4847 | 56.9694 | 58.8583 |
Larval stage | −0.1144 | 0.0075 | −15.2245 | <0.0001 | −0.1291 | −0.0996 | −1526.7594 | 3055.4989 | 3058.1902 |
Growth History | Optimal Survival Temperature | Optimum RH for Survival | Optimum Photoperiod for Survival |
---|---|---|---|
Egg | 32 °C | 65% | L:D = 16:8 |
First instar | 30 °C | 70% | L:D = 12:12 |
Second instar | 35 °C | 65% | L:D = 16:8 |
Third instar | 35 °C | 65% | L:D = 16:8 |
Fourth instar | 32 °C | 75% | L:D = 14:10 |
Fifth instar | 27 °C | 75% | L:D = 14:10 |
Adult longevity (female) | 35 °C | 65% | L:D = 14:10 |
Adult longevity (male) | 35 °C | 70% | L:D = 14:10 |
Life cycle | 32 °C | 60% | L:D = 12:12 |
Pre-oviposition period | 27 °C | 60% | L:D = 16:8 |
Oviposition period | 25 °C | 75% | L:D = 16:8 |
Pupal stage | 30 °C | 75% | L:D = 12:12 |
Fecundity | 25 °C | 60% | - |
Larval stage | 32 °C | 65% | L:D = 16:8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, B.; Yu, H.; Zhang, H.; He, Z.; Zhuo, Z. The Effects of Global Climate Warming on the Developmental Parameters of Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae). Insects 2024, 15, 888. https://doi.org/10.3390/insects15110888
Liu Z, Liu B, Yu H, Zhang H, He Z, Zhuo Z. The Effects of Global Climate Warming on the Developmental Parameters of Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae). Insects. 2024; 15(11):888. https://doi.org/10.3390/insects15110888
Chicago/Turabian StyleLiu, Zhiqian, Biyu Liu, Huan Yu, Honghua Zhang, Zhipeng He, and Zhihang Zhuo. 2024. "The Effects of Global Climate Warming on the Developmental Parameters of Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae)" Insects 15, no. 11: 888. https://doi.org/10.3390/insects15110888
APA StyleLiu, Z., Liu, B., Yu, H., Zhang, H., He, Z., & Zhuo, Z. (2024). The Effects of Global Climate Warming on the Developmental Parameters of Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae). Insects, 15(11), 888. https://doi.org/10.3390/insects15110888