Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquitoes
2.2. Radiation Equipment
2.3. Pupal Irradiation
2.4. The Emergence Rate and Average Survival Time of Irradiated Males
2.5. The Fecundity and Egg Hatch Rate of Females That Mated with Irradiated Males
2.6. The Male Mating Competitiveness and Induced Sterility at Different Release Ratios
2.7. Statistical Analysis
3. Results
3.1. The Male Emergence Rate Subsequent to Radiation Exposure
3.2. The Fecundity, Egg Hatch Rate, and Induced Sterility of Irradiated Males
3.3. The Average Survival Time of Irradiated Males
3.4. Male Mating Competitiveness and Induced Sterility Under Different Release Ratios of Irradiated Males
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olmo, R.P.; Todjro, Y.M.H.; Aguiar, E.R.G.R.; de Almeida, J.P.P.; Ferreira, F.V.; Armache, J.N.; de Faria, I.J.S.; Ferreira, A.G.A.; Amadou, S.C.G.; Silva, A.T.S.; et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 2023, 8, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Jiating, C.; Shengqun, D.; Hongjuan, P. Insect-specific viruses used in biocontrol of mosquito-borne diseases. Interdiscip. Med. 2023, 1. [Google Scholar] [CrossRef]
- Kok, B.H.; Lim, H.T.; Lim, C.P.; Lai, N.S.; Leow, C.Y.; Leow, C.H. Dengue virus infection—A review of pathogenesis, vaccines, diagnosis and therapy. Virus Res. 2023, 324, 199018. [Google Scholar] [CrossRef]
- Hamer, D.H. Dengue—Perils and Prevention. N. Engl. J. Med. 2021, 384, 2252–2253. [Google Scholar] [CrossRef]
- Kolimenakis, A.; Heinz, S.; Wilson, M.L.; Winkler, V.; Yakob, L.; Michaelakis, A.; Papachristos, D.; Richardson, C.; Horstick, O. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLoS Neglected Trop. Dis. 2021, 15, e0009631. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Shaw, W.R.; Catteruccia, F. Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nat. Microbiol. 2019, 4, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Love, R.R.; Sikder, J.R.; Vivero, R.J.; Matute, D.R.; Schrider, D.R. Strong Positive Selection in Aedes aegypti and the Rapid Evolution of Insecticide Resistance. Mol. Biol. Evol. 2023, 40, msad072. [Google Scholar] [CrossRef]
- Bouyer, J.; Yamada, H.; Pereira, R.; Bourtzis, K.; Vreysen, M.J.B. Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique. Trends Parasitol. 2020, 36, 325–336. [Google Scholar] [CrossRef]
- Chen, C.; Aldridge, R.L.; Gibson, S.; Kline, J.; Aryaprema, V.; Qualls, W.; Xue, R.-D.; Boardman, L.; Linthicum, K.J.; Hahn, D.A. Developing the radiation-based sterile insect technique (SIT) for controlling Aedes aegypti: Identification of a sterilizing dose. Pest. Manag. Sci. 2023, 79, 1175–1183. [Google Scholar] [CrossRef]
- Yamada, H.; Parker, A.G.; Oliva, C.F.; Balestrino, F.; Gilles, J.R. X-ray-induced sterility in Aedes albopictus (Diptera: Culicidae) and male longevity following irradiation. J. Med. Entomol. 2014, 51, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Bourtzis, K.; Vreysen, M.J.B. Sterile Insect Technique (SIT) and Its Applications. Insects 2021, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Gray, P. Denial of shipment of radioactive material. Packag. Transp. Storage Secur. Radioact. Mater. 2011, 22, 72–77. [Google Scholar] [CrossRef]
- Salbu, B. Environmental impact and risk assessments and key factors contributing to the overall uncertainties. J. Environ. Radioact. 2016, 151 Pt 2, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, T.; Walder, J.M.; Parker, A.G.; Jessup, A.; Orozco-Dávila, D.; Islam, A.; Dammalage, T.; Pereira, R. Assessment of differences between X and gamma rays in order to validate a new generation of irradiators for insect sterilization. In Proceedings of the International Nuclear Atlantic Conference, Rio de Janeiro, Brazil, 27 September–2 October 2009; Available online: https://www.osti.gov/etdeweb/biblio/21385249 (accessed on 9 October 2024).
