Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquiring and Processing Distribution Coordinates of A. suncei and L. styraciflua
2.2. Overall Modeling Workflow
2.3. Model Selection and Climate Data Acquisition
2.4. Using CLIMEX to Project the Potential Distribution of L. styraciflua
2.4.1. CLIMEX Model
2.4.2. Parameters Fitting
2.4.3. Classification of EI Values
2.5. Using RF to Project the Potential Distribution of A. suncei
2.5.1. Modeling Process
2.5.2. Classification of Suitability for Potential Distribution
2.5.3. Evaluation of Model Accuracy
2.6. Acquisition of Potential Distribution of A. suncei Concerning the Host L. styraciflua
3. Results
3.1. Potential Global Distribution of the Host L. styraciflua Predicted by CLIMEX
3.2. Potential Global Distribution of A. suncei Predicted by RF
3.3. Global Potential Distribution of A. suncei Concerning the Host L. styraciflua
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kormanik, P.P. Liquidambar styraciflua L. sweetgum. In Silvics of North America: Volume 2, Hardwoods; Burns, R.M., Honkala, B.H., Eds.; United States Department of Agriculture (USDA), Forest Service: Washington, DC, USA, 1990; Volume 2, pp. 400–405. [Google Scholar]
- Koeser, A.K.; Hasing, G.; Friedman, M.H.; Irving, R.B. Trees: North & Central Florida; University Press of Florida: Gainesville, FL, USA, 2015. [Google Scholar]
- Ewan, J.; Ewan, N. John Banister and His Natural History of Virginia: 1678–1692; University of Illinois Press: Champaign, IL, USA, 1970. [Google Scholar]
- Liquidambar styraciflua . Available online: https://www.gardenersworld.com/plants/liquidambar-styraciflua/ (accessed on 25 April 2024).
- Shen, J. Preliminary report on the introduction and application of American sweetgum Liquidambar styraciflua. Chin. Tradit. Herb. Drugs 1981, 12, 33–35+38. [Google Scholar]
- Gao, L.; Wang, J.; Wang, Z.; Li, Y.; Ju, R. Morphological Characteristics and Occurrence Status of the Dangerous Pest, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae). Sci. Silvae Sin. 2020, 56, 193–198. [Google Scholar] [CrossRef]
- Han, X. Further Promotion of American sweetgum Liquidambar styraciflua in Eastern China. China Flower Gard. News 2010, 41, 1769–1774. [Google Scholar]
- Gao, L.; Cognato, A.I. Acanthotomicus suncei, a new sweetgum tree pest in China (Coleoptera: Curculionidae: Scolytinae: Ipini). Zootaxa 2018, 4471, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, Y.; Xu, Y.; Hulcr, J.; Cognato, A.I.; Wang, J.; Ju, R. Acanthotomicus sp. (Coleoptera: Curculionidae: Scolytinae), a New Destructive Insect Pest of North American Sweetgum Liquidambar styraciflua in China. J. Econ. Entomol. 2017, 110, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Gao, L.; Ju, R. The Morphological Difference between Male and Female, Reproductive Characteristics and the Formation Process of the Tunnel System of Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae). J. Fudan Univ. Nat. Sci. 2021, 60, 58–64. [Google Scholar]
- Zhang, Y. Biological Characteristics and Screening of Information Chemical Substances of Acanthotomicus suncei. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2023. [Google Scholar]
- Li, Y.; Wan, Y.; Lin, W.; Ernstsons, A.S.; Gao, L. Estimating Potential Distribution of Sweetgum Pest Acanthotomicus suncei and Potential Economic Losses in Nursery Stock and Urban Areas in China. Insects 2021, 12, 155. [Google Scholar] [CrossRef]
- Susaeta, A.; Soto, J.R.; Adams, D.C.; Hulcr, J. Expected Timber-Based Economic Impacts of a Wood-Boring Beetle (Acanthotomicus sp.) That Kills American Sweetgum. J. Econ. Entomol. 2017, 110, 1942–1945. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Tourinho, L.; Vale, M.M. Choosing among correlative, mechanistic, and hybrid models of species’ niche and distribution. Integr. Zool. 2023, 18, 93–109. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, K.; Deng, R.; Wu, L.; Cui, L.; Ning, H.; Ai, X.; Chen, H. Projecting the future redistribution of Pinus koraiensis (Pinaceae: Pinoideae: Pinus) in China using machine learning. Front. For. Glob. Chang. 2024, 7, 1326319. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Kriticos, D.J.; Maywald, G.F.; Yonow, T.; Zurcher, E.J.; Herrmann, N.I.; Sutherst, R.W. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases; CSIRO: Canberra, Australia, 2015. [Google Scholar]
