Heterosis for Interactions between Insect Herbivores and 3-Line Hybrid Rice under Low and High Soil Nitrogen Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Insect Herbivores
2.3. Greenhouse Experiments
2.4. Data Analyses
3. Results
3.1. Nitrogen Effects on Plant Biomass
3.2. Comparative Effects of Nitrogen on Herbivore Biomass
3.3. Herbivore–Rice Interactions under Low and High Nitrogen Conditions
3.3.1. Brown Planthopper
3.3.2. Whitebacked Planthopper
3.3.3. Yellow Stemborer
4. Discussion
4.1. Nitrogen Effects on Rice Biomass
4.2. Nitrogen Effects on Rice Resistance to Herbivores
4.3. Heterosis and the Relative Resistance of Hybrid Accessions
4.4. Nitrogen Effects on Herbivore-Induced Changes in Rice Biomass
4.5. Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horgan, F.G.; Crisol, E. Hybrid rice and insect herbivores in Asia. Entomol. Exp. Appl. 2013, 148, 1–19. [Google Scholar] [CrossRef]
- Cheng, S.H.; Cao, L.Y.; Zhuang, J.Y.; Chen, S.G.; Zhan, X.D.; Fan, Y.Y.; Zhu, D.F.; Min, S.K. Super hybrid rice breeding in China: Achievements and prospects. J. Integr. Plant Biol. 2007, 49, 805–810. [Google Scholar] [CrossRef]
- Ashraf, H.; Ghouri, F.; Baloch, F.S.; Nadeem, M.A.; Fu, X.; Shahid, M.Q. Hybrid rice production: A worldwide review of floral traits and breeding technology, with special emphasis on China. Plants 2024, 13, 578. [Google Scholar] [CrossRef]
- Spielman, D.J.; Kolady, D.E.; Ward, P.S. The prospects for hybrid rice in India. Food Secur. 2013, 5, 651–665. [Google Scholar] [CrossRef]
- Virmani, S. Prospects of hybrid rice in the tropics and subtropics. In Hybrid Rice Technology: New Developments and Future Prospects; Virmani, S.S., Ed.; International Rice Research Institute: Los Baños, Philippines, 1994; pp. 7–19. [Google Scholar]
- Virmani, S.; Aquino, R.; Khush, G. Heterosis breeding in rice (Oryza sativa L.). Theor. Appl. Genet. 1982, 63, 373–380. [Google Scholar] [CrossRef]
- Richharia, R.H.; Misro, B.; Rao, R.K. Sterility in the rice hybrids and its significance. Euphytica 1962, 11, 137–142. [Google Scholar] [CrossRef]
- Wan, J.; Yamaguchi, Y.; Kato, H.; Ikehashi, H. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor. Appl. Genet. 1996, 92, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mew, T.W.; Wang, F.M.; Wu, J.T.; Lin, K.R.; Khush, G.S. Disease and Insect Resistance in Hybrid Rice; International Rice Research Institute: Los Baños, Philippines, 1988; pp. 189–200. [Google Scholar]
- Sogawa, K.; Liu, G.J.; Qiang, Q.; Heong, K.L.; Hardy, B. Prevalence of whitebacked planthoppers in Chinese hybrid rice and whitebacked planthopper resistance in Chinese japonica rice. In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia; Heong, K.L., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2009; pp. 257–280. [Google Scholar]