- Ndo, C.; Yamada, H.; Damiens, D.D.; N’do, S.; Seballos, G.; Gilles, J.R.L. X-ray sterilization of the An. arabiensis genetic sexing strain ‘ANO IPCL1’ at pupal and adult stages. Acta Trop. 2014, 131, 124–128. [Google Scholar] [CrossRef]
- Wang, L.-M.; Li, N.; Ren, C.-P.; Peng, Z.-Y.; Lu, H.-Z.; Li, D.; Wu, X.-Y.; Zhou, Z.-X.; Deng, J.-Y.; Zheng, Z.-H.; et al. Sterility of Aedes albopictus by X-ray Irradiation as an Alternative to γ-ray Irradiation for the Sterile Insect Technique. Pathogens 2023, 12, 102. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Li, N.; Zhao, H.-Y.; Wang, Y.-Q.; Yang, X.-Q.; Wu, K.-M. Sterility of Cydia pomonella by X ray irradiation as an alternative to gamma radiation for the sterile insect technique. Bull. Entomol. Res. 2023, 113, 72–78. [Google Scholar] [CrossRef]
- Yamada, H.; Kaboré, B.A.; Bimbilé Somda, N.S.; Ntoyi, N.L.; de Beer, C.J.; Bouyer, J.; Caceres, C.; Mach, R.L.; Gómez-Simuta, Y. Suitability of Raycell MK2 Blood X-ray Irradiator for the Use in the Sterile Insect Technique: Dose Response in Fruit Flies, Tsetse Flies and Mosquitoes. Insects 2023, 14, 92. [Google Scholar] [CrossRef]
- Zhang, H.; Trueman, E.; Hou, X.; Chew, D.X.; Deng, L.; Liew, J.; Chia, T.; Xi, Z.; Tan, C.H.; Cai, Y. Different mechanisms of X-ray irradiation-induced male and female sterility in Aedes aegypti. BMC Biol. 2023, 21, 274. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Lu, Z.; Zheng, X.; Ding, C.; Zou, Z.; Liang, Y.; Zhou, Y.; Li, X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022, 12, 1167. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Ma, Y.; Li, Q. China’s Particle Therapy Equipment Market: Opportunities Outweigh Challenges. Front. Public Health 2020, 8, 602776. [Google Scholar] [CrossRef]
- Qiu, H.; Cao, S.; Xu, R. Cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun. 2021, 41, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-N.; Rodriguez, S.D.; Gonzales, K.K.; Vulcan, J.; Cordova, J.J.; Mitra, S.; Adams, C.G.; Moses-Gonzales, N.; Tam, N.; Cluck, J.W.; et al. Toward Implementation of Mosquito Sterile Insect Technique: The Effect of Storage Conditions on Survival of Male Aedes aegypti Mosquitoes (Diptera: Culicidae) During Transport. J. Insect Sci. 2018, 18, 2. [Google Scholar] [CrossRef]
- Liney, G.P.; Whelan, B.; Oborn, B.; Barton, M.; Keall, P. MRI-Linear Accelerator Radiotherapy Systems. Clin. Oncol. (R. Coll. Radiol.) 2018, 30, 686–691. [Google Scholar] [CrossRef]
- Tenhunen, M.; Nyman, H.; Strengell, S.; Vaalavirta, L. Linac-based isocentric electron-photon treatment of radically operated breast carcinoma with enhanced dose uniformity in the field gap area. Radiother. Oncol. 2009, 93, 80–86. [Google Scholar] [CrossRef]
- Vassiliev, O.N.; Kry, S.F.; Kuban, D.A.; Salehpour, M.; Mohan, R.; Titt, U. Treatment-planning study of prostate cancer intensity-modulated radiotherapy with a Varian Clinac operated without a flattening filter. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1567–1571. [Google Scholar] [CrossRef]
- Litré, C.F.; Colin, P.; Noudel, R.; Peruzzi, P.; Bazin, A.; Sherpereel, B.; Bernard, M.H.; Rousseaux, P. Fractionated stereotactic radiotherapy treatment of cavernous sinus meningiomas: A study of 100 cases. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Followill, D.; Mikell, J.; Repchak, R.; Molineu, A.; Howell, R.; Salehpour, M.; Mourtada, F. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med. Phys. 2013, 40, 051710. [Google Scholar] [CrossRef]
- Furdova, A.; Horkovicova, K.; Justusova, P.; Sramka, M. Is it sufficient to repeat LINEAR accelerator stereotactic radiosurgery in choroidal melanoma? Bratisl. Lek. Listy 2016, 117, 456–462. [Google Scholar] [CrossRef]