- Ullah, F.; Zhang, Y.; Gul, H.; Hafeez, M.; Desneux, N.; Qin, Y. Potential economic impact of Bactrocera dorsalis on Chinese citrus based on simulated geographical distribution with MaxEnt and CLIMEX models. Entomol. Gen. 2023, 43, 821–830. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Wang, T.; Zong, S.; Ge, X. Modeling the pest-pathogen threats in a warming world for the red turpentine beetle (Dendroctonus valens) and its symbiotic fungus (Leptographium procerum). Pest Manag. Sci. 2024, 80, 3423–3435. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, W.H. Assessing potential European areas of Pierce’s disease mediated by insect vectors by using spatial ensemble model. Front. Plant Sci. 2023, 14, 1209694. [Google Scholar] [CrossRef]
- Hu, J.; Dai, L.; Dai, Y.; Yao, F.; Jiang, T.; Tan, J. Damage Onvestigation and Control Effect Evaluation of Acanthotomicus suncei (Coleoptera:Curculionidae:Scolytinae) in Changshu. Tianjin Agric. Sci. 2023, 29, 56–61. [Google Scholar] [CrossRef]
- Tan, S.; Hu, X.; Huang, L.; Yu, G.; Meng, Y.; Wang, J.; Lu, H. First Report of Acanthotomicus suncei in Jiangxi Province. Biol. Disaster Sci. 2021, 44, 469–472. [Google Scholar]
- Yu, M.; Shi, W.; Cai, P. Occurrence and Control Measures of Acanthotomicus suncei in Suzhou Area. Shanghai Agric. Sci. Technol. 2020, 21, 121–122. [Google Scholar] [CrossRef]
- GBIF. GBIF.org GBIF Occurrence Download. 2024. Available online: https://www.gbif.org/occurrence/download/0022550-240314170635999 (accessed on 18 March 2024). [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- He, S.; Ge, X.; Wang, T.; Wen, J.; Zong, S. Areas of potential suitability and survival of Dendroctonus valens in china under extreme climate warming scenario. Bull. Entomol. Res. 2015, 105, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; Vries, B.d.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios; WHO: Gevena, Switzerland, 2000. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Sutherst, R.W.; Maywald, G.F. A computerised system for matching climates in ecology. Agric. Ecosyst. Environ. 1985, 13, 281–299. [Google Scholar] [CrossRef]
- Ge, X.; He, S.; Zhu, C.; Wang, T.; Xu, Z.; Zong, S. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX. Pest Manag. Sci. 2019, 75, 160–169. [Google Scholar] [CrossRef]
- Williams, G.J., III; McMillan, C. Phenology of six United States provenances of Liquidambar styraciflua under controlled conditions. Am. J. Bot. 1971, 58, 24–31. [Google Scholar] [CrossRef]
- Randel, W. Anatomical and phenological Variation of Liquidambar Styraciflua L. Under Controlled Environmental Conditions. Master’s Thesis, Western Kentucky University, Bowling Green, KY, USA, 1975. [Google Scholar]
- Wellman, L. Laboratory Comparisons of Two Species of Liquidambar. Master’s Thesis, Western Kentucky University, Bowling Green, KY, USA, 1977. [Google Scholar]
- Kriticos, D.J.; Kean, J.M.; Phillips, C.B.; Senay, S.D.; Acosta, H.; Haye, T. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 2017, 90, 1033–1043. [Google Scholar] [CrossRef]
- Cao, K. Cultivation and Management Techniques for American Sweetgum Liquidambar styraciflua. Farm. Consult. 2015, 0, 22. [Google Scholar] [CrossRef]
- Fowells, H.A. Silvics of Forest Trees of the United States; US Department of Agriculture, Forest Service: Washington, DC, USA, 1965. [Google Scholar]
- Williamz, G.J., III; McMillan, C. Frost tolerance of Liquidambar styraciflua native to the United States, Mexico, and Central America. Can. J. Bot. 1971, 49, 1551–1558. [Google Scholar] [CrossRef]
- Huang, M.; Ge, X.; Shi, H.; Tong, Y.; Shi, J. Prediction of current and future potential distributions of the Eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China using the CLIMEX model. Pest Manag. Sci. 2019, 75, 2958–2968. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, X.; Chen, L.; Zhang, L.; Wang, T.; Zong, S. Climate change impacts on the potential distribution of Eogystia hippophaecolus in China. Pest Manag. Sci. 2019, 75, 215–223. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Thuiller, W.; Georges, D.; Gueguen, M.; Engler, R.; Breiner, F.; Lafourcade, B. Biomod2: Ensemble Platform for Species Distribution Modeling. Available online: https://CRAN.R-project.org/package=biomod2 (accessed on 2 May 2023).