- Horgan, F.G.; Bernal, C.C.; Ramal, A.F.; Almazan, M.L.P.; Mundaca, E.A.; Crisol-Martínez, E. Heterosis for resistance to insect herbivores in a 3-line hybrid rice system. Insects 2024, 15, 164. [Google Scholar] [CrossRef]
- Hu, G.; Lu, F.; Zhai, B.-P.; Lu, M.-H.; Liu, W.-C.; Zhu, F.; Wu, X.-W.; Chen, G.-H.; Zhang, X.-X. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: Immigration or local reproduction? PLoS ONE 2014, 9, e88973. [Google Scholar] [CrossRef]
- Syobu, S.-i.; Otuka, A.; Matsumura, M. Annual fluctuations in the immigrant density of rice planthoppers, Sogatella furcifera and Nilaparvata lugens (Hemiptera: Delphacidae), in the Kyushu district of Japan, and associated meteorological conditions. Appl. Entomol. Zool. 2012, 47, 399–412. [Google Scholar] [CrossRef]
- Chen, J.-m.; Yu, X.-p.; Cheng, J.-a.; Lu, Z.-x.; Zheng, X.-s.; Xu, H.-x. Resistance screening and evaluation of newly-bred rice varieties (lines) to the rice brown planthopper, Nilaparvata lugens. Chin. J. Rice Sci. 2005, 19, 573–576. [Google Scholar]
- Wu, J.; Ge, L.; Liu, F.; Song, Q.; Stanley, D. Pesticide-induced planthopper population resurgence in rice cropping systems. Annu. Rev. Entomol. 2020, 65, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Bottrell, D.G.; Schoenly, K.G. Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia-Pac. Entomol. 2012, 15, 122–140. [Google Scholar] [CrossRef]
- Zhu, Z.; Cheng, J.; Zuo, W.; Lin, X.; Guo, Y.; Jiang, Y.; Wu, X.; Teng, K.; Zhai, B.; Luo, J. Integrated management of rice stem borers in the Yangtze Delta, China. In Proceedings of the Area-Wide Control of Insect Pests: From Research to Field Implementation, Mexico City, Mexico, 29–30 November 2007; Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds.; Springer: Dordrecht, Germany, 2007; pp. 373–382. [Google Scholar]
- Horgan, F.G.; Crisol-Martínez, E.; Almazan, M.L.P.; Romena, A.; Ramal, A.F.; Ferrater, J.B.; Bernal, C.C. Susceptibility and tolerance in hybrid and pure-line rice varieties to herbivore attack: Biomass partitioning and resource-based compensation in response to damage. Ann. Appl. Biol. 2016, 169, 200–213. [Google Scholar] [CrossRef]
- Sogawa, K.; Liu, G.-j.; Shen, J.-h. A review on the hyper-susceptibility of Chinese hybrid rice to insect pests. Chin. J. Rice Sci. 2003, 17, 23–30. [Google Scholar]
- Sogawa, K.; Liu, G.-j.; Zhou, J.; Han, X.; You, C.-b. Causal analysis on the whitebacked planthopper prevalence in Chinese hybrid rice Shanyou 63. Chin. J. Rice Sci. 2003, 17, 95–102. [Google Scholar]
- Horgan, F.G.; de Freitas, T.F.S.; Crisol-Martinez, E.; Mundaca, E.A.; Bernal, C.C. Nitrogenous fertilizer reduces resistance but enhances tolerance to the brown planthopper in fast-growing, moderately resistant rice. Insects 2021, 12, 989. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, S.; Gong, J.; Zhao, Y.; Feng, Q.; Gong, H.; Li, W.; Zhan, Q.; Cheng, B.; Xia, J.; et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 2015, 6, 6258. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, Y.; Yao, W.; Zhang, C.; Xie, W.; Hua, J.; Xing, Y.; Xiao, J.; Zhang, Q. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 2012, 109, 15847–15852. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Brown, A.H.D.; Imbruce, V.; Ochoa, J.; Sadiki, M.; Karamura, E.; Trutmann, P.; Finckh, M.R. Managing crop disease in traditional agroecosystems: Benefits and hazards of genetic diversity. In Managing Biodiversity in Agricultural Ecosystems; Jarvis, D.I., Ed.; Columbia University Press: New York, NY, USA, 2007; pp. 292–319. [Google Scholar]
- Cohen, M.B.; Bernal, C.C.; Virmani, S.S. Do rice hybrids have heterosis for insect resistance? A study with Nilaparvata lugens (Hemiptera: Delphacidae) and Marasmia patnalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2003, 96, 1935–1941. [Google Scholar] [CrossRef]
- Faiz, F.A.; Ijaz, M.; Awan, T.H.; Manzoor, Z.; Ahmed, M.; Wariach, N.M.; Zahid, M.A. Effect of wild abortive cytoplasm inducing male sterility on resistance/tolerance against brown plant hopper and white backed plant hopper in Basmati rice hybrids. J. Anim. Plant Sci. 2007, 17, 16–20. [Google Scholar]
- Fan, F.; Li, N.; Chen, Y.; Liu, X.; Sun, H.; Wang, J.; He, G.; Zhu, Y.; Li, S. Development of elite BPH-resistant wide-spectrum restorer lines for three and two line hybrid rice. Front. Plant Sci. 2017, 8, 986. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cheng, M.; Gao, G.; Zhang, Q.; Xiao, J.; He, Y. Pyramiding and evaluation of three dominant brown planthopper resistance genes in the elite indica rice 9311 and its hybrids. Pest Manag. Sci. 2013, 69, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Hu, J.; Li, Z.; Liu, J.; Gao, G.; Zhang, Q.; Xiao, J.; He, Y. Evaluation and breeding application of six brown planthopper resistance genes in rice maintainer line Jin 23B. Rice 2018, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Ouk, S.; Jung, K.-H.; Song, Y.; Yang, J.-Y.; Cho, Y.-G. Breeding hybrid rice with genes resistant to diseases and insects using marker-assisted selection and evaluation of biological assay. Plant Breed. Biotechnol. 2019, 7, 272–286. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Liu, Y.; Dai, H.; He, J.; Kang, H.; Pan, G.; Huang, J.; Qiu, Z.; Wang, Q.; et al. Marker assisted pyramiding of two brown planthopper resistance genes, Bph3 and Bph27 (t), into elite rice Cultivars. Rice 2016, 9, 27. [Google Scholar] [CrossRef]
- Abhilash Kumar, V.; Balachiranjeevi, C.; Bhaskar Naik, S.; Rekha, G.; Rambabu, R.; Harika, G.; Pranathi, K.; Hajira, S.; Anila, M.; Kousik, M.; et al. Marker-assisted pyramiding of bacterial blight and gall midge resistance genes into RPHR-1005, the restorer line of the popular rice hybrid DRRH-3. Mol. Breed. 2017, 37, 86. [Google Scholar] [CrossRef]
- Horgan, F.G. Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot. 2018, 110, 21–33. [Google Scholar] [CrossRef]