- Ding, G.X.; Kucuker-Dogan, S.; Das, I.J. Technical note: Bremsstrahlung dose in the electron beam at extended distances in total skin electron therapy. Med. Phys. 2022, 49, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Schüler, E.; Trovati, S.; King, G.; Lartey, F.; Rafat, M.; Villegas, M.; Praxel, A.J.; Loo, B.W.; Maxim, P.G. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Haff, R.; Ovchinnikova, I.; Liang, P.; Mahoney, N.; Gee, W.; Gomez, J.; Toyofuku, N.; Jackson, E.; Hnasko, R.; Light, D. X-Ray-Based Irradiation of Larvae and Pupae of the Navel Orangeworm (Lepidoptera: Pyralidae). J. Econ. Entomol. 2020, 113, 1685–1693. [Google Scholar] [CrossRef]
- Kittayapong, P.; Ninphanomchai, S.; Limohpasmanee, W.; Chansang, C.; Chansang, U.; Mongkalangoon, P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Neglected Trop. Dis. 2019, 13, e0007771. [Google Scholar] [CrossRef]
- Fried, M. Determination of Sterile-Insect Competitiveness. J. Econ. Entomol. 1971, 64, 869–872. [Google Scholar] [CrossRef]
- Hasan, M.M.; Todoriki, S.; Miyanoshita, A.; Imamura, T. Age- and time interval-specific gamma radiation-induced DNA damage in adult maize weevils, Sitophilus zeamais Motschulsky, assessed using comet assays. Mutat. Res. 2012, 741, 95–100. [Google Scholar] [CrossRef]
- Sangsuwan, T.; Mannervik, M.; Haghdoost, S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 881, 503523. [Google Scholar] [CrossRef] [PubMed]
- Wittenborn, T.R.; Fahlquist Hagert, C.; Ferapontov, A.; Fonager, S.; Jensen, L.; Winther, G.; Degn, S.E. Comparison of gamma and x-ray irradiation for myeloablation and establishment of normal and autoimmune syngeneic bone marrow chimeras. PLoS ONE 2021, 16, e0247501. [Google Scholar] [CrossRef]
- Wang, J.; Trovati, S.; Borchard, P.M.; Loo, B.W.; Maxim, P.G.; Fahrig, R. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators. Med. Phys. 2017, 44, 6610–6620. [Google Scholar] [CrossRef]
- Wang, L.-M.; Li, N.; Zhang, M.; Tang, Q.; Lu, H.-Z.; Zhou, Q.-Y.; Niu, J.-X.; Xiao, L.; Peng, Z.-Y.; Zhang, C.; et al. The sex pheromone heptacosane enhances the mating competitiveness of sterile Aedes aegypti males. Parasites Vectors 2023, 16, 102. [Google Scholar] [CrossRef]
- Mehta, K. Technical Specification for an X-Ray System for the Irradiation of Insects for the Sterile Insect Technique and other Related Technologies. In Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture; IAEA: Vienna, Austria, 2017; Available online: https://www.iaea.org/sites/default/files/21/06/nafa-ipc-manual-x-ray-system-sit.pdf (accessed on 9 October 2024).
- Bliman, P.-A.; Cardona-Salgado, D.; Dumont, Y.; Vasilieva, O. Implementation of control strategies for sterile insect techniques. Math. Biosci. 2019, 314, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Vreysen, M.J.B.; Abd-Alla, A.M.M.; Bourtzis, K.; Bouyer, J.; Caceres, C.; de Beer, C.; Oliveira Carvalho, D.; Maiga, H.; Mamai, W.; Nikolouli, K.; et al. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010–2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. Insects 2021, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Simuta, Y.; Parker, A.; Caceres, C.; Vreysen, M.J.B.; Yamada, H. Characterization and dose-mapping of an X-ray blood irradiator to assess application potential for the sterile insect technique (SIT). Appl. Radiat. Isot. 2021, 176, 109859. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.; Park, C.G. X-ray radiation and developmental inhibition of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Int. J. Radiat. Biol. 2016, 92, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Goodman, C.L.; Ringbauer, J.; Geib, S.M.; Stanley, D. Larval x-ray irradiation influences protein expression in pupae of the oriental fruit fly, Bactrocera dorsalis. Arch. Insect Biochem. Physiol. 2016, 92, 192–209. [Google Scholar] [CrossRef]
- Balestrino, F.; Mathis, A.; Lang, S.; Veronesi, E. Sterilization of Hulecoeteomyia japonica japonica (=Aedes japonicus japonicus) (Theobald, 1901) by high-energy photon irradiation: Implications for a sterile insect technique approach in Europe. Med. Vet. Entomol. 2016, 30, 278–285. [Google Scholar] [CrossRef]
