Newly Woody Artificial Diet Reveals Antibacterial Activity of Hemolymph in Larvae of Zophobas atratus (Fabricius, 1775) (Coleoptera: Tenebrionidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Stock Culture
2.2. Cultivation of Z. atratus Larvae Biomass with Various Diets
2.3. Analysis of Hemolymph Antibacterial Activity
2.4. Statistical Analysis
3. Results
3.1. Effect of FD on Biometric Parameters and Features of Development of Z. atratus Beetles
3.2. Effect of FD on the Antibacterial Activity of the Hemolymph of Z. atratus Larvae
4. Discussion
The Diet Used, Specifics of Management | Sources |
---|---|
The main component is wheat bran with the addition of various cereals, such as oat. | [40,41,42,43] |
The basic diet based on wheat bran is supplemented with starch-containing products as a source of water (fruit peel, carrots, etc.). If the moisture is insufficient, larvae acquire a cannibal behaviour. | [15,43,44] |
Brewery waste. | [44] |
Plant residues with the addition of cattle, horse, and chicken manure. Using manure resulted in slowing down of the growth and development rates of larvae. | [45] |
Basic diet, temperature 25–28 °C, relative humidity 60–70%. Additionally, the effect of larval density on biomass accumulation was investigated. | [14,15,16,33] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stankiewicz, M.; Dąbrowski, M.; de Lima, M.E. Nervous System of Periplaneta americana Cockroach as a Model in Toxinological Studies: A Short Historical and Actual View. J. Toxicol. 2012, 2012, e143740. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, X.; Yang, P.; Jiang, X.; Jiang, F.; Zhao, D.; Li, B.; Cui, F.; Wei, J.; Ma, C.; et al. The Locust Genome Provides Insight into Swarm Formation and Long-Distance Flight. Nat. Commun. 2014, 5, 2957. [Google Scholar] [CrossRef] [PubMed]
- Soumya, M.; Harinatha Reddy, A.; Nageswari, G.; Venkatappa, B. Silkworm (Bombyx mori) and Its Constituents: A Fascinating Insect in Science and Research. J. Entomol. Zool. Stud. 2017, 5, 1701–1705. [Google Scholar]
- Mikulak, E.; Gliniewicz, A.; Przygodzka, M.; Solecka, J. Galleria mellonella L. as Model Organism Used in Biomedical and Other Studies. Przegl. Epidemiol. 2018, 72, 57–73. [Google Scholar] [PubMed]
- Adamski, Z.; Bufo, S.A.; Chowański, S.; Falabella, P.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Salvia, R.; Scrano, L.; Słocińska, M.; et al. Beetles as Model Organisms in Physiological, Biomedical and Environmental Studies—A Review. Front. Physiol. 2019, 10, 431695. [Google Scholar] [CrossRef] [PubMed]
- Pointer, M.D.; Gage, M.J.G.; Spurgin, L.G. Tribolium Beetles as a Model System in Evolution and Ecology. Heredity 2021, 126, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.J.; Vosshall, L.B. How to Turn an Organism into a Model Organism in 10 ‘Easy’ Steps. J. Exp. Biol. 2020, 223, jeb218198. [Google Scholar] [CrossRef] [PubMed]
- Stork, N.E.; McBroom, J.; Gely, C.; Hamilton, A.J. New Approaches Narrow Global Species Estimates for Beetles, Insects, and Terrestrial Arthropods. Proc. Natl. Acad. Sci. USA 2015, 112, 7519–7523. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.D.; Sequeira, A.S.; Marvaldi, A.E.; Farrell, B.D. Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants. Proc. Natl. Acad. Sci. USA 2009, 106, 7083–7088. [Google Scholar] [CrossRef]
- Saska, P.; Vlach, M.; Schmidtová, J.; Matalin, A.V. Thermal Constants of Egg Development in Carabid Beetles—Variation Resulting from Using Different Estimation Methods and among Geographically Distant European Populations. Eur. J. Èntomol. 2014, 111, 621–630. [Google Scholar] [CrossRef]
- Nakamura, K. Effect of Photoperiod on the Size–Temperature Relationship in a Pentatomid Bug, Dolycoris baccarum. J. Therm. Biol. 2002, 27, 541–546. [Google Scholar] [CrossRef]
- Lopatina, E.B. A review of plasticity of the thermal reaction standards in insect development. Eur. J. Èntomol. 2018, 17, 63–73. [Google Scholar] [CrossRef]