- Alam, S.; Cohen, M. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor. Appl. Genet. 1998, 97, 1370–1379. [Google Scholar] [CrossRef]
- Alam, S.N.; Cohen, M.B. Durability of brown planthopper, Nilaparvata lugens, resistance in rice variety IR64 in greenhouse selection studies. Entomol. Exp. Appl. 1998, 89, 71–78. [Google Scholar] [CrossRef]
- Crisol, E.; Almazan, M.L.P.; Jones, P.W.; Horgan, F.G. Planthopper-rice interactions: Unequal stresses on pure-line and hybrid rice under similar experimental conditions. Entomol. Exp. Appl. 2013, 147, 18–32. [Google Scholar] [CrossRef]
- Syobu, S.-i.; Mikuriya, H.; Yamaguchi, J.; Matsuzaki, M.; Matsumura, M. Fluctuations and factors affecting the wing-form ratio of the brown planthopper, Nilaparvata lugens Stål in rice fields. Jpn. J. Appl. Entomol. Zool. 2002, 46, 135–143. [Google Scholar] [CrossRef]
- Horgan, F.G.; Srinivasan, T.S.; Bentur, J.S.; Kumar, R.; Bhanu, K.V.; Sarao, P.S.; Chien, H.V.; Almazan, M.L.P.; Bernal, C.C.; Ramal, A.F.; et al. Geographic and research center origins of rice resistance to Asian planthoppers and leafhoppers: Implications for rice breeding and gene deployment. Agronomy 2017, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Horgan, F.G. Revisiting research and methods in stemborer-rice interactions for integration into future breeding programs. CABI Rev. 2023, 18, 1. [Google Scholar] [CrossRef]
- Lv, J.; Wilson, L.; Longnecker, M. Tolerance and compensatory response of rice to sugarcane borer (Lepidoptera: Crambidae) injury. Environ. Entomol. 2014, 37, 796–807. [Google Scholar] [CrossRef]
- Villegas, J.M.; Wilson, B.E.; Stout, M.J. Assessment of tolerance and resistance of inbred rice cultivars to combined infestations of rice water weevil and stemborers. Entomol. Exp. Appl. 2021, 169, 629–639. [Google Scholar] [CrossRef]
- Villegas, J.M.; Wilson, B.E.; Way, M.O.; Gore, J.; Stout, M.J. Tolerance to rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), infestations among hybrid and inbred rice cultivars in the Southern U.S. Crop Prot. 2021, 139, 105368. [Google Scholar] [CrossRef]
- Wise, M.J.; Carr, D.E. On quantifying tolerance of herbivory for comparative analyses. Evolution 2008, 62, 2429–2434. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M.; Jahan, M.; Islam, K.S. Impact of nitrogen, phosphorus and potassium on brown planthopper and tolerance of its host rice plants. Rice Sci. 2016, 23, 119–131. [Google Scholar] [CrossRef]
- Rashid, M.M.; Jahan, M.; Islam, K.S. Effects of nitrogen, phosphorous and potassium on host-choice behavior of brown planthopper, Nilaparvata lugens (Stål) on rice cultivar. J. Insect Behav. 2017, 30, 1–15. [Google Scholar] [CrossRef]
