Toxicity of Eight Insecticides on Drosophila suzukii and Its Pupal Parasitoid Trichopria drosophilae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides
2.3. Toxicity of Insecticides on Drosophila suzukii at Different Life Stages
2.4. Acute Toxicity of Insecticides on Trichopria drosophilae
2.5. Effects of Insecticides on the Parasitism Rate of Trichopria drosophilae
2.6. Data Analysis
3. Results
3.1. Toxicity of Eight Insecticides on Drosophila suzukii
3.1.1. Toxicity at the Larval Stage
3.1.2. Toxicity at the Pupal Stage
3.1.3. Toxicity at the Adult Stage
3.2. Acute Toxicity of Eight Insecticides on Trichopria drosophilae
3.3. Effects of Insecticides on Parasitism and Eclosion Rates of Trichopria drosophilae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.C.; Bruck, D.J.; Dreves, A.J.; Ioriatti, C.; Vogt, H.; Baufeld, P. In Focus: Spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag. Sci. 2011, 67, 1349–1351. [Google Scholar] [CrossRef] [PubMed]
- Kenis, M.; Tonina, L.; Eschen, R.; van der Sluis, B.; Sancassani, M.; Mori, N.; Haye, T.; Helsen, H. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 2016, 89, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Dreves, A.J.; Cave, A.M.; Kawai, S.; Isaacs, R.; Miller, J.C.; Steven, V.T.; Bruck, D.J. Infestation of wild and ornamental non crop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2015, 108, 117–129. [Google Scholar] [CrossRef]
- Little, C.M.; Chapman, T.W.; Hillier, N.K. Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. J. Insect Sci. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Mitsui, H.; Takahashi, H.K.; Kimura, M.T. Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Popul. Ecol. 2006, 48, 233–237. [Google Scholar] [CrossRef]
- Yeh, D.A.; Drummond, F.A.; Gomez, M.I.; Fan, X. The economic impacts and management of spotted wing drosophila (Drosophila suzukii): The case of wild blueberries in maine. J. Econ. Entomol. 2020, 113, 1262–1269. [Google Scholar] [CrossRef]
- Mermer, S.; Tait, G.; Pfab, F.; Mirandola, E.; Bozaric, A.; Thomas, C.D.; Moeller, M.; Oppenheimer, K.G.; Xue, L.; Wang, L.; et al. Comparative insecticide application techniques (Micro-Sprinkler) against Drosophila suzukii Matsumura (Diptera: Drosophilidae) in highbush blueberry. Environ. Entomol. 2022, 51, 413–420. [Google Scholar] [CrossRef]
- Clymans, R.; Van Kerckvoorde, V.; Thys, T.; De Clercq, P.; Bylemans, D.; Beliën, T. Mass Trapping Drosophila suzukii, What Would It Take? A Two-Year Field Study on Trap Interference. Insects 2022, 13, 240. [Google Scholar] [CrossRef]
- Lin, Q.C.; Zhai, Y.F.; Zhou, X.H.; Zhang, X.Y.; Zhuang, Q.Y.; Zhou, C.G.; Yu, Y. Susceptibility of Drosophila suzukii to six common insecticides. Shandong Agric. Sci. 2015, 47, 92–95. [Google Scholar]
- Lai, S.G.; Lin, Q.C.; Zhai, Y.F.; Zheng, L.; Chen, H.; Zhang, S.C.; Li, L.L.; Yu, Y. Indoor Toxicity Determination of Five Insecticides to Fruit Flies. Shandong Agric. Sci. 2017, 49, 108–110. [Google Scholar]
- Shaw, B.; Hemer, S.; Cannon, M.F.L.; Rogai, F.; Fountain, M.T. Insecticide control of Drosophila suzukii in commercial sweet cherry crops under cladding. Insects 2019, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.C.; Yu, Y.; Yin, Y.Y.; Zheng, L.; Lai, S.G.; Zhai, Y.F. Indoors virulence test and field efficacy test of several insecticides against two common cherry fruit flies. North. Hortic. 2016, 17, 114–119. [Google Scholar]