- Lopatina, E.B.; Gusev, I.A. A Novel Form of Phenotypic Plasticity of the Thermal Reaction Norms for Development in the Bug Graphosoma lineatum (L.) (Heteroptera, Pentatomidae). Entmol. Rev. 2019, 99, 417–436. [Google Scholar] [CrossRef]
- Tschinkel, W.R. Larval Dispersal and Cannibalism in a Natural Population of Zophobas atratus (Coleoptera: Tenebrionidae). Anim. Behav. 1981, 29, 990–996. [Google Scholar] [CrossRef]
- Ichikawa, T.; Kurauchi, T. Larval Cannibalism and Pupal Defense against Cannibalism in Two Species of Tenebrionid Beetles. Zool. Sci. 2009, 26, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Zaelor, J.; Kitthawee, S. Growth Response to Population Density in Larval Stage of Darkling beetles (Coleoptera; Tenebrionidae) Tenebrio molitor and Zophobas atratus. Agric. Nat. Resour. 2018, 52, 603–606. [Google Scholar] [CrossRef]
- Yi, D.-A.; Kuprin, A.V.; Bae, Y.J. Effects of Temperature on Instar Number and Larval Development in the Endangered Longhorn Beetle Callipogon relictus (Coleoptera: Cerambycidae) Raised on an Artificial Diet. Can. Entomol. 2019, 151, 537–544. [Google Scholar] [CrossRef]
- Sheldon, B.C.; Verhulst, S. Ecological Immunology: Costly Parasite Defences and Trade-Offs in Evolutionary Ecology. Trends Ecol. Evol. 1996, 11, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Rolff, J.; Siva-Jothy, M.T. Invertebrate Ecological Immunology. Science 2003, 301, 472–475. [Google Scholar] [CrossRef]
- Schmid-Hempel, P. Evolutionary Ecology of Insect Immune Defenses. Annu. Rev. Entomol. 2005, 50, 529–551. [Google Scholar] [CrossRef]
- Siva-Jothy, M.T.; Moret, Y.; Rolff, J. Insect Immunity: An Evolutionary Ecology Perspective. In Advances in Insect Physiology; Simpson, S.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 32, pp. 1–48. [Google Scholar]
- Wilson, K. Evolutionary Ecology of Insect Host-Parasite Interactions: An Ecological Immunology Perspective; Fellowes, M., Holloway, G.J., Rolff, J., Eds.; CABI Publications: Wallingford, UK, 2005; pp. 289–341. [Google Scholar]
- Strand, M.R. The Insect Cellular Immune Response. Insect Sci. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- Palli, S.R.; Locke, M. The Synthesis of Hemolymph Proteins by the Larval Fat Body of an Insect Calpodes ethlius (Lepidoptera: Hesperiidae). Insect Biochem. 1988, 18, 405–413. [Google Scholar] [CrossRef]
- Hoffmann, J.A.; Reichhart, J.-M. Drosophila Innate Immunity: An Evolutionary Perspective. Nat. Immunol. 2002, 3, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.A.; Reichhart, J.-M.; Hetru, C. Innate Immunity in Higher Insects. Curr. Opin. Immunol. 1996, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, N.; Méndez, M.; Ranius, T. Nutrient Richness of Wood Mould in Tree Hollows with the Scarabaeid beetle Osmoderma eremita. Anim. Biodivers. Conserv. 2004, 27, 79–82. [Google Scholar]
- Bhawane, G.; Gaikwad, Y.; Mamlayya, A. On the Larval Food of Saproxylic Beetle Glycyphana horsfieldi Hope (Coleoptera: Scarabaeidae: Cetoniinae). Biol. Forum Int. J. 2015, 7, 1833–1835. [Google Scholar]
- Filipiak, M. Nutrient Dynamics in Decomposing Dead Wood in the Context of Wood Eater Requirements: The Ecological Stoichiometry of Saproxylophagous Insects. In Saproxylic Insects: Diversity, Ecology and Conservation; Ulyshen, M.D., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 429–469. ISBN 978-3-319-75937-1. [Google Scholar]
- Tschinkel, W.R. Zophobas atratus (Fab.) and Z. rugipes Kirsch (Coleoptera: Tenebrionidae) Are the Same Species. Coleopt. Bull. 1984, 38, 325–333. [Google Scholar]
- Bulet, P.; Cociancich, S.; Dimarcq, J.L.; Lambert, J.; Reichhart, J.M.; Hoffmann, D.; Hetru, C.; Hoffmann, J.A. Insect Immunity. Isolation from a Coleopteran Insect of a Novel Inducible Antibacterial Peptide and of New Members of the Insect Defensin Family. J. Biol. Chem. 1991, 266, 24520–24525. [Google Scholar] [CrossRef] [PubMed]
- Fursov, V.N.; Cherney, L.S. Zophobas atratus (Fabricius, 1775)—New Genus and Species of Darkling Beetles (Coleoptera, Tenebrionidae) for the Fauna of Ukraine. Ukr. Entomol. J. 2018, 14, 10–24. [Google Scholar] [CrossRef]