- Georgiades, P.; Proestos, Y.; Lelieveld, J.; Erguler, K. Machine Learning Modeling of Aedes albopictus Habitat Suitability in the 21st Century. Insects 2023, 14, 447. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Xie, Y.; Zhang, Z. An improved convolutional neural network based indoor localization by using Jenks natural breaks algorithm. China Commun. 2022, 19, 291–301. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Boulter, S.; Lambkin, C.; Starick, N. Assessing the abundance of seven major arthropod groups along an altitudinal gradient and across seasons in subtropical rainforest. Mem. Qld. Mus. 2011, 55, 303–313. [Google Scholar]
- Romo, H.; Garcia-Barros, E.; Marquez, A.L.; Moreno, J.C.; Real, R. Effects of climate change on the distribution of ecologically interacting species: Butterflies and their main food plants in Spain. Ecography 2014, 37, 1063–1072. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Volponi, S.N.; Stepanian, P.M.; Reynolds, D.R.; Richter, D.H. Using cloud radar to investigate the effect of rainfall on migratory insect flight. Methods Ecol. Evol. 2023, 14, 655–668. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Bu, S.H.; Tian, Z.Q. Flight of the Chinese white pine beetle (Coleoptera: Scolytidae) in relation to sex, body weight and energy reserve. Bull. Entomol. Res. 2011, 101, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Nyman, T. To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol. Rev. 2010, 85, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 2021, 46, 16–23. [Google Scholar] [CrossRef]
- Jermy, T. Evolution of Insect/Host Plant Relationships. Am. Nat. 1984, 124, 609–630. [Google Scholar] [CrossRef]
- Williams, I.S.; Jones, T.H.; Hartley, S.E. The role of resources and natural enemies in determining the distribution of an insect herbivore population. Ecol. Entomol. 2001, 26, 204–211. [Google Scholar] [CrossRef]
- Forrest, J.R.K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54. [Google Scholar] [CrossRef]
- Guisan, A.; Petitpierre, B.; Broennimann, O.; Daehler, C.; Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 2014, 29, 260–269. [Google Scholar] [CrossRef]
- Chown, S.L.; Hoffmann, A.A.; Kristensen, T.N.; Angilletta, M.J.J.; Stenseth, N.C.; Pertoldi, C. Adapting to climate change: A perspective from evolutionary physiology. Clim. Res. 2010, 43, 3–15. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Hall, A.; Norris, J.; Chen, D. Constraining the increased frequency of global precipitation extremes under warming. Nat. Clim. Chang. 2022, 12, 441–448. [Google Scholar] [CrossRef]
CLIMEX Parameter | Final Parameter Value |
---|---|
Temperature requirements | |
DV0—Lower temperature threshold (°C) | 10 |
DV1—Lower optimum temperature (°C) | 16 |
DV2—Upper optimum temperature (°C) | 32 |
DV3—Upper temperature threshold (°C) | 38 |
Soil moisture | |
SM0—Lower soil moisture threshold | 0.1 |
SM1—Lower optimal soil moisture | 0.5 |
SM2—Upper optimal soil moisture | 0.75 |
SM3—Upper soil moisture threshold | 1.5 |
Cold stress | |
TTCS—Cold stress temperature threshold (°C) | −28.9 |
THCS—Cold stress temperature rate (week−1) | 0.9 |
Heat stress | |
TTHS—Heat stress temperature threshold (°C) | 40 |
THHS—Heat stress temperature rate (week−1) | 0.2 |
Dry stress | |
SMDS—Dry stress threshold | 0.1 |
HDS—Dry stress rate (week−1) | 0.01 |
Wet stress | |
SMWS—Wet stress threshold | 1.8 |
HWS—Wet stress rate (week−1) | 0.1 |
Hot–wet stress | |
TTHW—Hot–wet temperature threshold (°C) | 28 |
MTHW—Hot–wet moisture threshold | 2.8 |
PHW—Stress accumulation rate (week−1) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, K.; Ling, L.; Deng, R.; Huang, B.; Cao, Y.; Wu, Q.; Ning, H.; Chen, H. Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios. Insects 2024, 15, 897. https://doi.org/10.3390/insects15110897
Xiao K, Ling L, Deng R, Huang B, Cao Y, Wu Q, Ning H, Chen H. Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios. Insects. 2024; 15(11):897. https://doi.org/10.3390/insects15110897
Chicago/Turabian StyleXiao, Kaitong, Lei Ling, Ruixiong Deng, Beibei Huang, Yu Cao, Qiang Wu, Hang Ning, and Hui Chen. 2024. "Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios" Insects 15, no. 11: 897. https://doi.org/10.3390/insects15110897
APA StyleXiao, K., Ling, L., Deng, R., Huang, B., Cao, Y., Wu, Q., Ning, H., & Chen, H. (2024). Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios. Insects, 15(11), 897. https://doi.org/10.3390/insects15110897