- Yang, J.; Flaven-Pouchon, J.; Wang, Y.; Moussian, B. Spirotetramat reduces fitness of the spotted-wing Drosophila, Drosophila suzukii. Insect Sci. 2023, 31, 1222–1230. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect. Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef]
- Gress, B.E.; Zalom, F.G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 2018, 75, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Van Timmeren, S.; Mota-Sanchez, D.; Wise, J.C.; Isaacs, R. Baseline susceptibility of spotted wing Drosophila (Drosophila suzukii) to four key insecticide classes. Pest Manag. Sci. 2018, 74, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Herz, A.; Dingeldey, E.; Englert, C. More Power with Flower for the Pupal Parasitoid Trichopria drosophilae: A Candidate for Biological Control of the Spotted Wing Drosophila. Insects 2021, 12, 628. [Google Scholar] [CrossRef]
- Rossi-Stacconi, M.V.; Wang, X.; Stout, A.; Fellin, L.; Daane, K.M.; Biondi, A.; Stahl, J.M.; Buffington, M.L.; Anfora, G.; Hoelmer, K.A. Methods for rearing the parasitoid Ganaspis brasiliensis, a promising biological control agent for the invasive Drosophila suzukii. J. Vis. Exp. 2022, 184, e638982. [Google Scholar] [CrossRef]
- Nair, R.R.; Peterson, A.T. Mapping the global distribution of invasive pest Drosophila suzukii and parasitoid Leptopilina japonica: Implications for biological control. PeerJ 2023, 11, e15222. [Google Scholar] [CrossRef]
- Krüger, A.P.; Garcez, A.M.; Scheunemann, T.; Nava, D.E.; Garcia, F.R.M. Trichopria anastrephae as a Biological Control Agent of Drosophila suzukii in Strawberries. Neotrop. Entomol. 2024, 53, 216–224. [Google Scholar] [CrossRef]
- Schlesener, D.C.H.; Wollmann, J.; Pazini, J.B.; Padilha, A.C.; Grützmacher, A.D.; Garcia, F.R.M. Insecticide toxicity to Drosophila suzukii (Diptera: Drosophilidae) parasitoids: Trichopria anastrephae (Hymenoptera: Diapriidae) and Pachycrepoideus Vindemmiae (Hymenoptera: Pteromalidae). J. Econ. Entomol. 2019, 112, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.C.; Rakes, M.; Pasini, R.A.; Grützmacher, A.D.; Nava, D.E.; Bernardi, D. Toxicity and transgenerational effects of insecticides on Trichopria anastrephae (Hymenoptera: Diapriidae). Neotrop. Entomol. 2022, 51, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.A.; Moscardini, V.F.; da Costa, G.P.; Carvalho, G.A.; de Oliveira, R.L. Sublethal and transgenerational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae). Ecotoxicology 2014, 23, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Ricupero, M.; Wang, Z.; Desneux, N.; Biondi, A.; Lu, Y. Transgenerational effects of a neonicotinoid and a novel sulfoximine insecticide on the harlequin ladybird. Insects 2021, 12, 681. [Google Scholar] [CrossRef]
- Passos, L.C.; Soares, M.A.; Collares, L.J.; Malagoli, I.; Desneux, N.; Carvalho, G.A. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol. Gen. 2018, 38, 127–143. [Google Scholar] [CrossRef]