- VandenBrooks, J.M.; Ford, C.F.; Harrison, J.F. Responses to Alteration of Atmospheric Oxygen and Social Environment Suggest Trade-Offs among Growth Rate, Life Span, and Stress Susceptibility in Giant Mealworms (Zophobas morio). Physiol. Biochem. Zool. 2020, 93, 358–368. [Google Scholar] [CrossRef]
- Lee, J.H.; Chung, H.; Shin, Y.P.; Kim, M.-A.; Natarajan, S.; Veerappan, K.; Kim, S.H.; Park, J.; Hwang, J.S. Uncovering Antimicrobial Peptide from Zophobas Atratus Using Transcriptome Analysis. Int. J. Pept. Res. Ther. 2021, 27, 1827–1835. [Google Scholar] [CrossRef]
- Kuprin, A.V.; Veremenko, V.S.; Khandy, M.T.; Bulakh, E.M. Artificial Diet for Cultivation of Zophobas atratus (Fabricius, 1775) (Coleoptera: Te-Nebrionidae) in Laboratory Conditions. A.I. Kurentsov’s Ann. Mem. Meet. 2022, 33, 106–112. [Google Scholar] [CrossRef]
- Yi, D.-A.; Kuprin, A.; Lee, Y.; Bae, Y. Newly Developed Fungal Diet for Artificial Rearing of the Endangered Long-horned Beetle Callipogon relictus (Coleoptera: Cerambycidae). Entomol. Res. 2017, 47, 373–379. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Józefiak, A.; Mazurkiewicz, J.; Świątkiewicz, S.; Siwek, M.; Bednarczyk, M.; Szumacher-Strabel, M.; Cieślak, A.; Benzertiha, A.; et al. Effects of Replacing Soybean Oil with Selected Insect Fats on Broilers. Anim. Feed. Sci. Technol. 2018, 240, 170–183. [Google Scholar] [CrossRef]
- Nascimento, R.Q.; Di Mambro Ribeiro, C.V.; Colauto, N.B.; da Silva, L.; Lemos, P.V.F.; de Souza Ferreira, E.; Linde, G.A.; Machado, B.A.S.; Tavares, P.P.L.G.; Biasoto, A.C.T.; et al. Utilization of Agro-Industrial Residues in the Rearing and Nutritional Enrichment of Zophobas atratus Larvae: New Food Raw Materials. Molecules 2022, 27, 6963. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, H.G.; Song, S.H.; Kim, N.J. Developmental Characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) Larvae in Different Instars. Int. J. Ind. Entomol. Biomater. 2015, 30, 45–49. [Google Scholar] [CrossRef]
- Quennedey, A.; Aribi, N.; Everaerts, C.; Delbecque, J.-P. Postembryonic Development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under Crowded or Isolated Conditions and Effects of Juvenile Hormone Analogue Applications. J. Insect Physiol. 1995, 41, 143–152. [Google Scholar] [CrossRef]
- Tschinkel, W.R. Crowding, Maternal Age, Age at Pupation, and Life History of Zophobas atratus (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 1993, 86, 278–297. [Google Scholar] [CrossRef]
- Aribi, N.; Quennedey, A.; Pitoizet, N.; Delbecque, J.-P. Ecdysteroid Titres in a Tenebrionid Beetle, Zophobas atratus: Effects of Grouping and Isolation. J. Insect Physiol. 1997, 43, 815–821. [Google Scholar] [CrossRef]
- Maciel-Vergara, G.; Jensen, A.B.; Eilenberg, J. Cannibalism as a Possible Entry Route for Opportunistic Pathogenic Bacteria to Insect Hosts, Exemplified by Pseudomonas Aeruginosa, a Pathogen of the Giant Mealworm Zophobas morio. Insects 2018, 9, 88. [Google Scholar] [CrossRef]
- van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth Performance and Feed Conversion Efficiency of Three Edible Mealworm Species (Coleoptera: Tenebrionidae) on Diets Composed of Organic by-Products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of Organic Wastes as Substrates for Rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus Larvae as Alternative Feed Supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Pye, A.E.; Boman, H.G. Insect Immunity. III. Purification and Partial Characterization of Immune Protein P5 from Hemolymph of Hyalophora Cecropia Pupae. Infect. Immun. 1977, 17, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Chapple, D.S. Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Simpson, S.J.; Wilson, K. Dietary Protein-Quality Influences Melanization and Immune Function in an Insect. Funct. Ecol. 2008, 22, 1052–1061. [Google Scholar] [CrossRef]