- Reay-Jones, F.; Way, M.; Tarpley, L. Nitrogen fertilization at the rice panicle differentiation stage to compensate for rice water weevil (Coleoptera: Curculionidae) injury. Crop Prot. 2008, 27, 84–89. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Fei, P.; Song, J.; Li, D.; Ge, C.; Chen, W. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crops Res. 2009, 114, 426–432. [Google Scholar]
- de Kraker, J.; Rabbinge, R.; Van Huis, A.; Van Lenteren, J.; Heong, K. Impact of nitrogenous-fertilization on the population dynamics and natural control of rice leaffolders (Lep.: Pyralidae). Int. J. Pest Manag. 2000, 46, 225–235. [Google Scholar] [CrossRef]
- Jiang, M.; Cheng, J. Interactions between the striped stem borer Chilo suppressalis (Walk.) (Lep., Pyralidae) larvae and rice plants in response to nitrogen fertilization. J. Pest Sci. 2003, 76, 124–128. [Google Scholar] [CrossRef]
- Bandong, J.P.; Litsinger, J.A. Rice crop stage susceptibility to the rice yellow stemborer Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Int. J. Pest Manag. 2005, 51, 37–43. [Google Scholar] [CrossRef]
- de Kraker, J.; van Huis, A.; Heong, K.L.; van Lenteren, J.C.; Rabbinge, R. Population dynamics of rice leaffolders (Lepidoptera: Pyralidae) and their natural enemies in irrigated rice in the Philippines. Bull. Entomol. Res. 1999, 89, 411–421. [Google Scholar] [CrossRef]
- Lu, Z.-X.; Heong, K.-L.; Yu, X.-P.; Hu, C. Effects of plant nitrogen on ecological fitness of the brown planthopper, Nilaparvata lugens Stal. in rice. J. Asia-Pac. Entomol. 2004, 7, 97–104. [Google Scholar] [CrossRef]
- Prasad, B.R.; Pasalu, I.; Raju, N.; Verma, N. Influence of nitrogen and rice varieties on population build up of brown planthopper, Nilaparvata lugens (Stal.). J. Entomol. Res. 2003, 27, 167–170. [Google Scholar]
- Lu, Z.-x.; Yu, X.-p.; Heong, K.-l.; Cui, H. Effect of nitrogen fertilizer on herbivores and its stimulation to major insect pests in rice. Rice Sci. 2007, 14, 56–66. [Google Scholar] [CrossRef]
- Watanabe, T.; Kitagawa, H. Photosynthesis and translocation of assimilates in rice plants following phloem feeding by the planthopper Nilaparvata lugens (Homoptera: Delphacidae). J. Econ. Entomol. 2000, 93, 1192–1198. [Google Scholar] [CrossRef]
- Kajimura, T.; Fujisaki, K.; Nakasuji, F. Effect of organic rice farming on leafhoppers and planthoppers: 2. Amino acid content in the rice phloem sap and survival rate of planthoppers. Appl. Entomol. Zool. 1995, 30, 17–22. [Google Scholar] [CrossRef]
- Denno, R.F.; Roderick, G.K. Population biology of planthoppers. Annu. Rev. Entomol. 1990, 35, 489–520. [Google Scholar] [CrossRef]
- Sasaki, T.; Kawamura, M.; Ishikawa, H. Nitrogen recycling in the brown planthopper, Nilaparvata lugens: Involvement of yeast-like endosymbionts in uric acid metabolism. J. Insect Physiol. 1996, 42, 125–129. [Google Scholar] [CrossRef]
- Hongoh, Y.; Ishikawa, H. Uric acid as a nitrogen resource for the brown planthopper, Nilaparvata lugens: Studies with synthetic diets and aposymbiotic insects. Zool. Sci. 1997, 14, 581–586. [Google Scholar] [CrossRef]
