Pierid Butterflies, Legume Hostplants, and Parasitoids in Urban Areas of Southern Florida
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrlich, P.R.; Raven, P.H. Butterflies and Plants: A Study in Coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Minno, M.C.; Minno, M. Florida Butterfly Gardening. A Complete Guide to Attracting, Identifying, and Enjoying Butterflies of the Lower South; University Press of Florida: Gainesville, FL, USA, 1999; 210p. [Google Scholar]
- Wagner, D.L. Caterpillars of Eastern North America: A Guide to Identification and Natural History; Princeton Field Guides; Princeton University Press: Princeton, NJ, USA, 2005; 512p. [Google Scholar]
- Braga, M.P.; Janz, N.; Nylin, S.; Ronquist, F.; Landis, M.J. Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecol. Lett. 2021, 24, 2134–2145. [Google Scholar] [CrossRef]
- Dethier, V.G. Evolution of feeding preferences in phytophagous insects. Evolution 1954, 8, 33–54. [Google Scholar] [CrossRef]
- Brower, L.P. Bird predation and food plant specificity in closely related procryptic insects. Am. Nat. 1958, 92, 183–187. [Google Scholar] [CrossRef]
- Koptur, S.; Jones, I.M.; Pena, J.E. The Influence of Host Plant Extrafloral Nectaries on Multitrophic Interactions: An Experimental Investigation. PLoS ONE 2015, 10, e0138157. [Google Scholar] [CrossRef]
- Koptur, S.; Clayborn, J.; Harris, B.; Jones, I.M.; Pimienta, M.C.; Salas Primoli, A.; Oliveira, P.S. Caterpillar responses to ant protectors of plants. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World; Marquis, R.J., Koptur, S., Eds.; Springer Nature: Cham, Switzerland, 2022; Chapter 10; pp. 297–317. [Google Scholar]
- Skelhorn, J.; Ruxton, G.D. Predators are less likely to misclassify masquerading prey when their models are present. Biol. Lett. 2010, 6, 597–599. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, G.D.; Allen, W.L.; Sherratt, T.N.; Speed, M.P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry, 2nd ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Bernays, E.A.; Cornelius, M. L Generalist caterpillar prey are more palatable than specialists for the generalist predator Iridimyrmex humilis. Oecologia 1989, 79, 427–430. [Google Scholar] [CrossRef]
- Dyer, L.A. Effectiveness of caterpillar defenses against three species of invertebrate predators. J. Res. Lepid. 1997, 34, 48–68. [Google Scholar] [CrossRef]
- Henrique, A.; Portugal, A.; Trigo, J.R. Similarity of cuticular lipids between a caterpillar and its host plant: A way to make prey undetectable for predatory ants? J. Chem. Ecol. 2005, 31, 2551–2561. [Google Scholar] [CrossRef]
- Gaitonde, N.; Joshi, J.; Kunte, K. Evolution of ontogenic change in color defenses of swallowtail butterflies. Ecol. Evol. 2018, 8, 9751–9763. [Google Scholar] [CrossRef]
- Bentley, B.L. Extrafloral nectaries and protection by pugnacious bodyguards. Annu. Rev. Ecol. Syst. 1977, 88, 407–427. [Google Scholar] [CrossRef]
- Koptur, S. Interactions between Insects and Plants Mediated by Extrafloral Nectaries. In Insect/Plant Interactions, Bernays, E., Ed.; CRC Press: Boca Raton, FL, USA, 1992; Volume 4, pp. 85–132. [Google Scholar]
- Rosumek, F.B.; Silveira, F.A.O.; Neves, F.d.S.; Barbosa, N.P.d.U.; Diniz, L.; Oki, Y.; Pezzini, F.; Fernandes, G.W.; Cornelissen, T. Ants on plants: A meta-analysis of the role of ants as plant biotic defenses. Oecologia 2009, 160, 537–549. [Google Scholar] [CrossRef]
- Wackers, F.L.; van Rijn, P.C.J. Food for protection: An introduction. In Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and Its Applications; Wackers, F.L., van Rijn, P.C.J., Bruin, J., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 1–14. [Google Scholar]
- Marazzi, B.; Gonzalez, A.M.; Delgado-Salinas, A.; Luckow, M.A.; Ringelberg, J.J.; Hughes, C.E. Extrafloral nectaries in Leguminosae: Phylogenetic distribution, morphological diversity and evolution. Aust. Syst. Bot. 2019, 32, 409–458. [Google Scholar] [CrossRef]
- Keeler, K.H.; Porturas, L.D.; Weber, M.G. World List of Plants with Extrafloral Nectaries. Available online: www.extrafloralnectaries.org (accessed on 29 November 2023).
