Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. Scanning Electron Microscopy
2.3. Transmission Electron Microscopy
2.4. Microcomputed Tomography and 3D Reconstruction
2.5. Determination of Wetting Properties
2.6. Data Analysis
3. Results
3.1. General Overview
3.2. Three-Dimensional Reconstruction
3.3. Measurement of the Wetting Properties
3.4. Internal Organization
3.4.1. Dioptric Apparatus
3.4.2. Pigment Cells
3.4.3. Photoreceptive Elements
4. Discussion
4.1. General Overview
4.2. Dioptric Apparatus
4.3. Photoreceptive Elements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blagodatski, A.; Kryuchkov, M.; Sergeev, A.; Klimov, A.A.; Shcherbakov, M.R.; Enin, G.A.; Katanaev, V.L. Under- and over-water halves of Gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Sci. Rep. 2014, 4, 6004. [Google Scholar] [CrossRef]
- Jami, L.; Gustafson, G.T.; Steinmann, T.; Piñeirua, M.; Casas, J. Overcoming drag at the water-air interface constrains body size in whirligig beetles. Fluids 2021, 6, 249. [Google Scholar] [CrossRef]
- Jäch, M.A.; Mazzoldi, P.; Sharma, S.; Sharma, P. Remarkable cases of diurnal mass aggregations of Oriental species of Orectochilus subg. Patrus Aübe. Koleopterol. Rundsch. 2010, 80, 15–23. [Google Scholar]
- Heinrich, B.; Vogt, F.D. Aggregation and foraging behavior of whirligig beetles (Gyrinidae). Behav. Ecol. Sociobiol. 1980, 7, 179–186. [Google Scholar] [CrossRef]
- Henrikson, B.I.; Stenson, J.A. Alarm substance in Gyrinus aeratus (Coleoptera, Gyrinidae). Oecologia 1993, 93, 191–194. [Google Scholar] [CrossRef]
- Romey, W.L. Position preferences within groups: Do whirligigs select positions which balance feeding opportunities with predator avoidance? Behav. Ecol. Sociobiol. 1995, 37, 195–200. [Google Scholar] [CrossRef]
- Romey, W.L.; Galbraith, E. Optimal group positioning after a predator attack: The influence of speed, sex, and satiation within mobile whirligig swarms. Behav. Ecol. 2008, 19, 338–343. [Google Scholar] [CrossRef]
- Fish, F.E.; Nicastro, A.J. Aquatic turning performance by the whirligig beetle: Constraints on maneuverability by a rigid biological system. J. Exp. Biol. 2003, 206, 1649–1656. [Google Scholar] [CrossRef]
- Xu, Z.; Lenaghan, S.C.; Reese, B.E.; Jia, X.; Zhang, M. Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae). Public Libr. Sci. Comput. Biol. 2012, 8, e1002792. [Google Scholar] [CrossRef] [PubMed]
- Oakley, T.H.; Plachetzki, D.C.; Rivera, A.S. Furcation, field-splitting and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Struct. Dev. 2007, 36, 386–400. [Google Scholar] [CrossRef]
- Miller, K.B.; Bergsten, J. Phylogeny and classification of whirligig beetles (Coleoptera: Gyrinidae): Relaxed-clock model outperforms parsimony and time-free Bayesian analyses. Syst. Entomol. 2012, 37, 706–746. [Google Scholar] [CrossRef]
- Burghause, F. Adaptationserscheinungen in den komplexaugen von Gyrinus natator L. (Coleoptera: Gyrinidae). Int. J. Insect Morphol. Embryol. 1976, 5, 335–347. [Google Scholar] [CrossRef]
- Folkerts, G.W. Spanglerogyrus albiventris, a primitive new genus and species of Gyrinidae (Coleoptera) from Alabama. Coleopt. Bull. 1979, 33, 1–8. [Google Scholar]
- Lin, C.; Strausfeld, N.J. A precocious adult visual center in the larva defines the unique optic lobe of the split-eyed whirligig beetle Dineutus sublineatus. Front. Zool. 2013, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Paulus, H.V. Eye structure and the monophyly of the arthropod eye. Arthropod Phylogeny 1979, 6, 299–383. [Google Scholar]
- Lin, C.; Cronin, T.W. Two visual systems in one eyestalk: The unusual optic lobe metamorphosis in the stomatopod Alima pacifica. Dev. Neurobiol. 2018, 78, 3–14. [Google Scholar] [CrossRef]
- Chou, A.; Lin, C.; Cronin, T.W. Visual metamorphoses in insects and malacostracans: Transitions between an aquatic and terrestrial life. Arthropod Struct. Dev. 2020, 59, 100974. [Google Scholar] [CrossRef] [PubMed]
- Alkaladi, A.; Zeil, J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J. Comp. Neurol. 2014, 522, 1264–1283. [Google Scholar] [CrossRef]