- Rubia-Sanchez, E.; Suzuki, Y.; Miyamoto, K.; Watanabe, T. The potential for compensation of the effects of the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae) feeding on rice. Crop Prot. 1999, 18, 39–45. [Google Scholar] [CrossRef]
- Rubia, E.; Heong, K.; Zalucki, M.; Gonzales, B.; Norton, G. Mechanisms of compensation of rice plants to yellow stem borer Scirpophaga incertulas (Walker) injury. Crop Prot. 1996, 15, 335–340. [Google Scholar] [CrossRef]
- Rubia-Sanchez, E.; Heong, K.; Zalucki, M.; Norton, G. White stem borer damage and grain yield in irrigated rice in West Java, Indonesia. Crop Prot. 1997, 16, 665–671. [Google Scholar] [CrossRef]
- Islam, Z.; Karim, A. Whiteheads associated with stem borer infestation in modern rice varieties: An attempt to resolve the dilemma of yield losses. Crop Prot. 1997, 16, 303–311. [Google Scholar] [CrossRef]
- Zahirul Islam, Z.I.; Karim, A. Susceptibility of rice plants to stem borer damage at different growth stages and influence on grain yields. Bangladesh J. Entomol. 1999, 9, 121–130. [Google Scholar]
- Oyediran, I.; Heinrichs, E. Arthropod populations and rice yields in direct-seeded and transplanted lowland rice in West Africa. Int. J. Pest Manag. 2001, 47, 195–200. [Google Scholar] [CrossRef]
Accession | Added Nitrogen (Kg ha−1) 1 | Total Number of BPH per Plant 1 | Dry Weight of BPH per Plant (mg) 1 | Plant Biomass Loss (Dry g) 1 | Plant Biomass Loss (Proportion) 1 | Plant Biomass Loss per mg of BPH (g mg−1) 1 |
---|---|---|---|---|---|---|
IR82396H | 0 | 509.17 ± 100.73 [ht B] | 41.77 ± 7.32 ab [ht A] | 2.58 ± 0.78 [ht A/B] | 0.29 ± 0.08 | 0.07 ± 0.02 |
150 | 609.00 ± 128.57 | 89.57 ± 13.81 | 7.88 ± 0.55 | 0.48 ± 0.03 | 0.11 ± 0.02 | |
IR82391H | 0 | 294.17 ± 49.28 | 34.51 ± 4.62 ab | 5.32 ± 0.65 | 0.56 ± 0.06 | 0.16 ± 0.02 |
150 | 867.17 ± 77.53 | 112.39 ± 6.03 | 8.58 ± 1.80 | 0.58 ± 0.11 | 0.08 ± 0.01 | |
IR84714H | 0 | 535.17 ± 101.06 | 52.62 ± 6.57 b [ht A] | 5.55 ± 1.82 | 0.52 ± 0.15 | 0.11 ± 0.02 |
150 | 928.00 ± 81.58 | 139.81 ± 19.96 | 10.69 ± 1.13 | 0.58 ± 0.05 | 0.08 ± 0.01 | |
IR85471H | 0 | 477.83 ± 108.79 | 50.08 ± 5.49 a | 7.00 ± 0.78 | 0.62 ± 0.06 | 0.15 ± 0.00 |
150 | 392.17 ± 88.12 | 45.62 ± 8.39 | 4.15 ± 1.59 | 0.24 ± 0.10 | 0.17 ± 0.01 | |
IR81954H | 0 | 720.00 ± 60.99 [hb— A/B] † | 47.28 ± 3.16 b [ht B] † | 4.28 ± 1.22 [ht A/B] † | 0.43 ± 0.09 [ht B] † | 0.10 ± 0.01 |
150 | 818.50 ± 123.40 | 127.47 ± 22.98 | 5.63 ± 2.17 | 0.32 ± 0.12 | 0.04 ± 0.01 | |
IR80637H | 0 | 502.67 ± 104.74 | 48.27 ± 4.54 ab | 3.98 ± 1.23 [ht B] † | 0.43 ± 0.12 [ht B] † | 0.08 ± 0.01 |
150 | 577.67 ± 152.17 | 107.59 ± 19.84 | 6.09 ± 0.89 | 0.52 ± 0.06 | 0.07 ± 0.01 | |
IR82385H | 0 | 523.00 ± 154.97 [ht A/B] † | 39.59 ± 2.78 ab [ht A] | 5.76 ± 2.17 [ht A/B] † | 0.49 ± 0.17 [ht A/B] † | 0.13 ± 0.00 [ht B] |
150 | 793.17 ± 166.86 | 105.62 ± 15.04 | 8.17 ± 0.81 | 0.50 ± 0.05 | 0.09 ± 0.01 | |
