Forecasting the Expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China Using the MaxEnt Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Screening of Species Occurrence Data
2.2. Collection and Screening of Bioclimatic Variables
2.3. Model Optimization
2.4. Model Evaluation and Distribution of Potentially Suitable Habitat
3. Results
3.1. Model Evaluation and Area of Potentially Suitable Habitat
3.2. Evaluation of Important Bioclimatic Variables
3.3. Potentially Suitable Habitat for B. tsuneonis under Current Climate Conditions
3.4. Changes in the Area of Potentially Suitable Habitat for B. tsuneonis under Future Climatic Scenarios
3.5. Centroid Shifts of Potentially Suitable Areas for B. tsuneonis
4. Discussion
4.1. Significance of the Optimal Model Predictions
4.2. The Bioclimatic Variables Determining the Distribution of Suitable Habitat for B. tsuneonis
4.3. Prospective Changes in the Distribution of Suitable Habitat for B. tsuneonis
4.4. Limitations of This Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yasumatsu, K.; Nagatomi, A. Studies on the control of Dacus (Tetradacus) tsuneonis Miyake (Diptera: Trypetidae). 1. Some fundamental and biological investigations essential for its control. Fac. Agric. Kyushu Univ. 1959, 17, 129–146. [Google Scholar]
- Vargas, R.I.; Piñero, J.C.; Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the Integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 2015, 6, 297–318. [Google Scholar] [CrossRef]
- Miyake, T. Studies on the fruit-flies of Japan: Contribution I.-Japanese orange-fly. Bull. Imp. Cent. Agric. Exp. Stn. Jpn. 1919, 2, 85–165. [Google Scholar]
- Zhang, Y.A. The discovery of Bactroccra tsuneonis in Pingshan red orange in Sichuan. Chin. Citrus 1984, 2, 31–32. [Google Scholar]
- Zhao, Y.X. Comments on the Bactroccra tsuneonis in Guangxi. Plant Prot. 1991, 4, 33–34. [Google Scholar]
- Xia, S.W.; Song, X.P. The discovery of the fruit fly on sweet oranges in Luodian and Bijie, Guizhou Province. Plant Quar. 1985, 1. [Google Scholar]
- Liang, G.Q.; Zhang, S.M.; Xu, W. The notes of the fruit flies in south parts of China and two newly recorded species. Acta Agric. Univ. Jiangxiensis 1989, 11, 14–20. [Google Scholar]
- Weems, H.V.; Fasulo, T.R. Japanese orange fly, Bactrocera tsuneonis (Miyake) (Insecta: Diptera: Tephritidae). EDIS 2012, 2012. [Google Scholar] [CrossRef]
- Hou, B.H.; Ouyang, G.C.; Lu, H.L.; Ma, J.; Lu, Y.Y.; Xia, Y. First detection of Bactrocera tsuneonis (Diptera: Tephritidae) in Guangdong Province of China. Fla. Entomol. 2018, 101, 533–535. [Google Scholar] [CrossRef]
- Xia, Y.L.; Huang, J.H.; Jiang, F.; He, J.Y.; Pan, X.B.; Lin, X.J.; Hu, H.Q.; Fan, G.C.; Zhu, S.F.; Hou, B.H.; et al. The effectiveness of fruit bagging and culling for risk mitigation of fruit flies affecting citrus in China: A preliminary report. Fla. Entomol. 2019, 102, 79–84. [Google Scholar]
- Vargas, R.I.; Leblanc, L.; Harris, E.J.; Manoukis, N.C. Regional suppression of Bactrocera fruit flies (Diptera: Tephritidae) in the Pacific through biological control and prospects for future introductions into other areas of the world. Insects 2012, 3, 727–742. [Google Scholar] [CrossRef]
- Mochizuki, M.; Narahara, M. Citronella oil improves the efficacy of trap surveys of the Japanese orange fly, Bactrocera tsuneonis (Diptera: Tephritidae). Appl. Entomol. Zool. 2022, 57, 37–43. [Google Scholar] [CrossRef]