- Lisi, F.; Mansour, R.; Cavallaro, C.; Alınç, T.; Porcu, E.; Ricupero, M.; Zappalà, L.; Desneux, N.; Biondi, A. Sublethal effects of nine insecticides on Drosophila suzukii and its major pupal parasitoid Trichopria drosophilae. Pest Manag. Sci. 2023, 79, 5003–5014. [Google Scholar] [CrossRef]
- Wang, C.X.; He, L.; Hu, X.; Liu, X.L.; Yang, Z.Z.; Gu, S.X. Observation of parasitic behavior and study of artificial breeding environment of Trichopria drosophilae. Tianjin Agric. Sci. 2022, 28, 59–64. [Google Scholar]
- Dai, X.Y.; Chen, H.; Wang, R.J.; Su, L.; Gao, H.H.; Zheng, L.; Zhai, Y.F.; Liu, Y. Biological characteristics of Trichopria drosophilae at different ages after parasitizing Drosoph. melanogaster. Shandong Agric. Sci. 2024, 56, 115–119. [Google Scholar]
- Jin, L.; Zhang, W.Z.; Zhang, C.Q.; Zhu, G.N.; Liu, Y.H. Evaluation of toxicity of nine commonly used pesticides to Trichogramma chilonis. Chin. J. Pestic. Sci. 2021, 23, 716–723. [Google Scholar]
- Blouquy, L.; Mottet, C.; Olivares, J.; Plantamp, C.; Siegwart, M.; Barrès, B. How varying parameters impact insecticide resistance bioassay: An example on the worldwide invasive pest Drosophila suzukii. PLoS ONE 2021, 16, e0247756. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crouse, G.D.; Dripps, J.E.; Anzeveno, P.; Martynow, J.; Deamicis, C.V.; Gifford, J. Neural network-based QSAR and insecticide discovery: Spinetoram. J. Comput. Aided Mol. Des. 2008, 22, 393–401. [Google Scholar] [CrossRef] [PubMed]
- He, L.M.; Troiano, J.; Wang, A.; Goh, K. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev. Environ. Contam. Toxicol. 2008, 195, 71–91. [Google Scholar]
- Shawer, R.; El-Leithy, E.S.; Abdel-Rashid, R.S.; Eltaweil, A.S.; Baeshen, R.S.; Mori, N. Preparation of Lambda-Cyhalothrin-Loaded Chitosan Nanoparticles and their bioactivity against Drosophila suzukii. Nanomaterials 2022, 12, 3110. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Bai, J.; Li, L.; Liang, L.; Ma, X.; Ma, L. Sublethal concentration of emamectin benzoate inhibits the growth of gypsy moth by inducing digestive dysfunction and nutrient metabolism disorder. Pest Manag. Sci. 2021, 77, 4073–4083. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.B.; Jiang, L.L.; Gong, Y.; Gong, Q.T.; Fan, K.; Fu, L.; Dong, F. Control Effect of Three Insecticides Against Cherry Drosophila. J. Agric. 2021, 11, 35–38. [Google Scholar]
- Li, Z.; Zhang, J.; Wu, Y.G.; Qiao, K.; Wang, K.Y.; Jiang, L.L. Toxicity and safety evaluation of 23 pesticides on Trichogramma dendrolimi. J. Environ. Entomol. 2018, 40, 224–230. [Google Scholar]
- Li, P.M.; Shen, Y.; Zhou, F.Y.; Han, Y.J.; Gao, T.C.; Zhang, Y. Acute Toxicity and Safety Evaluation of 13 Farmland Pesticides on Trichogramma dendrolimi. J. Anhui Agric. Sci. 2019, 47, 165–167. [Google Scholar]
- Liu, T.X.; Zhang, Y. Side effects of two reduced-risk insecticides, indoxacarb and spinosad, on two species of Trichogramma (Hymenoptera: Trichogrammatidae) on cabbage. Ecotoxicology 2012, 21, 2254–2263. [Google Scholar] [CrossRef]
- Mertz, R.W.; Hesler, S.; Pfannenstiel, L.J.; Norris, R.H.; Loeb, G.; Scott, J.G. Insecticide resistance in Drosophila melanogaster in vineyards and evaluation of alternative insecticides. Pest Manag. Sci. 2022, 78, 1272–1278. [Google Scholar] [CrossRef]