IR82363H | 0 | 312.67 ± 65.04 [ht B] † | 57.52 ± 9.33 b | 3.98 ± 0.59 | 0.49 ± 0.06 [ht A] † | 0.07 ± 0.01 |
150 | 890.83 ± 118.06 | 101.19 ± 6.36 | 7.16 ± 2.64 | 0.48 ± 0.15 | 0.07 ± 0.01 | |
F-Accession (A) 2 | 1.741 | 3.041 ** | 1.325 | 1.225 | 1.276 | |
F-Nitrogen (F) 2 | 14.054 *** | 94.520 *** | 3.273 | 3.997 * | 13.770 *** | |
F-A × F 2 | 2.318 * | 3.648 *** | 1.518 | 1.280 | 0.854 | |
F-Covariate | 26.352 *** | 5.284 * | 12.083 *** | |||
DF Error | 80 | 80 | 79 | 79 | 79 |
Accession | Added Nitrogen (Kg ha−1) 1 | Total Number of WBPH per Plant 1 | Dry Weight of WBPH per Plant (mg) 1 | Plant Biomass Loss (Dry g) 1 | Plant Biomass Loss (Proportion) 1 | Plant Biomass Loss per mg of WBPH (g mg−1) 1 |
---|---|---|---|---|---|---|
IR82396H | 0 | 82.00 ± 19.35 [ht A/B] † | 11.49 ± 5.25 ab [ht A/B] † | 4.59 ± 0.46 ab | 0.55 ± 0.04 b | 0.71 ± 0.18 |
150 | 33.83 ± 24.23 | 21.13 ± 2.96 | 3.13 ± 150.39 | 0.19 ± 0.08 | 0.15 ± 0.08 | |
IR82391H | 0 | 17.50 ± 6.95 | 3.71 ± 0.31 a [ht B] | 3.19 ± 0.46 ab | 0.34 ± 0.05 ab | 0.89 ± 0.14 |
150 | 47.00 ± 15.52 | 15.26 ± 3.45 | 3.79 ± 150.63 | 0.26 ± 0.12 | 0.42 ± 0.21 | |
IR84714H | 0 | 30.83 ± 14.80 | 8.04 ± 3.40 a | 0.97 ± 0.58 ab | −0.01 ± 0.20 ab | 0.26 ± 0.48 |
150 | 92.67 ± 25.56 | 23.90 ± 6.12 | 6.91 ± 150.24 | 0.36 ± 0.05 | 0.35 ± 0.07 | |
IR85471H | 0 | 135.50 ± 73.95 | 8.85 ± 2.04 a | 3.91 ± 0.67 b | 0.34 ± 0.04 ab | 0.51 ± 0.08 |
150 | 54.50 ± 23.44 | 18.64 ± 7.53 | 6.26 ± 150.01 | 0.37 ± 0.05 | 0.67 ± 0.21 | |
IR81954H | 0 | 42.50 ± 17.18 | 8.84 ± 2.12 a [ht B] | 2.37 ± 0.52 ab | 0.18 ± 0.18 ab | 0.24 ± 0.24 |
150 | 51.50 ± 22.27 | 14.44 ± 3.60 | 2.77 ± 150.20 | 0.14 ± 0.11 | 0.22 ± 0.16 | |
IR80637H | 0 | 61.17 ± 28.24 | 18.48 ± 1.63 b [ht A/B] | 2.94 ± 0.02 ab | 0.33 ± 0.12 ab | 0.16 ± 0.05 |
150 | 99.17 ± 13.58 | 34.30 ± 1.65 | 4.52 ± 150.37 | 0.39 ± 0.12 | 0.14 ± 0.04 | |
IR82385H | 0 | 49.17 ± 13.72 | 11.15 ± 1.64 a [ht A] | 4.36 ± 0.97 ab | 0.44 ± 0.10 ab | 0.38 ± 0.08 |
150 | 23.17 ± 10.23 | 7.35 ± 1.69 | 2.65 ± 150.52 | 0.01 ± 0.21 | −0.01 ± 1.36 | |
IR82363H | 0 | 48.67 ± 27.89 | 25.66 ± 10.21 ab | 1.57 ± 0.95 a | 0.14 ± 0.11 a | 0.07 ± 0.10 |
150 | 59.50 ± 5.73 | 22.99 ± 6.96 | 2.49 ± 150.82 | 0.12 ± 0.12 | 0.20 ± 0.11 | |
F-Accession (A) 2 | 1.197 | 4.259 *** | 2.659 * | 2.628 * | 1.359 | |
F-Nitrogen (F) 2 | 0.247 | 17.544 *** | 36.309 *** | 20.938 *** | 8.988 *** | |
F-A × F 2 | 4.167 *** | 2.049 | 1.625 | 1.666 | 1.073 | |
F-Covariate 2 | 46.711 *** | 57.837 *** | 24.305 *** | |||
DF Error | 80 | 80 | 79 | 79 | 79 |
Accession | Added Nitrogen (Kg ha−1) 1 | Total Number of Emerged Adults 1 | Biomass of Emerged Adults (Dry mg) 1 | Plant Biomass Loss (Dry g) 1 | Plant Biomass Loss (Proportion) 1 | Plant Biomass Loss per mg of YSB (g mg−1) 1 |
---|---|---|---|---|---|---|
IR82396H | 0.00 | 2.00 ± 0.41 | 14.58 ± 3.20 | 2.93 ± 1.06 ab | 0.31 ± 0.08 | 0.24 ± 0.09 |
