Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Bee Collection, and Processing
2.2. Bee Functional Traits
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Effectiveness of Different Trap Types
4.2. Effectiveness in Different Forest Diversity Levels
4.3. Bias and Complementarity Among Trap Types
4.4. Taxonomic, Phylogenetic, and Functional Diversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Kevan, P.G.; Baker, H.G. Insects as flower visitors and pollinators. Annu. Rev. Entomol. 1983, 28, 407–453. [Google Scholar] [CrossRef]
- Cardinal, S.; Danforth, B.N. Bees diversified in the age of eudicots. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122686. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- James, L.H.; Michael, D.U.; Scott, H. Conserving pollinators in north American forests: A review. Nat. Areas J. 2016, 36, 427–439. [Google Scholar] [CrossRef]
- Tscharntke, T.; Sekercioglu, C.H.; Dietsch, T.V.; Sodhi, N.S.; Hoehn, P.; Tylianakis, J.M. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 2008, 89, 944–951. [Google Scholar] [CrossRef]
- Bartomeus, I.; Ascher, J.S.; Gibbs, J.; Danforth, B.N.; Wagner, D.L.; Hedtke, S.M.; Winfree, R. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. USA 2013, 110, 4656–4660. [Google Scholar] [CrossRef] [PubMed]
- Burkle, L.A.; Marlin, J.C.; Knight, T.M. Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science 2013, 339, 1611–1615. [Google Scholar] [CrossRef]
- Winfree, R.; Aguilar, R.; Vázquez, D.P.; LeBuhn, G.; Aizen, M.A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 2009, 90, 2068–2076. [Google Scholar] [CrossRef]
- Williams, N.M.; Hemberger, J. Climate, pesticides, and landcover drive declines of the western bumble bee. Proc. Natl. Acad. Sci. USA 2023, 120, e2221692120. [Google Scholar] [CrossRef]
- Ulyshen, M.; Horn, S. Declines of bees and butterflies over 15 years in a forested landscape. Curr. Biol. 2023, 33, 1346–1350.e3. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Nimmo, D.; Cunningham, S.; Walker, K.; Bennett, A. The response of wild bees to tree cover and rural land use is mediated by species’ traits. Biol. Conserv. 2019, 231, 1–12. [Google Scholar] [CrossRef]
- Guerra, C.A.; Bardgett, R.D.; Caon, L.; Crowther, T.W.; Delgado-Baquerizo, M.; Montanarella, L.; Navarro, L.M.; Orgiazzi, A.; Singh, B.K.; Tedersoo, L.; et al. Tracking, targeting, and conserving soil biodiversity. Science 2021, 371, 239–241. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Likens, G.E. The science and application of ecological monitoring. Biol. Conserv. 2010, 143, 1317–1328. [Google Scholar] [CrossRef]
- Prado, S.G.; Ngo, H.T.; Florez, J.A.; Collazo, J.A. Sampling bees in tropical forests and agroecosystems: A review. J. Insect Conserv. 2017, 21, 753–770. [Google Scholar] [CrossRef]
- Prendergast, K.S.; Menz, M.H.M.; Dixon, K.W.; Bateman, P.W. The relative performance of sampling methods for native bees: An empirical test and review of the literature. Ecosphere 2020, 11, e03076. [Google Scholar] [CrossRef]
- James, H.C.; Linda, J.K.; Robert, M. Sensitivity of systematic net sampling for detecting shifting patterns of incidence and abundance in a floral guild of bees at Larrea tridentata. J. Kans. Entomol. Soc. 2013, 86, 171–180. [Google Scholar] [CrossRef]
- Wilson, J.S.; Jahner, J.P.; Starley, L.; Calvin, C.L.; Ikerd, H.; Griswold, T. Sampling bee communities using pan traps: Alternative methods increase sample size. J. Insect Conserv. 2016, 20, 919–922. [Google Scholar] [CrossRef]
- O’Connor, R.S.; Kunin, W.E.; Garratt, M.P.D.; Potts, S.G.; Roy, H.E.; Andrews, C.; Jones, C.M.; Peyton, J.M.; Savage, J.; Harvey, M.C.; et al. Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods Ecol. Evol. 2019, 10, 2129–2140. [Google Scholar] [CrossRef]