- Opadith, P.; Iwamoto, S.; Narahara, M.; Okazaki, Y.; Higashiura, Y.; Otake, J.; Ono, H.; Hinomoto, N. Development of microsatellite markers for the Japanese orange fly, Bactrocera tsuneonis (Diptera: Tephritidae). Appl. Entomol. Zool. 2022, 57, 283–288. [Google Scholar] [CrossRef]
- Wang, J.W.; Li, Z.H.; Chen, H.J.; Geng, J.; Wang, Z.L.; Wan, F.H. The potential geographic distribution of Bactrocera tsuneonis (Diptera:Tephritidae). Plant Quar. 2009, 50, 1–4. [Google Scholar] [CrossRef]
- de la Vega, G.J.; Corley, J.C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 2019, 65, 217–227. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Franklin, J. Species distribution models in conservation biogeography: Developments and challenges. Divers. Distrib. 2013, 19, 1217–1223. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Vessella, F.; Schirone, B. Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. For. Ecol. Manag. 2013, 304, 150–161. [Google Scholar] [CrossRef]
- Deb, J.C.; Phinn, S.; Butt, N.; Mcalpine, C.A. Climatic-induced shifts in the distribution of teak (Tectona grandis) in tropical Asia: Implications for forest management and planning. Environ. Manag. 2017, 60, 422–435. [Google Scholar] [CrossRef]
- Abedi-Tizaki, M.; Zafari, D. Geographic distribution of phylogenetic species of the Fusarium graminearum species complex and their 8-ketotrichothecene chemotypes on wheat spikes in Iran. Mycotoxin Res. 2017, 33, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current Maxent studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Zhu, G.P.; Qiao, H.J. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Cruz-Cárdenas, G.; López-Mata, L.; Villaseñor, J.; Ortiz, E. Potential species distribution modeling and the use of principal component analysis as predictor variables. Rev. Mex. De Biodivers. 2014, 85, 189–199. [Google Scholar] [CrossRef]
- Shan, Y.M.; Gao, X.Y.; Hu, X.Y.; Hou, Y.F.; Wang, F. Current and future potential distribution of the invasive scale Ceroplastes rusci (L., 1758)(Hemiptera: Coccidae) under climate niche. Pest Manag. Sci. 2023, 79, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Maruthadurai, R.; Das, B.; Ramesh, R. Predicting the invasion risk of rugose spiraling whitefly, Aleurodicus rugioperculatus, in India based on CMIP6 projections by MaxEnt. Pest Manag. Sci. 2023, 79, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Wang, Y.; Wang, Z.B.; Ding, W.L.; Xu, K.D.; Li, L.L.; Wang, Y.Y.; Li, J.B.; Yang, M.S.; Liu, X.M. Modelling the current and future potential distribution of the bean bug Riptortus pedestris with increasingly serious damage to soybean. Pest Manag. Sci. 2022, 78, 4340–4352. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Gao, G.; Wei, J.F. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects 2021, 12, 347. [Google Scholar] [CrossRef]
- ElShahed, S.M.; Mostafa, Z.K.; Radwan, M.H.; Hosni, E.M. Modeling the potential global distribution of the Egyptian cotton leafworm, Spodoptera littoralis under climate change. Sci. Rep. 2023, 13, 17314. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Li, X.Y.; Emery, R.N.; Coupland, G.T.; Ren, Y.L.; McKirdy, S.J. Evaluation of the likelihood of establishing false codling moth (Thaumatotibia leucotreta) in Australia via the international cut flower market. Insects 2022, 13, 883. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture of the PRC. The Ministry of Agriculture Included it in the National List of Quarantine Harmful Organisms. Available online: https://www.moa.gov.cn/nybgb/2009/dliuq/201806/t20180607_6151337.htm (accessed on 1 October 2023).