- Wackers, F.L. Suitability of (extra)floral nectar, pollen, and honeydew as insect foods. In Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and Its Applications; Wackers, F.L., van Rijn, P.C.J., Bruin, J., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 17–74. [Google Scholar]
- Hawkins, B.A.; Cornell, H.V.; Hochberg, M.E. Predators, Parasitoids, and Pathogens as Mortality Agents in Phytophagous Insect Populations. Ecology 1997, 78, 2145–2152. [Google Scholar] [CrossRef]
- Turlings, T.C.J.; Gouinguene, S.; Degen, T.; Fritzsche-Hoballah, M.E. The chemical ecology of plant-caterpillar-parasitoid interactions. In Multitrophic Level Interactions; Tscharntke, T., Hawkins, B.A., Eds.; Cambridge University Press: Cambridge, UK, 2002; Chapter 7; pp. 148–173. [Google Scholar]
- Stireman, J.O., III; Shaw, S.R. Natural history and ecology of caterpillar parasitoids. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World; Springer: New York, NY, USA, 2022; Chapter 11; pp. 225–272. [Google Scholar]
- Turlings, T.C.J.; Erb, M. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef]
- Stireman, J.O., III; Singer, M.S. Determinants of parasitoid-host associations: Insights from a natural tachinid-lepidopteran community. Ecology 2003, 84, 296–310. [Google Scholar] [CrossRef]
- Hrcek, J.; Miller, S.E.; Whitfield, J.B.; Shima, H.; Novotny, V. Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest. Oecologia 2013, 173, 521–532. [Google Scholar] [CrossRef]
- Ruberson, J.R.; Whitfield, J.B. Facultative egg-larval parasitism of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) by Cotesia marginiventris (Hymenoptera: Braconidae). Fla. Entomol. 1996, 79, 296–302. [Google Scholar] [CrossRef]
- Gibson, G.A.P. The species of Eupelmus (Eupelmus) Dalman and Eupelmus (Episolindelia) Girault (Hymenoptera: Eupelmidae) in North America north of Mexico. Zootaxa 2011, 2951, 1–97. [Google Scholar] [CrossRef]
- Wheeler, G.S.; Dyer, K.; Wright, S.A. Seasonal abundance of the adventive Chinese tallowtree herbivore Caloptilia triadicae (Lepidoptera: Gracillariidae) and its parasitoids. Fla. Entomol. 2017, 100, 52–56. [Google Scholar] [CrossRef]
- Bach, C.E. Effects of plant density and diversity on the population dynamics of a specialist herbivore, the striped cucumber beetle, Acalymma vittata (Fab.). Ecology 1980, 611750, 1515–1531. [Google Scholar] [CrossRef]
- Rausher, M.D.; Feeny, P. Herbivory, plant density, and plant reproductive success: The effect of Battus philenor on Aristolochia reticulata. Ecology 1980, 61, 905–917. [Google Scholar] [CrossRef]
- Moreira, X.; Abdala-Roberts, L.; De Frenne, P.; Galmán, A.; Gaytán, Á.; Jaatinen, R.; Lago-Núñez, B.; Meeussen, C.; Pulkkinen, P.; Rasmussen, P.U.; et al. Effects of latitude and conspecific plant density on insect leaf herbivory in oak saplings and seedlings. Am. J. Bot. 2021, 108, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Lill, J.T.; Marquis, R.J.; Ricklefs, R.E. Host plants influence parasitism of forest caterpillars. Nature 2002, 417, 170–173. [Google Scholar] [CrossRef]
- Hassell, M.P. Host-parasitoid population dynamics. J. Anim. Ecol. 2000, 69, 543–566. [Google Scholar] [CrossRef]
- Braga, M.P.; Janz, N. Host repertoires and changing insect-plant interactions. Ecol. Entomol. 2021, 46, 1241–1253. [Google Scholar] [CrossRef]
- Strand, M.R.; Obrycky, J.J. Host specificity of insect parasitoids and predators. Bioscience 1996, 46, 422–429. [Google Scholar] [CrossRef]
- Stireman, J.O.; Dyer, L.A.; Greeney, H.F.; Didham, R.; Broad, G. Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv. Divers. 2017, 10, 367–384. [Google Scholar] [CrossRef]
- Smith, M.A.; Wood, D.M.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. DNA Barcodes Affirm That 16 Species of Apparently Generalist Tropical Parasitoid Flies (Diptera, Tachinidae) Are Not All Generalists. Proc. Natl. Acad. Sci. USA 2007, 104, 4967–4972. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Buckley, Y.M.; Memmott, J. Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology 2010, 91, 1063–1074. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Harvey, J.A.; Cronin, J.T. Response of native insect communities to invasive plants. Annu. Rev. Entomol. 2014, 59, 119–141. [Google Scholar] [CrossRef] [PubMed]
- López-Núñez, F.A.; Heleno, R.H.; Ribeiro, S.; Marchante, H.; Marchante, E. Four-trophic level food webs reveal the cascading impacts of an invasive plant targeted for biocontrol. Ecology 2017, 98, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Zemenick, A.T.; Kula, R.R.; Russo, L.; Tooker, J. A network approach reveals parasitoid wasps to be generalized nectar foragers. Arthropod.-Plant Interact. 2019, 13, 239–251. [Google Scholar] [CrossRef]
- Egerer, M.H.; Arel, C.; Otoshi, M.D.; Quistberg, R.D.; Bichier, P.; Philpott, S.M. Urban arthropods respond variably to changes in landscape context and spatial scale. J. Urban Ecol. 2017, 3, jux001. [Google Scholar] [CrossRef]
- Burks, J.M.; Philpott, S.M. Local and Landscape Drivers of Parasitoid Abundance, Richness, and Composition in Urban Gardens. Environ. Entomol. 2017, 46, 201–209. [Google Scholar] [CrossRef]
- Corcos, D.; Cerretti, P.; Caruso, V.; Mei, M.; Falco, M.; Marini, L. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 2019, 14, e0214068. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Benjamin, A.; Gann, D.; Juhasz, L.; Olivas, P.C.; Fu, J. Miami-Dade County Urban Tree Canopy Analysis; GIS Center: 2021. Florida International University: Miami, FL, USA. Available online: https://digitalcommons.fiu.edu/gis/89 (accessed on 21 January 2024).