- Doane, T.H.; Edmonds, D.; Yanites, B.J.; Lewis, Q. Topographic roughness on forested hillslopes: A theoretical approach for quantifying hillslope sediment flux from tree throw. Geophys. Res. Lett. 2021, 48, e2021GL094987. [Google Scholar] [CrossRef]
- Romey, W.L.; Ascher, J.S.; Powell, D.A.; Yanek, M. Impacts of logging on midsummer diversity of native bees (Apoidea) in a northern hardwood forest. J. Kans. Entomol. Soc. 2007, 80, 327–338. [Google Scholar] [CrossRef]
- Nelson, C.J.; Frost, C.M.; Nielsen, S.E. Narrow anthropogenic linear corridors increase the abundance, diversity, and movement of bees in boreal forests. For. Ecol. Manag. 2021, 489, 119044. [Google Scholar] [CrossRef]
- Thomas, M.; Sheikh, A. Malaise trap and insect sampling: Mini review. Biol. Bull. 2016, 2, 35–40. [Google Scholar]
- Campbell, J.W.; Hanula, J.L. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 2007, 11, 399–408. [Google Scholar] [CrossRef]
- Pei, C.K.; Hovick, T.J.; Duquette, C.A.; Limb, R.F.; Harmon, J.P.; Geaumont, B.A. Two common bee-sampling methods reflect different assemblages of the bee (Hymenoptera: Apoidea) community in mixed-grass prairie systems and are dependent on surrounding floral resource availability. J. Insect Conserv. 2021, 26, 69–83. [Google Scholar] [CrossRef]
- Portman, Z.M.; Bruninga-Socolar, B.; Cariveau, D.P.; Morrison, W. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 2020, 113, 337–342. [Google Scholar] [CrossRef]
- Geroff, R.K.; Gibbs, J.; McCravy, K.W. Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: Methodology and conservation considerations. J. Insect Conserv. 2014, 18, 951–964. [Google Scholar] [CrossRef]
- Chamorro, F.J.; Faria, C.M.A.; Araújo, F.S.; Freitas, B.M. Elevated pan traps optimise the sampling of bees, including when the availability of floral resources is high. Insect Conserv. Divers. 2022, 16, 16–32. [Google Scholar] [CrossRef]
- Salata, S.; Kalarus, K.; Borowiec, L.; Trichas, A.; Kujawa, K. How estimated ant diversity is biased by the sampling method? A case study of Crete: A Mediterranean biodiversity hotspot. Biodivers. Conserv. 2020, 29, 3031–3050. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Cheng, Y.-T.; Luo, X.-S.; Chen, Y.; He, Y.-C.; Li, Y.-P.; Huang, Z.-P.; Scott, M.B.; Xiao, W. Quantifying ant diversity and community in a subalpine forest mosaic: A comparison of two methods. J. Insect Conserv. 2023, 27, 813–824. [Google Scholar] [CrossRef]
- Acharya, R.S.; Burke, J.M.; Leslie, T.; Loftin, K.; Joshi, N.K. Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem. Sci. Rep. 2022, 12, 9783. [Google Scholar] [CrossRef] [PubMed]
- Cane, J.H.; Minckley, R.L.; Kervin, L.J. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: Pitfalls of pan-trapping. J. Kans. Entomol. Soc. 2000, 73, 225–231. [Google Scholar]
- Leong, J.M.; Thorp, R.W. Colour-coded sampling: The pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecol. Entomol. 1999, 24, 329–335. [Google Scholar] [CrossRef]
- Chase, M.H.; Fraterrigo, J.M.; Harmon-Threatt, A. Bee functional traits and their relationship to pollination services depend on many factors: A meta-regression analysis. Insect Conserv. Divers. 2023, 16, 313–323. [Google Scholar] [CrossRef]
- Shimizu, A.; Dohzono, I.; Nakaji, M.; Roff, D.A.; Miller, D.G., III; Osato, S.; Yajima, T.; Niitsu, S.; Utsugi, N.; Sugawara, T.; et al. Fine-tuned bee-flower coevolutionary state hidden within multiple pollination interactions. Sci. Rep. 2014, 4, 3988. [Google Scholar] [CrossRef]
- Joshi, N.K.; Leslie, T.; Rajotte, E.G.; Kammerer, M.A.; Otieno, M.; Biddinger, D.J. Comparative trapping efficiency to characterize bee abundance, diversity, and community composition in apple orchards. Ann. Entomol. Soc. Am. 2015, 108, 785–799. [Google Scholar] [CrossRef]