- Sohrabi, M.; Torkamani, M.E. Breakthrough whole body energy-specific and tissue-specific photoneutron dosimetry by novel miniature neutron dosimeter/spectrometer. Sci. Rep. 2021, 11, 20552. [Google Scholar] [CrossRef]
- Roselli, G.; Anfora, G.; Suckling, D.M.; Mazzoni, V.; Vanoni, V.; Menegotti, L.; Fellin, L.; Rossi Stacconi, M.V.; Ioriatti, C.; Cristofaro, M. Effects of Irradiation on Biology and Mating Behaviour of Wild Males of Brown Marmorated Stink Bug Using a 6 MV Medical Linear Accelerator. Insects 2023, 14, 460. [Google Scholar] [CrossRef]
- Du, W.; Hu, C.; Yu, C.; Tong, J.; Qiu, J.; Zhang, S.; Liu, Y. Comparison between pupal and adult X-ray radiation, designed for the sterile insect technique for Aedes albopictus control. Acta Trop. 2019, 199, 105110. [Google Scholar] [CrossRef]
- Culbert, N.J.; Somda, N.S.B.; Hamidou, M.; Soma, D.D.; Caravantes, S.; Wallner, T.; Wadaka, M.; Yamada, H.; Bouyer, J. A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. Malar. J. 2020, 19, 44. [Google Scholar] [CrossRef]
- Dobson, S.L. When More is Less: Mosquito Population Suppression Using Sterile, Incompatible and Genetically Modified Male Mosquitoes. J. Med. Entomol. 2021, 58, 1980–1986. [Google Scholar] [CrossRef] [PubMed]
- Bourtzis, K.; Lees, R.S.; Hendrichs, J.; Vreysen, M.J. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop. 2016, 157, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q.; Robinson, A.S. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol. 2003, 19, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G. Combining Sterile and Incompatible Insect Techniques for Aedes albopictus Suppression. Trends Parasitol. 2019, 35, 671–673. [Google Scholar] [CrossRef]
Irradiation | Emergence Rate (%) | Fecundity (Number of Eggs per Female per Batch) | Hatch Rate (%) |
---|---|---|---|
Control | 92.2 ± 1.0 a | 72.8 ± 0.3 a | 84.3 ± 5.9 a |
X-ray of 20 Gy | 90.0 ± 1.4 a | 72.7 ± 0.3 a | 29.0 ± 3.7 b |
X-ray of 40 Gy | 87.2 ± 1.2 a,b | 72.9 ± 0.4 a | 5.3 ± 2.6 c |
X-ray of 60 Gy | 86.1 ± 1.2 a,b | 72.5 ± 0.4 a | 0.3 ± 0.5 d |
γ-ray of 20 Gy | 89.4 ± 0.8 a,b | 73.0 ± 0.3 a | 6.2 ± 0.5 c |
γ-ray of 40 Gy | 82.8 ± 0.8 b,c | 72.7 ± 0.3 a | 0.3 ± 0.5 d |
γ-ray of 60 Gy | 74.4 ± 1.6 c | 72.2 ± 0.4 a | 0 ± 0 d |
Radiation (Gy) | Average Survival Time (X-Rays, Days) | Average Survival Time (γ-Rays, Days) |
---|---|---|
Control | 29.0 ± 0.2 a | 29.0 ± 0.2 a |
20 | 27.3 ± 0.2 b | 24.7 ± 0.2 c |
40 | 23.4 ± 0.2 c | 19.8 ± 0.2 e |
60 | 18.1 ± 0.2 d | 14.3 ± 0.1 f |
Release Ratio (I:U) | Hatch Rate (X-Rays, %) | Hatch Rate (γ-Rays, %) |
---|---|---|
0:1 | 83.3 ± 4.8 a | 86.3 ± 4.4 a |
1:1 | 57.8 ± 4.3 b,c | 61.2 ± 5.1 b |
3:1 | 37.3 ± 8.6 c,d | 42.2 ± 4.5 b,c,d |
5:1 | 29.7 ± 3.4 d | 27.3 ± 3.8 d |
7:1 | 24.5 ± 5.2 d | 22.5 ± 5.6 d |
1:0 | 1.0 ± 1.3 e | 0.3 ± 0.5 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, T.; Xiao, L.; Zhang, H.; Wang, C.; Zhang, W.; Zhang, M.; Wang, Y.; Deng, S. Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs. Insects 2024, 15, 898. https://doi.org/10.3390/insects15110898
Wang L, Liu T, Xiao L, Zhang H, Wang C, Zhang W, Zhang M, Wang Y, Deng S. Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs. Insects. 2024; 15(11):898. https://doi.org/10.3390/insects15110898
Chicago/Turabian StyleWang, Linmin, Tingting Liu, Liang Xiao, Haiting Zhang, Cunchen Wang, Weixian Zhang, Mao Zhang, Ying Wang, and Shengqun Deng. 2024. "Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs" Insects 15, no. 11: 898. https://doi.org/10.3390/insects15110898
APA StyleWang, L., Liu, T., Xiao, L., Zhang, H., Wang, C., Zhang, W., Zhang, M., Wang, Y., & Deng, S. (2024). Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs. Insects, 15(11), 898. https://doi.org/10.3390/insects15110898