- Lin, T.; Vrieling, K.; Laplanche, D.; Klinkhamer, P.cG.L.; Lou, Y.; Bekooy, L.; Degen, T.; Bustos-Segura, C.; Turlings, T.C.J.; Desurmont, G.A. Evolutionary changes in an invasive plant support the defensive role of plant volatiles. Curr. Biol. 2021, 31, 3450–3456.e5. [Google Scholar] [CrossRef]
Sites | Pinecrest | South Miami | Westchester | All Sites Combined $Plant Species Totals | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Species | Found | Counted | Parasitized | Found | Counted | Parasitized | Found | Counted | Parasitized | Found | Counted | Parasitized |
S. chapmanii | 16 | 13 | 1 (8%) | 67 | 55 | 6 (11%) | 26 | 21 | 0 (0%) | 109 | 89 | 7 (8%) |
S. ligustrina | 21 | 17 | 2 (12%) | 1 | 1 | 0 (0%) | 174 | 128 | 7 (5%) | 196 | 146 | 7 (5%) |
S. polyphylla * | 5 | 5 | 2 (40%) | 45 | 32 | 5 (16%) | 8 | 7 | 1 (14%) | 58 | 44 | 8 (18%) |
S. surattensis * | 17 | 16 | 3 (19%) | 83 | 65 | 14 (22%) | 231 | 158 | 24 (15%) | 331 | 239 | 41 (17%) |
Totals on native plants | 37 | 30 | 3 (10%) a | 68 | 56 | 6 (11%) a | 200 | 149 | 7 (5%) a | 305 | 235 | 17 (7%) a |
Totals on non-native plants | 22 | 21 | 5 (24%) a | 128 | 97 | 19 (20%) a | 239 | 165 | 25 (15%) b | 389 | 283 | 49 (17%) b |
Overall totals on all plants | 59 | 51 | 8 (16%) | 196 | 153 | 25 (16%) | 439 | 314 | 32 (10%) | 694 | 518 | 66 (13%) |
Taxon | Family | Senna chapmanii | S. ligustrina | S. polyphylla * | S. surattensis * |
---|---|---|---|---|---|
Glyptapanteles cassianus (Riley 1881) | Braconidae Microgastrinae | x | x | x | x |
Brasema sp. | Chalcidoidea, Eupelmidae, Eupelminae | x | x | x | x |
Encrateola maculithorax Ashmead, 1895 | Ichneumonidae | x | x | ||
Lespesia parviteres (Aldrich and Webber, 1924) | Tachinidae | x | |||
Mesochorus sp. (hyperparasitoid) | Ichneumonidae | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koptur, S.; Primoli, A.S.; Paulino-Neto, H.F.; Whitfield, J. Pierid Butterflies, Legume Hostplants, and Parasitoids in Urban Areas of Southern Florida. Insects 2024, 15, 123. https://doi.org/10.3390/insects15020123
Koptur S, Primoli AS, Paulino-Neto HF, Whitfield J. Pierid Butterflies, Legume Hostplants, and Parasitoids in Urban Areas of Southern Florida. Insects. 2024; 15(2):123. https://doi.org/10.3390/insects15020123
Chicago/Turabian StyleKoptur, Suzanne, Andrea Salas Primoli, Hipólito Ferreira Paulino-Neto, and James Whitfield. 2024. "Pierid Butterflies, Legume Hostplants, and Parasitoids in Urban Areas of Southern Florida" Insects 15, no. 2: 123. https://doi.org/10.3390/insects15020123
APA StyleKoptur, S., Primoli, A. S., Paulino-Neto, H. F., & Whitfield, J. (2024). Pierid Butterflies, Legume Hostplants, and Parasitoids in Urban Areas of Southern Florida. Insects, 15(2), 123. https://doi.org/10.3390/insects15020123