- Droege, S.A.M.; Tepedino, V.J.; Lebuhn, G.; Link, W.; Minckley, R.L.; Chen, Q.; Conrad, C. Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conserv. Divers. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Shi, X.-J.; Fan, P.-R.; Zhou, X.-B.; Sheng, J.-D.; Zhang, Y.-M. Relationship of species diversity between overstory trees and understory herbs along the environmental gradients in the Tianshan Wild Fruit Forests, Northwest China. J. Arid Land 2020, 12, 618–629. [Google Scholar] [CrossRef]
- Bukovinszky, T.; Verheijen, J.; Zwerver, S.; Klop, E.; Biesmeijer, J.C.; Wäckers, F.L.; Prins, H.H.T.; Kleijn, D. Exploring the relationships between landscape complexity, wild bee species richness and reproduction, and pollination services along a complexity gradient in the Netherlands. Biol. Conserv. 2017, 214, 312–319. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Ives, A.R.; Helmus, M.R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 2011, 81, 511–525. [Google Scholar] [CrossRef]
- Harmon-Threatt, A.N.; Ackerly, D.D. Filtering across spatial scales: Phylogeny, biogeography and community structure in bumble bees. PLoS ONE 2013, 8, e60446. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, S.D.; Forbes, A.A.; MacDougall, C.E.D. Variation in the phylogenetic diversity of wild bees at produce farms and prairies. Agric. Ecosyst. Environ. 2018, 259, 168–173. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef]
- Campbell, J.W.; Abbate, A.; West, N.M.; Straub, L.; Williams, G.R. Comparing three collection methods for pollinating insects within electric transmission rights-of-ways. J. Ins. Conserv. 2023, 27, 377–387. [Google Scholar] [CrossRef]
- Missa, O.; Basset, Y.; Alonso, A.; Miller, S.E.; Curletti, G.; De Meyer, M.; Eardley, C.; Mansell, M.W.; Wagner, T. Monitoring arthropods in a tropical landscape: Relative effects of sampling methods and habitat types on trap catches. J. Insect Conserv. 2008, 13, 103–118. [Google Scholar] [CrossRef]
- Ernst, C.M.; Loboda, S.; Buddle, C.M.; Dytham, C.; Bolger, T. Capturing northern biodiversity: Diversity of arctic, subarctic and north boreal beetles and spiders are affected by trap type and habitat. Insect Conserv. Divers. 2015, 9, 63–73. [Google Scholar] [CrossRef]
- Saunders, M.E.; Luck, G.W. Pan trap catches of pollinator insects vary with habitat. Aust. J. Entomol. 2012, 52, 106–113. [Google Scholar] [CrossRef]
- Stephen, W.P.; Rao, S. Sampling native bees in proximity to a highly competitive food resource (Hymenoptera: Apiformes). J. Kans. Entomol. Soc. 2007, 80, 369–376. [Google Scholar] [CrossRef]
- Basset, Y.; Cizek, L.; Cuénoud, P.; Didham Raphael, K.; Guilhaumon, F.; Missa, O.; Novotny, V.; Ødegaard, F.; Roslin, T.; Schmidl, J.; et al. Arthropod diversity in a tropical forest. Science 2012, 338, 1481–1484. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Ampoorter, E.; Barbaro, L.; Jactel, H.; Baeten, L.; Boberg, J.; Carnol, M.; Castagneyrol, B.; Charbonnier, Y.; Dawud, S.M.; Deconchat, M.; et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos 2020, 129, 133–146. [Google Scholar] [CrossRef]
- Li, Y.; Schmid, B.; Schuldt, A.; Li, S.; Wang, M.-Q.; Fornoff, F.; Staab, M.; Guo, P.-F.; Anttonen, P.; Chesters, D.; et al. Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nat. Ecol. Evol. 2023, 7, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Bruelheide, H.; Nadrowski, K.; Assmann, T.; Bauhus, J.; Both, S.; Buscot, F.; Chen, X.Y.; Ding, B.; Durka, W.; Erfmeier, A.; et al. Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 2014, 5, 74–89. [Google Scholar] [CrossRef]
- Yang, X.-F.; Bauhus, J.; Both, S.; Fang, T.; Härdtle, W.; Kröber, W.; Ma, K.-P.; Nadrowski, K.; Pei, K.-Q.; Scherer-Lorenzen, M.; et al. Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur. J. For. Res. 2013, 132, 593–606. [Google Scholar] [CrossRef]