- Gress, B.E.; Zalom, F.G. Development and validation of a larval bioassay and selection protocol for insecticide resistance in Drosophila suzukii. PLoS ONE 2022, 17, e0270747. [Google Scholar] [CrossRef]
Insecticide Chemical Class | Active Ingredient | Concentration of Active Ingredient (g/L) | Production Enterprise | Target Pest | Crop | Active Ingredient Max Recommended Field Dose (g/ha) |
---|---|---|---|---|---|---|
Diamides | Chlorantraniliprole | 350 | FMC Corporation Shanghai Agricultural Technology Co., Ltd. Shanghai, China | Fruit moths | Peach and apple | 39.90 |
Spinosyns | Spinetoram | 60 | Codihua Agricultural Technology Co., Ltd. Weifang, China | Fruit flies | Waxberry | 36.00 |
Avermectins | Emamectin benzoate | 50 | Shandong Jingbo Agrochemical Technology Co., Ltd. Shanghai, China | Trips | Mango | 13.68 |
Pyrethroids | Lambda-cyhalothrin | 25 | Syngenta (Nantong) Crop Protection Co., Ltd. Nantong, Chian | Fruit moths and aphids | Orange and apple | 12.00 |
Neonicotinoids | Imidacloprid | 700 | Bayer Crop Science (China) Co., Ltd. Hangzhou, China | Fruit moths and aphids | Apple | 63.00 |
Avermectins | Abamectin | 180 | Zhejiang Shijia Technology Co., Ltd. Hangzhou, China | Fruit moths and spider mites | Orange and apple | 4.50 |
Botanical insecticides | Sophocarpidine | 15 | Chengdu New Chaoyang Crop Science Co., Ltd. Chengdu, China | Aphids | Grape, orange, and strawberry | 9.63 |
Botanical insecticides | Azadirachtin | 3 | Chengdu LvJin Biotechnology Co., Ltd. Chengdu, China | Aphids | Vegetables and strawberry | 11.25 |
Active Ingredient | Concentration (mg/L) | |||
---|---|---|---|---|
D. suzukii Larvae | D. suzukii Pupae | D. suzukii Adults | Trichopria drosophilae | |
Chlorantraniliprole | 160, 120, 80, 40, 20, 10 | 320, 80, 20, 5, 1.25 | 640, 320, 160, 80, 40, 20 | 399, 199.5, 99.75, 49.88, 24.94, 12.47 |
Spinetoram | 2, 1, 0.5, 0.25, 0.125, 0.0625 | 32, 8, 2, 0.5, 0.125 | 2, 1, 0.5, 0.25, 0.125, 0.0625 | 360, 180, 90, 45, 22, 11.25 |
Emamectin benzoate | 0.1, 0.05, 0.025, 0.0125, 0.0625, 0.03125 | 32, 8, 2, 0.5, 0.125 | 16, 8, 4, 2, 1, 0.5 | 136.8, 68.4, 34.2, 17.1, 8.55, 4.28 |
Lambda-cyhalothrin | 4, 2, 1, 0.5, 0.25, 0.125 | 32, 8, 2, 0.5, 0.125 | 8, 4, 2, 1, 0.5, 0.25 | 120, 60, 30, 15, 7.5, 3.75 |
Imidacloprid | 320, 160, 80, 40, 20, 10 | 320, 80, 20, 5, 1.25 | 80, 40, 20, 10, 5, 2.5 | 630, 315, 157.5, 78.75, 39.38, 19.69 |
Abamectin | 2, 1, 0.5, 0.25, 0.125, 0.0625 | 640, 160, 40, 10, 2.5 | 160, 120, 80, 40, 20, 10 | 45, 22.5, 11.25, 5.63, 2.81, 1.41 |
Sophocarpidine | 3.2, 1.6, 0.8, 0.4, 0.2, 0.1 | 640, 160, 40, 10, 2.5 | 320, 160, 80, 40, 20, 10 | 96.3, 48.15, 24.08, 12.04, 6.02, 3.01 |
Azadirachtin | 1200, 960, 640, 160, 40, 10 | 640, 160, 40, 10, 2.5 | 320, 160, 80, 40, 20, 10 | 112.5, 56.25, 28.13, 14.06, 7.03, 3.52 |
Active Ingredient | Probit Model | SE (Slope) | SE (Intercept) | LC50 (95% Confidence Interval) | LC10 (95% Confidence Interval) | R2 | Chi-Square | p Value |
---|---|---|---|---|---|---|---|---|
Chlorantraniliprole | Y = 2.01X − 3.03 | 0.20 | 0.34 | 32.09 (19.46–46.78) | 7.41 (1.92–13.62) | 0.98 | 9.16 | 0.57 |
Spinetoram | Y = 1.39X + 0.90 | 0.16 | 0.11 | 0.23 (0.17–0.29) | 0.027 (0.013–0.045) | 0.93 | 4.82 | 0.31 |