- Kadmon, R.; Farber, O.; Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Appl. 2004, 14, 401–413. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Raghavan, R.K.; Barker, S.C.; Cobos, M.E.; Barker, D.; Teo, E.J.M.; Foley, D.H.; Nakao, R.; Lawrence, K.; Heath, A.C.G.; Peterson, A.T. Potential spatial distribution of the newly introduced long-horned tick, Haemaphysalis longicornis in North America. Sci. Rep. 2019, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Cai, P.M.; Meng, F.H.; Song, Y.Z.; Ma, C.H.; Peng, Y.W.; Wu, Q.F.; Lei, S.Y.; Hong, Y.C.; Huo, D.; Li, L. Maxent modeling the current and future distribution of the invasive pest, the fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae), under changing climatic conditions in China. Appl. Ecol. Environ. Res. 2021, 19, 4527–4546. [Google Scholar] [CrossRef]
- Wei, J.F.; Zhang, H.F.; Zhao, W.Q.; Zhao, Q. Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PLoS ONE 2017, 12, e0180913. [Google Scholar] [CrossRef]
- Ripley, B.D. The R project in statistical computing. MSOR Connect. Newsl. LTSN Maths Stats OR Netw. 2001, 1, 23–25. [Google Scholar] [CrossRef]
- Guevara, L.; Gerstner, B.E.; Kass, J.M.; Anderson, R.P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Change Biol. 2018, 24, 1511–1522. [Google Scholar] [CrossRef]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R.; Zamora, R.; Molina, J.R.; Vasquez, A.; Herrera, M.Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inform. 2011, 6, 364–370. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, J.E.; DiTommaso, A.; Wang, R.l.; Wu, R.S. Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models. J. Plant Res. 2015, 128, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Bebber, D.P. Global warming and China’s crop pests. Nat. Food 2021, 3, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.J.A.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.M.; Simard, F.; Courchamp, F. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Wang, X.H.; Jin, Z.N.; Müller, C.; Pugh, T.A.M.; Chen, A.P.; Wang, T.; Huang, L.; Zhang, Y.; Laurent, X.Z.L.; et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 2022, 3, 57–65. [Google Scholar] [PubMed]
- Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Júnior, P.A.S.; Picanço, M.C.; Osei-Owusu, J.; Sétamou, M.; Ekesi, S.; Borgemeister, C. A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale. Ecol. Inform. 2022, 71, 101792. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Santana Jr, P.A.; Picanço, M.C.; Kyerematen, R.; Sètamou, M.; Ekesi, S.; Borgemeister, C. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Manag. Sci. 2022, 78, 2534–2549. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Luo, W.; Wang, M.T.; Lu, X.L.; Huang, T.T.; Zhao, J.P.; Li, Q. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 2019, 7, e7323. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Zhang, Y.; Gul, H.; Hafeez, M.; Desneux, N.; Qin, Y. Potential economic impact of Bactrocera dorsalis on Chinese citrus based on simulated geographical distribution with MaxEnt and CLIMEX models. Entomol. Gen. 2023, 43. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Ge, X.Z.; Liu, J.N.; Zou, Y.; Guo, S.W.; Wang, T.; Zong, S.X. Climate change effects on the global distribution and range shifts of citrus longhorned beetle Anoplophora chinensis. J. Appl. Entomol. 2022, 146, 473–485. [Google Scholar] [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Veloz, S.D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 2009, 36, 2290–2299. [Google Scholar] [CrossRef]
- Deka, M.A.; Morshed, N. Mapping disease transmission risk of Nipah virus in South and Southeast Asia. Trop. Med. Infect. Dis. 2018, 3, 57. [Google Scholar] [CrossRef]