- McCravy, K.W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 2018, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-W.; Chesters, D.; Dai, Q.-Y.; Niu, Z.-Q.; Beckschäfer, P.; Martin, K.; Zhu, C.-D. Integrative profiling of bee communities from habitats of tropical southern Yunnan (China). Sci. Rep. 2017, 7, 5336. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Li, W.Z.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Munch, K.; Boomsma, W.; Huelsenbeck, J.P.; Willerslev, E.; Nielsen, R. Statistical assignment of DNA sequences using Bayesian phylogenetics. Syst. Biol. 2008, 57, 750–757. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System. Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Lazarina, M.; Sgardelis, S.P.; Tscheulin, T.; Kallimanis, A.S.; Devalez, J.; Petanidou, T. Bee response to fire regimes in Mediterranean pine forests: The role of nesting preference, trophic specialization, and body size. Basic Appl. Ecol. 2016, 17, 308–320. [Google Scholar] [CrossRef]
- Potts, S.G.; Vulliamy, B.; Roberts, S.; O’Toole, C.; Dafni, A.; Ne’eman, G.; Willmer, P. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 2005, 30, 78–85. [Google Scholar] [CrossRef]
- Greenleaf, S.S.; Williams, N.M.; Rachael, W.; Claire, K. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Mostajeran, M.; Edriss, M.A.; Basiri, M.R. Analysis of colony and morphological characters in honey bees (Apis mellifera meda). Pak. J. Bio. Sci. 2006, 9, 2685–2688. [Google Scholar] [CrossRef]
- Holloway, B.A. Pollen-feeding in hover-flies (Diptera: Syrphidae). N. Z. J. Zoo. 1976, 3, 339–350. [Google Scholar] [CrossRef]
- Thorp, R.W. The collection of pollen by bees. Plant Syst. Evol. 2000, 222, 211–223. [Google Scholar] [CrossRef]
- Williams, N.M.; Crone, E.E.; T’ai, H.R.; Minckley, R.L.; Packer, L.; Potts, S.G. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 2010, 143, 2280–2291. [Google Scholar] [CrossRef]
- Munyuli, T. Influence of functional traits on foraging behaviour and pollination efficiency of wild social and solitary bees visiting coffee (Coffea canephora) flowers in Uganda. Grana 2014, 53, 69–89. [Google Scholar] [CrossRef]
- Xie, T.-T.; Orr, M.C.; Zhang, D.; Ferrari, R.R.; Li, Y.; Liu, X.-W.; Niu, Z.-Q.; Wang, M.-Q.; Zhou, Q.-S.; Hao, J.-S.; et al. Phylogeny-based assignment of functional traits to DNA barcodes outperforms distance-based, in a comparison of approaches. Mol. Ecol. Resour. 2023, 23, 1526–1539. [Google Scholar] [CrossRef]
- Chesters, D.; Ferrari, R.R.; Lin, X.-L.; Orr, M.C.; Staab, M.; Zhu, C.-D. Launching insectphylo.org; a new hub facilitating construction and use of synthesis molecular phylogenies of insects. Mol. Ecol. Resour. 2023, 23, 1556–1573. [Google Scholar] [CrossRef]
- Foster, Z.S.; Sharpton, T.J.; Grunwald, N.J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 2017, 13, e1005404. [Google Scholar] [CrossRef] [PubMed]
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Bauer, D.F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Riosmena-Rodriguez, R.; Andrade-Sorcia, G.; Robinson, N.M. Species Richness. In Encyclopedia of Estuaries; Kennish, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 612–613. [Google Scholar]
- Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D. A trait-based test for habitat filtering: Convex hull volume. Ecology 2006, 87, 1465–1471. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Villeger, S.; Mason, N.W.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Gower, J.C. A general coefficient of similarity and some of its properties. Biometrics 1971, 27, 857–871. [Google Scholar] [CrossRef]
- Chao, A.; Henderson, P.A.; Chiu, C.H.; Moyes, F.; Hu, K.H.; Dornelas, M.; Magurran, A.E. Measuring temporal change in alpha diversity: A framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods Ecol. Evol. 2021, 12, 1926–1940. [Google Scholar] [CrossRef]
- Jones Eugene, C.; Buchmann, S.L. Ultraviolet floral patterns as functional orientation cues in hymenopterous pollination systems. Anim. Behav. 1974, 22, 481–485. [Google Scholar] [CrossRef]
- Kevan, P.G. Vegetation and floral colors revealed by ultraviolet light: Interpretational difficulties for functional significance. Am. J. Bot. 1979, 66, 749–751. [Google Scholar] [CrossRef]