Emamectin benzoate | Y = 1.99X + 3.32 | 0.20 | 0.34 | 0.021 (0.014–0.032) | 0.0048 (0.0017–0.0081) | 0.92 | 8.14 | 0.09 |
Lambda-cyhalothrin | Y = 1.54X + 0.50 | 0.16 | 0.084 | 0.47 (0.37–0.59) | 0.07 (0.037–0.11) | 0.99 | 0.91 | 0.92 |
Imidacloprid | Y = 0.96X − 1.52 | 0.14 | 0.26 | 38.31 (25.82–53.38) | 1.79 (0.42–4.057) | 0.99 | 0.45 | 0.98 |
Abamectin | Y = 2.30X + 1.05 | 0.24 | 0.13 | 0.35 (0.29–0.42) | 0.10 (0.063–0.13) | 0.98 | 6.00 | 0.20 |
Sophocarpidine | Y = 2.40X + 0.80 | 0.23 | 0.11 | 0.46 (0.39–0.55) | 0.14 (0.094–0.18) | 0.98 | 0.95 | 0.57 |
Azadirachtin | Y = 1.43X − 3.90 | 0.15 | 0.41 | 526.55 (305.02–1000.44) | 67.34 (13.85–138.29) | 0.95 | 8.72 | 0.07 |
Active Ingredient | Probit Model | SE (Slope) | SE (Intercept) | LC50 | 95% Confidence Interval | R2 | Chi-Square | p Value |
---|---|---|---|---|---|---|---|---|
Chlorantraniliprole | Y = 1.52X − 2.72 | 0.14 | 0.28 | 61.68 | 38.62–90.14 | 0.99 | 7.41 | 0.12 |
Spinetoram | Y = 2.76X + 1.37 | 0.23 | 0.14 | 0.32 | 0.28–0.37 | 0.99 | 3.58 | 0.47 |
Emamectin benzoate | Y = 2.03X − 0.74 | 0.20 | 0.13 | 2.31 | 1.88–2.75 | 0.99 | 2.13 | 0.71 |
Lambda-cyhalothrin | Y = 2.97X + 0.29 | 0.25 | 0.084 | 0.80 | 0.71–0.90 | 0.98 | 4.64 | 0.33 |
Imidacloprid | Y = 3.99X − 3.62 | 0.37 | 0.36 | 8.11 | 7.17–9.13 | 0.99 | 1.19 | 0.88 |
Abamectin | Y = 2.31X − 3.90 | 0.19 | 0.33 | 48.58 | 35.22–65.60 | 0.95 | 8.71 | 0.07 |
Sophocarpidine | Y = 1.77X − 3.23 | 0.16 | 0.31 | 67.49 | 55.46–82.37 | 0.96 | 4.85 | 0.30 |
Azadirachtin | Y = 2.38X − 4.17 | 0.19 | 0.34 | 56.74 | 48.99–65.81 | 0.98 | 6.29 | 0.18 |
Active Ingredient | Probit Model | SE (Slope) | SE (Intercept) | LC50 | 95% Confidence Interval | R2 | Safety Factor | Risk Level | Chi-Square | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Spinetoram | Y = 1.34X − 3.25 | 0.19 | 0.40 | 266.98 | 195.60–415.12 | 0.99 | 6.5 | Low | 0.52 | 0.97 |
Lambda-cyhalothrin | Y = 2.81X − 5.01 | 0.29 | 0.52 | 60.41 | 51.92–71.10 | 0.99 | 4.4 | Medium | 3.39 | 0.47 |
Imidacloprid | Y = 1.40X − 2.80 | 0.13 | 0.28 | 100.58 | 75.23–135.91 | 0.99 | 1.4 | Medium | 3.59 | 0.46 |
Azadirachtin | Y = 3.30X − 5.96 | 0.45 | 0.82 | 63.99 | 54.94–74.68 | 0.97 | 5.0 | Low | 4.24 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Wang, Y.; Chen, P.; Zhang, A.; Zhou, X.; Zhuang, Q. Toxicity of Eight Insecticides on Drosophila suzukii and Its Pupal Parasitoid Trichopria drosophilae. Insects 2024, 15, 910. https://doi.org/10.3390/insects15110910
Gao H, Wang Y, Chen P, Zhang A, Zhou X, Zhuang Q. Toxicity of Eight Insecticides on Drosophila suzukii and Its Pupal Parasitoid Trichopria drosophilae. Insects. 2024; 15(11):910. https://doi.org/10.3390/insects15110910
Chicago/Turabian StyleGao, Huanhuan, Yan Wang, Peng Chen, Ansheng Zhang, Xianhong Zhou, and Qianying Zhuang. 2024. "Toxicity of Eight Insecticides on Drosophila suzukii and Its Pupal Parasitoid Trichopria drosophilae" Insects 15, no. 11: 910. https://doi.org/10.3390/insects15110910
APA StyleGao, H., Wang, Y., Chen, P., Zhang, A., Zhou, X., & Zhuang, Q. (2024). Toxicity of Eight Insecticides on Drosophila suzukii and Its Pupal Parasitoid Trichopria drosophilae. Insects, 15(11), 910. https://doi.org/10.3390/insects15110910