150.00 | 4.17 ± 0.48 | 33.02 ± 5.74 | 8.38 ± 0.72 | 0.51 ± 0.04 | 0.32 ± 0.08 | |
IR82391H | 0.00 | 3.33 ± 0.80 | 20.57 ± 5.02 | 3.66 ± 0.81 ab | 0.36 ± 0.06 | 0.37 ± 0.21 |
150.00 | 2.83 ± 0.70 | 17.93 ± 3.42 | 6.64 ± 1.83 | 0.50 ± 0.11 | 0.37 ± 0.10 | |
IR84714H | 0.00 | 2.80 ± 0.58 | 17.24 ± 4.14 [hb− B; ht A] † | 3.58 ± 1.43 ab [ht B] 3 | 0.31 ± 0.09 [hb− B/ht B] 3 | 0.25 ± 0.12 |
150.00 | 3.00 ± 0.77 | 20.33 ± 4.58 | 7.42 ± 2.44 | 0.39 ± 0.12 | 0.45 ± 0.22 | |
IR85471H | 0.00 | 2.00 ± 0.41 | 13.75 ± 4.20 [hb− B; ht A] † | 7.13 ± 1.89 b | 0.58 ± 0.09 | 0.70 ± 0.34 |
150.00 | 2.17 ± 0.31 | 19.42 ± 2.27 | 8.41 ± 1.36 | 0.50 ± 0.07 | 0.50 ± 0.12 | |
IR81954H | 0.00 | 2.40 ± 0.40 | 14.16 ± 1.52 | 4.92 ± 1.40 a | 0.48 ± 0.08 | 0.39 ± 0.12 |
150.00 | 1.40 ± 0.24 | 16.80 ± 5.21 | 3.99 ± 2.78 | 0.16 ± 0.17 | 0.49 ± 0.24 | |
IR80637H | 0.00 | 1.80 ± 0.58 | 13.08 ± 4.15 | 4.48 ± 0.47 ab | 0.51 ± 0.07 | 0.40 ± 0.19 |
150.00 | 1.50 ± 0.34 | 13.27 ± 3.23 | 6.29 ± 0.78 | 0.53 ± 0.05 | 0.89 ± 0.39 | |
IR82385H | 0.00 | 2.00 ± 0.63 | 9.75 ± 2.97 | 3.91 ± 1.37 ab | 0.39 ± 0.10 | 0.53 ± 0.13 |
150.00 | 2.67 ± 0.33 | 16.88 ± 2.91 | 9.94 ± 3.42 | 0.36 ± 0.08 | 0.87 ± 0.48 | |
IR82363H | 0.00 | 2.00 ± 0.52 [ht A/B] | 12.65 ± 3.74 [ht A/B] | 3.91 ± 0.78 ab | 0.45 ± 0.07 | 0.33 ± 0.10 |
150.00 | 2.00 ± 0.32 | 17.50 ± 3.85 | 6.22 ± 1.95 | 0.36 ± 0.09 | 0.71 ± 0.42 | |
F-Accession (A) 2 | 1.979 | 1.275 | 2.477 * | 1.488 | 1.038 | |
F-Nitrogen (F) 2 | 0.346 | 5.411 * | 38.792 *** | 26.163 *** | 6.309 * | |
F-A × F 2 | 1.380 | 0.758 | 2.054 | 1.614 | 0.674 | |
F-Covariate 2 | 28.720 *** | 64.451 *** | 5.190 * | |||
DF Error | 64 | 64 | 64 | 64 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horgan, F.G.; Bernal, C.C.; Ramal, A.F.; Almazan, M.L.P.; Mundaca, E.A.; Crisol-Martínez, E. Heterosis for Interactions between Insect Herbivores and 3-Line Hybrid Rice under Low and High Soil Nitrogen Conditions. Insects 2024, 15, 416. https://doi.org/10.3390/insects15060416
Horgan FG, Bernal CC, Ramal AF, Almazan MLP, Mundaca EA, Crisol-Martínez E. Heterosis for Interactions between Insect Herbivores and 3-Line Hybrid Rice under Low and High Soil Nitrogen Conditions. Insects. 2024; 15(6):416. https://doi.org/10.3390/insects15060416
Chicago/Turabian StyleHorgan, Finbarr G., Carmencita C. Bernal, Angelee Fame Ramal, Maria Liberty P. Almazan, Enrique A. Mundaca, and Eduardo Crisol-Martínez. 2024. "Heterosis for Interactions between Insect Herbivores and 3-Line Hybrid Rice under Low and High Soil Nitrogen Conditions" Insects 15, no. 6: 416. https://doi.org/10.3390/insects15060416
APA StyleHorgan, F. G., Bernal, C. C., Ramal, A. F., Almazan, M. L. P., Mundaca, E. A., & Crisol-Martínez, E. (2024). Heterosis for Interactions between Insect Herbivores and 3-Line Hybrid Rice under Low and High Soil Nitrogen Conditions. Insects, 15(6), 416. https://doi.org/10.3390/insects15060416