- Wen, C.; Ma, T.; Deng, Y.; Liu, C.; Liang, S.; Wen, J.; Wang, C.; Wen, X. Morphological and optical features of the apposition compound eye of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Micron 2020, 128, 102769. [Google Scholar] [CrossRef]
- Salamanca, D.A.; Brown, F. Sub-functionalization of dorsal and ventral eyes in a whirligig beetle (Coleoptera: Gyrinidae). Neotrop. Biodivers. 2018, 4, 138–144. [Google Scholar] [CrossRef]
- Lin, C.; Strausfeld, N.J. Visual Inputs to the Mushroom Body Calyces of the Whirligig Beetle Dineutus sublineatus: Modality Switching in an Insect. J. Comp. Neurol. 2012, 520, 2562–2574. [Google Scholar] [CrossRef]
- Friedrich, M.; Wood, E.J.; Wu, M. Developmental evolution of the insect retina: Insights from standardized numbering of homologous photoreceptors. Exp. Zool. Part B Mol. Dev. Evol. 2011, 316, 484–499. [Google Scholar] [CrossRef]
- Romell, J.; Jie, V.W.; Miettinen, A.; Baird, E.; Hertz, H.M. Laboratory phase-contrast nanotomography of unstained Bombus terrestris compound eyes. J. Microsc. 2021, 283, 29–40. [Google Scholar] [CrossRef]
- Smith, D.B.; Bernhardt, G.; Raine, N.E.; Abel, R.L.; Sykes, D.; Ahmed, F.; Pedroso, I.; Gill, R.J. Exploring miniature insect brains using micro-C.T scanning techniques. Sci. Rep. 2016, 6, 21768. [Google Scholar] [CrossRef] [PubMed]
- Rother, L.; Kraft, N.; Smith, D.B.; El Jundi, B.; Gill, R.J.; Pfeiffer, K. A micro-C.T-based standard brain atlas of the bumblebee. Cell Tissue Res. 2021, 386, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Hörnschemeyer, T.; Beutel, R.G.; Pasop, F. Head structures of Priacma serrata leconte (Coleptera, archostemata) inferred from X-ray tomography. J. Morphol. 2002, 252, 298–314. [Google Scholar] [CrossRef]
- Beutel, R.G.; Yan, E.; Richter, A.; Büsse, S.; Miller, K.B.; Yavorskaya, M.; Wipfler, B. The head of Heterogyrus milloti (Coleoptera: Gyrinidae) and its phylogenetic implications. Arthr. Syst. Phylogeny 2017, 75, 261–280. [Google Scholar] [CrossRef]
- Beutel, R.G.; Yan, E.; Yavorskaya, M.; Büsse, S.; Gorb, S.N.; Wipfler, B. On the thoracic anatomy of the Madagascan Heterogyrus milloti and the phylogeny of Gyrinidae (Coleoptera). Syst. Entomol. 2019, 44, 336–360. [Google Scholar] [CrossRef]
- Mattei, A.L.; Riccio, M.L.; Avila, F.W.; Wolfner, M.F. Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proc. Natl. Acad. Sci. USA 2015, 112, 8475–8480. [Google Scholar] [CrossRef]
- Li, D.; Zhang, K.; Zhu, P.; Wu, Z.; Zhou, H. 3D configuration of mandibles and controlling muscles in rove beetles based on micro-C.T technique. Anal. Bioanal. Chem. 2011, 401, 817–825. [Google Scholar] [CrossRef]
- Alba-Alejandre, I.; Alba-Tercedor, J.; Vega, F.E. Anatomical study of the coffee berry borer (Hypothenemus hampei) using micro-computed tomography. Sci. Rep. 2019, 9, 17150. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, Y.; Kasson, M.T.; Stanley, E.L.; Gillett, C.P.; Johnson, A.J.; Zhang, M.; Hulcr, J. Structure of the Ambrosia beetle (Coleoptera: Curculionidae) mycangia revealed through micro-computed tomography. J. Insect Sci. 2018, 18, 13. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. The dioptric system of the eye of Cybister (Dytiscidae: Coleoptera). Proc. R. Soc. Lond. Ser. B Biol. Sci. 1973, 183, 159–178. [Google Scholar]
- Land, M.F. Optics and vision in invertebrates. Handb. Sens. Physiol. 1981, 7, 471–592. [Google Scholar]
- Meyer-Rochow, V.B.; Gál, J. Dimensional limits for arthropod eyes with superposition optics. Vis. Res. 2004, 44, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Rochow, V.B. The eyes of Creophilus erythrocephalus F. and Sartallus signatus sharp (Staphylinidae: Coleoptera). Z. Zellforsch. Mikrosk. Anat. 1972, 133, 59–86. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M. Eye ultrastructure investigation of Scaphidium japonum Reitter (Coleoptera: Staphylinidae: Scaphidiidae). J. Entomol. Zool. 2013, 1, 8–16. [Google Scholar]
- Døving, K.B.; Miller, W.H. Function of insect compound eyes containing crystalline tracts. J. Gen. Physiol. 1969, 54, 250–267. [Google Scholar] [CrossRef]