- Staley, J.T.; Hodgson, C.J.; Mortimer, S.R.; Morecroft, M.D.; Masters, G.J.; Brown, V.K.; Taylor, M.E. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol. 2007, 43, 189–198. [Google Scholar] [CrossRef]
- Yang, W.Z.; Qin, Y.J. Research progress on Bactrocera tsuneonis. China Plant Prot. 2022, 42, 21–28. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.W.; Zhang, J.Q.; Yang, Y.T.; Wei, S.C.; Wang, C.Y. Refined climatic zoning for citrus cultivation in Southern China based on climate suitability. J. Appl. Meteorol. Sci. 2021, 32, 421–431. [Google Scholar]
- Ye, X.J. Spatial and temporal characteristics of climate change in Guizhou in recent 30 Years. Anhui Agric. Sci. Bull. 2018, 24, 129–132+138. [Google Scholar] [CrossRef]
- Chen, P.; Ye, H. Population dynamics of Bactrocera dorsalis (Diptera: Tephritidae) and analysis of factors influencing populations in Baoshanba, Yunnan, China. Entomol. Sci. 2007, 10, 141–147. [Google Scholar] [CrossRef]
- Han, P.; Wang, X.; Niu, C.Y.; Dong, Y.C.; Zhu, J.Q.; Desneux, N. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J. Pest Sci. 2011, 84, 289–295. [Google Scholar] [CrossRef]
- Ye, H.; Liu, J.H. Population dynamics of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) in the Kunming area, southwestern China. Insect Sci. 2005, 12, 387–392. [Google Scholar] [CrossRef]
- Cai, P.M.; Song, Y.Z.; Meng, L.T.; Lin, J.; Zhao, M.T.; Wu, Q.F.; Nie, C.P.; Li, Y.Y.; Ji, Q.E. Phenological responses of Bactrocera dorsalis (Hendel) to climate warming in China based on long-term historical data. Int. J. Trop. Insect Sci. 2023, 43, 881–894. [Google Scholar] [CrossRef]
- Cai, P.M.; Song, Y.Z.; Meng, L.T.; Lui, R.J.; Lin, J.; Zhao, M.T.; Nie, C.P.; Li, Y.Y.; Ji, Q.E. Climate warming affects phenology of Bactrocera dorsalis: A case study of Fujian and Guangxi, China. Bull. Insectology 2023, 76, 73–81. [Google Scholar]
- Ma, X.L.; Suiter, K.A.; Chen, Z.Z.; Niu, C.Y. Estimation of lower developmental threshold and degree days for pupal development of different geographical populations of Chinese citrus fly (Diptera: Tephritidae) in China. J. Econ. Entomol. 2019, 112, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Narahara, M.; Tanaka, S.; Wakamura, S. Thermal responses in the citrus fruit fly, Dacus tsuneonis: Evidence for a pupal diapause. Entomol. Exp. Et Appl. 1994, 71, 257–261. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, C.Y.; Qin, M.; Liu, H.; Feng, X.D.; Zang, R.Z. Distribution and spread of national quarantine insects of agricultural plants in China. Chin. J. Appl. Entomol. 2018, 55, 1–11. [Google Scholar]
- Lin, W.J.; Chen, S.Z.; Ye, X.B. Relationship between meteorological factors and meteorological yield of citrus in Yongchun. Guangdong Canye 2022, 56, 25–27. [Google Scholar] [CrossRef]
- Shen, Z.M. Current situation of citrus production in China and future prospects. KeXue ZhongYang 2019, 9, 5–10. [Google Scholar]
- Xia, Y.L.; Ouyang, G.C.; Ma, X.L.; Hou, B.H.; Huang, J.H.; Hu, H.Q.; Fan, G.C. Trapping tephritid fruit flies (Diptera: Tephritidae) in citrus groves of Fujian Province of China. J. Asia-Pac. Entomol. 2020, 23, 879–882. [Google Scholar] [CrossRef]
- Kumar, S.; Graham, J.; West, A.M.; Evangelista, P.H. Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Comput. Electron. Agric. 2014, 103, 55–62. [Google Scholar] [CrossRef]
- Shimwela, M.M.; Blackburn, J.K.; Jones, J.B.; Narouei-Khandan, H.A.; Ploetz, R.C.; Beed, F.; Van Bruggen, A.H.C. Local and regional spread of banana xanthomonas wilt (BXW) in space and time in Kagera, Tanzania. Plant Pathol. 2017, 66, 1003–1014. [Google Scholar] [CrossRef]