- Peitsch, D.; Fietz, A.; Hertel, H.; de Souza, J.; Ventura, D.F.; Menzel, R. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A 1992, 170, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Hall, M. Blue and yellow vane traps differ in their sampling effectiveness for wild bees in both open and wooded habitats. Agric. For. Entomol. 2018, 20, 487–495. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Marquis, R.J. Species richness and niche space for temperate and tropical folivores. Oecologia 2012, 168, 213–220. [Google Scholar] [CrossRef] [PubMed]
- De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K.; Lenoir, J. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [Google Scholar] [CrossRef]
- Gibbs, J.; Rehan, S.M.; Richards, M.H.; Rutgers-Kelly, A.; Sheffield, C.S.; Vickruck, J.L. Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada. Can. Entomol. 2011, 143, 279–299. [Google Scholar] [CrossRef]
- Gibbs, J.; Joshi, N.K.; Wilson, J.K.; Rothwell, N.L.; Powers, K.; Haas, M.; Gut, L.; Biddinger, D.J.; Isaacs, R. Does passive sampling accurately reflect the bee (Apoidea: Anthophila) communities pollinating apple and sour cherry orchards? Environ. Entomol. 2017, 46, 579–588. [Google Scholar] [CrossRef]
- Giles, V.M.E.; Ascher, J.S. A survey of the bees of the black rock forest preserve, New York. J. Hymenopt. Res. 2006, 15, 208–231. [Google Scholar]
- Hudson, J.; Horn, S.; Hanula, J.L. Assessing the efficiency of pan traps for collecting Bees (Hymenoptera: Apoidea). J. Entomol. Sci. 2020, 55, 321–328. [Google Scholar] [CrossRef]
Group1 | Group2 | Counts1 | Counts2 | Statistic | Counts1 | Counts2 | Statistic | Counts1 | Counts2 | Statistic |
---|---|---|---|---|---|---|---|---|---|---|
Taxonomic | Phylogenetic | Functional | ||||||||
PB | BV | 162 | 162 | 6592.50 ** | 162 | 162 | 7480.00 ** | 105 | 92 | 498.00 |
PB | PY | 162 | 162 | 7756.00 ** | 162 | 162 | 9484.00 ** | 105 | 110 | 1726.00 ** |
PB | PW | 162 | 162 | 8752.50 ** | 162 | 162 | 9067.00 ** | 105 | 100 | 1372.00 ** |
BV | PB | 162 | 162 | 1922.50 | 162 | 162 | 4301.00 | 92 | 105 | 1155.00 ** |
BV | PY | 162 | 162 | 4567.50 * | 162 | 162 | 6840.50 ** | 92 | 110 | 977.00 ** |
BV | PW | 162 | 162 | 5606.00 ** | 162 | 162 | 6508.00 ** | 92 | 100 | 677.00 ** |
PY | PB | 162 | 162 | 890.00 | 162 | 162 | 1542.00 | 110 | 105 | 620.00 |
PY | BV | 162 | 162 | 2813.50 | 162 | 162 | 3170.50 | 110 | 92 | 248.00 |
PY | PW | 162 | 162 | 4092.00 ** | 162 | 162 | 4141.00 | 110 | 100 | 455.00 |
PW | PB | 162 | 162 | 427.50 | 162 | 162 | 1664.00 | 100 | 105 | 281.00 |
PW | BV | 162 | 162 | 1654.00 | 162 | 162 | 2672.00 | 100 | 92 | 226.00 |
PW | PY | 162 | 162 | 1794.00 | 162 | 162 | 3240.00 | 100 | 110 | 406.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T.-T.; Wang, M.-Q.; Li, Y.; Su, C.-Y.; Zhang, D.; Zhou, Q.-S.; Niu, Z.-Q.; Yuan, F.; Liu, X.-W.; Ma, K.-P.; et al. Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests. Insects 2024, 15, 909. https://doi.org/10.3390/insects15110909
Xie T-T, Wang M-Q, Li Y, Su C-Y, Zhang D, Zhou Q-S, Niu Z-Q, Yuan F, Liu X-W, Ma K-P, et al. Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests. Insects. 2024; 15(11):909. https://doi.org/10.3390/insects15110909
Chicago/Turabian StyleXie, Ting-Ting, Ming-Qiang Wang, Yi Li, Cheng-Yong Su, Dan Zhang, Qing-Song Zhou, Ze-Qing Niu, Feng Yuan, Xiu-Wei Liu, Ke-Ping Ma, and et al. 2024. "Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests" Insects 15, no. 11: 909. https://doi.org/10.3390/insects15110909
APA StyleXie, T. -T., Wang, M. -Q., Li, Y., Su, C. -Y., Zhang, D., Zhou, Q. -S., Niu, Z. -Q., Yuan, F., Liu, X. -W., Ma, K. -P., Zhu, C. -D., Hao, J. -S., & Chesters, D. (2024). Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests. Insects, 15(11), 909. https://doi.org/10.3390/insects15110909