- Horridge, G.A. The eye of Dytiscus (Coleoptera). Tissue Cell 1969, 1, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Rochow, V.B. Structure and possible function of the unusual compound eye of Sericesthis geminata (Coleoptera: Scarabaeidae). N. Z. J. Zool. 1977, 4, 21–34. [Google Scholar] [CrossRef]
- Caveney, S. The phylogenetic significance of ommatidium structure in the compound eyes of polyphagan beetles. Can. J. Zool. 1986, 64, 1787–1819. [Google Scholar] [CrossRef]
- Nilsson, D.E. Optics and Evolution of the Compound Eye. Facets of Vision; Springer: Berlin/Heidelberg, Germany, 1989; pp. 30–73. [Google Scholar]
- Horridge, G.A. Alternatives to superposition images in clear-zone compound eyes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1971, 179, 97–124. [Google Scholar]
- Snyder, A.W.; Stavenga, D.G.; Laughlin, S.B. Spatial information capacity of compound eyes. J. Comp. Physiol. 1977, 116, 183–207. [Google Scholar] [CrossRef]
- Parker, A.R.; Mckenzie, D.R.; Large, M.C. Multilayer reflectors in animals using green and gold beetles as contrasting examples. J. Exp. Biol. 1998, 201, 1307–1313. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Horridge, G.A. The eye of Anoplognathus (Coleoptera, Scarabaeidae). Proc. R. Soc. Lond. Ser. B Biol. Sci. 1975, 188, 1–30. [Google Scholar]
- Belušič, G.; Šporar, K.; Meglič, A. Extreme polarisation sensitivity in the retina of the corn borer moth Ostrinia. J. Exp. Biol. 2017, 220, 2047–2056. [Google Scholar]
- Alkaladi, A.; How, M.J.; Zeil, J. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms. J. Comp. Physiol. A 2013, 199, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Chiussi, R.; Díaz, H. Multiple reference usage in the zonal recovery behavior by the fiddler crab Uca cumulanta. J. Crustac. Biol. 2001, 21, 407–413. [Google Scholar] [CrossRef]
- Horridge, G.A.; Mimura, K.; Tsukahara, Y. Fly photoreceptors: Spectral and polarized light sensitivity in the drone fly Eristalis. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1975, 190, 225–237. [Google Scholar]
- Horridge, G.A.; Walcott, B.; Ioannides, A.C. The tiered retina of Dytiscus: A new type of compound eye. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1970, 175, 83–94. [Google Scholar]
- Kuster, J.E. Comparative structure of compound eyes of Cicindelidae and Carabidae (Coleoptera): Evolution of scotopy and photopy. Quaest. Entomol. 1979, 15, 297–334. [Google Scholar]
- Jia, L.P.; Liang, A.P. An apposition-like compound eye with a layered rhabdom in the small diving beetle Agabus japonicus (Coleoptera, Dytiscidae). J. Morphol. 2014, 275, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Wachmann, E.; WD, S. Zur morphologie des dorsal-und ventralauges des taumelfkaeters Gyrinus substriatus (steph.) (Coleoptera, Cyrinidae). Zoomorphologie 1975, 82, 43–61. [Google Scholar] [CrossRef]
Parameters | N | Units | Average |
---|---|---|---|
Body size | 8 | mm | 14.5 ± 2.0 |
Facet number in dorsal eyes | 8 | - | 1913 ± 44.5 |
Facet number in ventral eyes | 8 | - | 3099 ± 86.2 |
Compound area in dorsal eyes | 8 | mm2 | 1.22 ± 0.08 |
Compound area in ventral eyes | 8 | mm2 | 1.66 ± 0.12 |
Hexagonal facet area | 40 | µm2 | 408 ± 12.7 |
Pentagonal facet area | 40 | µm2 | 436.17 ± 43.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muinde, J.; Zhang, T.-H.; Liang, Z.-L.; Liu, S.-P.; Kioko, E.; Huang, Z.-Z.; Ge, S.-Q. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). Insects 2024, 15, 122. https://doi.org/10.3390/insects15020122
Muinde J, Zhang T-H, Liang Z-L, Liu S-P, Kioko E, Huang Z-Z, Ge S-Q. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). Insects. 2024; 15(2):122. https://doi.org/10.3390/insects15020122
Chicago/Turabian StyleMuinde, Jacob, Tian-Hao Zhang, Zu-Long Liang, Si-Pei Liu, Esther Kioko, Zheng-Zhong Huang, and Si-Qin Ge. 2024. "Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae)" Insects 15, no. 2: 122. https://doi.org/10.3390/insects15020122
APA StyleMuinde, J., Zhang, T. -H., Liang, Z. -L., Liu, S. -P., Kioko, E., Huang, Z. -Z., & Ge, S. -Q. (2024). Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). Insects, 15(2), 122. https://doi.org/10.3390/insects15020122