- Santana Jr, P.A.; Kumar, L.; Da Silva, R.S.; Pereira, J.L.; Picanco, M.C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest Manag. Sci. 2019, 75, 2706–2715. [Google Scholar] [CrossRef]
- Ji, W.; Han, K.; Lu, Y.Y.; Wei, J.F. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Prot. 2020, 137, 105268. [Google Scholar] [CrossRef]
- Maruthadurai, R.; Bappa, D.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2022, 95, 841–854. [Google Scholar]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; De Ruffray, P.; Vidal, C.; Pierrat, J.C.; Gégout, J.C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef]
- Song, J.Y.; Zhang, H.; Li, M.; Han, W.H.; Yin, Y.X.; Lei, J.P. Prediction of spatiotemporal invasive risk of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), in China. Insects 2021, 12, 874. [Google Scholar] [CrossRef]
- Liu, B.Y.; Gao, X.; Zheng, K.R.; Ma, J.; Jiao, Z.H.; Xiao, J.H.; Wang, H.B. The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: An ecological niche modelling approach. Pest Manag. Sci. 2020, 76, 3096–3107. [Google Scholar] [CrossRef]
- Delucia, E.H.; Casteel, C.L.; Nabity, P.D.; O’Neill, B.F. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proc. Natl. Acad. Sci. USA 2008, 105, 1781–1782. [Google Scholar] [CrossRef] [PubMed]
- Rötter, R.; Van de Geijn, S.C. Climate change effects on plant growth, crop yield and livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Jarnevich, C.S.; Stohlgren, T.J.; Kumar, S.; Morisette, J.T.; Holcombe, T.R. Caveats for correlative species distribution modeling. Ecol. Inform. 2015, 29, 6–15. [Google Scholar] [CrossRef]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Hance, T.; Van Baaren, J.; Vernon, P.; Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 2007, 52, 107–126. [Google Scholar] [CrossRef]
- Higgins, S.I.; Larcombe, M.J.; Beeton, N.J.; Conradi, T.; Nottebrock, H. Predictive ability of a process-based versus a correlative species distribution model. Ecol. Evol. 2020, 10, 11043–11054. [Google Scholar] [CrossRef]
Variables | Description | Unit |
---|---|---|
Bio1 | Annual Mean Temperature | °C |
Bio2 | Mean Diurnal Temperature Range | °C |
Bio3 | Isothermality (Bio2/Bio7) (×100) | / |
Bio4 | Temperature Seasonality (standard deviation ×100) | / |
Bio5 | Maximum Temperature of Warmest Month | °C |
Bio6 | Minimum Temperature of Coldest Month | °C |
Bio7 | Temperature Annual Range (Bio5-Bio6) | °C |
Bio8 | Mean Temperature of Wettest Quarter | °C |
Bio9 | Mean Temperature of Driest Quarter | °C |
Bio10 | Mean Temperature of Warmest Quarter | °C |
Bio11 | Mean Temperature of Coldest Quarter | °C |
Bio12 | Annual Precipitation | mm |
Bio13 | Precipitation of Wettest Month | mm |
Bio14 | Precipitation of Driest Month | mm |
Bio15 | Precipitation Seasonality (Coefficient of Variation) | / |
Bio16 | Precipitation of Wettest Quarter | mm |
Bio17 | Precipitation of Driest Quarter | mm |
Bio18 | Precipitation of Warmest Quarter | mm |
Bio19 | Precipitation of Coldest Quarter | mm |
Climate Scenario | Year | AUC Value |
---|---|---|
- | Current | 0.985 |
Lowly compulsive scenario SSP1-2.6 | 2021–2040 | 0.988 |
2041–2060 | 0.986 | |
2061–2080 | 0.981 | |
2081–2100 | 0.992 | |
Moderately compulsive scenario SSP2-4.5 | 2021–2040 | 0.986 |
2041–2060 | 0.990 | |
2061–2080 | 0.985 | |
2081–2100 | 0.989 | |
Moderately to highly compulsive scenario SSP3-7.0 | 2021–2040 | 0.981 |
2041–2060 | 0.989 | |
2061–2080 | 0.985 | |
2081–2100 | 0.984 | |
Highly compulsive scenario SSP5-8.5 | 2021–2040 | 0.987 |
2041–2060 | 0.989 | |
2061–2080 | 0.986 | |
2081–2100 | 0.987 |
Variables | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|
Bio18 | 67.5 | 7.9 |
Bio4 | 20.5 | 21.5 |
Bio2 | 6.1 | 0.2 |
Bio6 | 2.4 | 0.2 |
Bio8 | 2.3 | 36.6 |
Bio3 | 1.3 | 33.7 |
Scenario | Decade | Total Suitable Regions | Regions of Marginally Suitable Habitat | Regions of Moderately Suitable Habitat | Regions of Highly Suitable Habitat | ||||
---|---|---|---|---|---|---|---|---|---|
Area (×104 km2) | Area Change (%) | Area (×104 km2) | Area Change (%) | Area (×104 km2) | Area Change (%) | Area (×104 km2) | Area Change (%) | ||
- | Current | 215.90 | - | 51.26 | - | 82.05 | - | 82.60 | - |
SSP1-2.6 | 2030s | 228.15 | 5.67% | 63.26 | 23.43% | 80.22 | −2.23% | 84.67 | 2.51% |
2050s | 232.42 | 7.65% | 74.03 | 44.44% | 75.64 | −7.81% | 82.75 | 0.19% | |
2070s | 222.05 | 2.85% | 85.97 | 67.72% | 58.59 | −28.59% | 77.50 | −6.17% | |
2090s | 220.35 | 2.06% | 75.18 | 46.68% | 60.55 | −26.21% | 84.62 | 2.46% | |
SSP2-4.5 | 2030s | 225.75 | 4.56% | 63.41 | 23.71% | 78.12 | −4.79% | 84.22 | 1.97% |
2050s | 236.30 | 9.45% | 75.29 | 46.89% | 71.28 | −13.13% | 89.73 | 8.64% | |
2070s | 236.36 | 9.47% | 74.17 | 44.70% | 81.82 | −0.29% | 80.38 | −2.69% | |
2090s | 233.31 | 8.06% | 62.32 | 21.58% | 79.55 | −3.05% | 91.44 | 10.71% | |
SSP3-7.0 | 2030s | 226.64 | 4.97% | 87.05 | 69.84% | 62.30 | −24.08% | 77.29 | −6.42% |
2050s | 223.19 | 3.38% | 57.23 | 11.66% | 81.30 | −0.92% | 84.67 | 2.51% | |
2070s | 219.60 | 1.71% | 71.63 | 39.74% | 81.72 | −0.40% | 66.25 | −19.79% | |
2090s | 228.38 | 5.78% | 81.73 | 59.46% | 75.55 | −7.93% | 71.11 | −13.91% | |
SSP5-8.5 | 2030s | 221.71 | 2.69% | 54.25 | 5.84% | 74.68 | −8.98% | 92.78 | 12.33% |
2050s | 220.94 | 2.33% | 50.71 | −1.06% | 79.11 | −3.58% | 91.12 | 10.32% | |
2070s | 226.93 | 5.11% | 92.18 | 79.84% | 55.92 | −31.84% | 78.83 | −4.56% | |
2090s | 237.77 | 10.13% | 92.41 | 80.30% | 59.24 | −27.81% | 86.12 | 4.27% |
Current Centroid Location | Climate Scenario | Future Centroid Location | |||
---|---|---|---|---|---|
2030s | 2050s | 2070s | 2090s | ||
Yiyang City, Hunan Province (112.317 °E, 28.727 °N) | SSP1-2.6 | Yiyang City (29.087 °N, 112.439 °E) | Changde City (29.034 °N, 112.157 °E) | Yiyang City (28.942 °N, 112.303 °E) | Yiyang City (28.884 °N, 112.277 °E) |
SSP2-4.5 | Yiyang City (28.988 °N, 112.400 °E) | Changde City (29.104 °N, 112.184 °E) | Changde City (28.723 °N, 111.780 °E) | Yiyang City (28.468 °N, 111.443 °E) | |
SSP3-7.0 | Yiyang City (29.038 °N, 112.426 °E) | Changde City (28.858 °N, 112.253 °E) | Yiyang City (28.840 °N, 112.506 °E) | Yiyang City (29.024 °N, 112.340 °E) | |
SSP5-8.5 | Changde City (28.783 °N, 112.167 °E) | Yiyang City (28.468 °N, 111.852 °E) | Changde City (28.660 °N, 111.858 °E) | Changde City (28.752 °N, 111.714 °E) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Meng, F.; Song, Y.; Li, D.; Ji, Q.; Hong, Y.; Lin, J.; Cai, P. Forecasting the Expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China Using the MaxEnt Model. Insects 2024, 15, 417. https://doi.org/10.3390/insects15060417
Mao J, Meng F, Song Y, Li D, Ji Q, Hong Y, Lin J, Cai P. Forecasting the Expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China Using the MaxEnt Model. Insects. 2024; 15(6):417. https://doi.org/10.3390/insects15060417
Chicago/Turabian StyleMao, Jianxiang, Fanhua Meng, Yunzhe Song, Dongliang Li, Qinge Ji, Yongcong Hong, Jia Lin, and Pumo Cai. 2024. "Forecasting the Expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China Using the MaxEnt Model" Insects 15, no. 6: 417. https://doi.org/10.3390/insects15060417
APA StyleMao, J., Meng, F., Song, Y., Li, D., Ji, Q., Hong, Y., Lin, J., & Cai, P. (2024). Forecasting the Expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China Using the MaxEnt Model. Insects, 15(6), 417. https://doi.org/10.3390/insects15060417