- Glupov, V.V.; Slepneva, I.A.; Dubovskiy, I.M. Generation of the Reactive Oxygen Species during Immune Reactions of Arthropods. Proc. Zool. Inst. RAS 2009, 313, 297–307. [Google Scholar] [CrossRef]
- Briggs, J.D. Humoral Immunity in Lepidopterous Larvae. J. Exp. Zool. 1958, 138, 155–188. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.; Falla, T.; Brown, M. Cationic Bactericidal Peptides. Adv. Microb. Physiol. 1995, 37, 135–175. [Google Scholar] [CrossRef]
- Jaenike, J.; Unckless, R.; Cockburn, S.N.; Boelio, L.M.; Perlman, S.J. Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont. Science 2010, 329, 212–215. [Google Scholar] [CrossRef]
- Xie, J.; Vilchez, I.; Mateos, M. Spiroplasma Bacteria Enhance Survival of Drosophila Hydei Attacked by the Parasitic Wasp Leptopilina heterotoma. PLoS ONE 2010, 5, e12149. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Butler, S.; Sanchez, G.; Mateos, M. Male Killing Spiroplasma Protects Drosophila Melanogaster against Two Parasitoid Wasps. Heredity 2014, 112, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.T.; Peng, F.; Boulanger, M.J.; Perlman, S.J. A Ribosome-Inactivating Protein in a Drosophila Defensive Symbiont. Proc. Natl. Acad. Sci. USA 2015, 113, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.C.; Herren, J.K.; Schüpfer, F.; Lemaitre, B. The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila. mBio 2016, 7, e01006-16. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, M.J.; Perlman, S.J. Generality of Toxins in Defensive Symbiosis: Ribosome-Inactivating Proteins and Defense against Parasitic Wasps in Drosophila. PLoS Pathog. 2017, 13, e1006431. [Google Scholar] [CrossRef]
- Blow, F.; Douglas, A.E. The Hemolymph Microbiome of Insects. J. Insect Physiol. 2019, 115, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Cory, J.S.; Wilson, K.; Raubenheimer, D.; Simpson, S.J. Flexible Diet Choice Offsets Protein Costs of Pathogen Resistance in a Caterpillar. Proc. R. Soc. B Biol. Sci. 2006, 273, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.A.; Hoffmann, D. The Inducible Antibacterial Peptides of Dipteran Insects. Res. Immunol. 1990, 141, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Karowe, D.N.; Martin, M.M. The Effects of Quantity and Quality of Diet Nitrogen on the Growth, Efficiency of Food Utilization, Nitrogen Budget, and Metabolic Rate of Fifth-Instar Spodoptera eridania Larvae (Lepidoptera: Noctuidae). J. Insect Physiol. 1989, 35, 699–708. [Google Scholar] [CrossRef]
- Siva-Jothy, M.T.; Thompson, J.J.W. Short-Term Nutrient Deprivation Affects Immune Function. Physiol. Entomol. 2002, 27, 206–212. [Google Scholar] [CrossRef]
- Stoehr, A.M. Inter- and Intra-Sexual Variation in Immune Defence in the Cabbage White Butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol. Entomol. 2007, 32, 188–193. [Google Scholar] [CrossRef]
- Ojala, K.; Julkunen-Tiitto, R.; Lindström, L.; Mappes, J. Diet Affects the Immune Defence and Life-History Traits of an Arctiid Moth Parasemia plantaginis. Evol. Ecol. Res. 2005, 7, 1153–1170. [Google Scholar]
- Kapari, L.; Haukioja, E.; Rantala, M.J.; Ruuhola, T. Defoliating Insect Immune Defense Interacts with Induced Plant Defense during a Population Outbreak. Ecology 2006, 87, 291–296. [Google Scholar] [CrossRef] [PubMed]
Name of Component | Component Content in 500 g of Medium, g |
---|---|
Sawdust of Japanese elm | 120.00 |
Mycelium of Pleurotus citrinopileatus | 25.00 |
Feed yeast | 10.00 |
Ascorbic acid | 4.50 |
Sucrose | 20.00 |
Agar | 6.20 |
Distilled water | 314.30 |
Development Stage | Length, mm | Mass, g | Duration of Development, Days (Mean ± Standard Deviation) |
---|---|---|---|
Egg | 1.2–1.5 | 0.1–0.9 | 6.4 (±) 0.52 |
Larvae (L1–L4) | 2.2–2.7 | 1.5–3.5 | L1—10.8 (±) 0.92 |
L2—14.8 (±) 0.79 | |||
L3—12.2 (±) 1.14 | |||
L4—13.6 (±) 1.51 | |||
Larvae (L5–L12) | 48.0–52.0 | 10.0–23.0 | L5—15.9 (±) 0.57 |
L6—15.1 (±) 0.57 | |||
L7—12.6 (±) 1.07 | |||
L8—14.5 (±) 0.71 | |||
L9—12.6 (±) 0.97 | |||
L10—11.4 (±) 0.52 | |||
L11—18.5 (±) 0.97 | |||
L12—23.8 (±) 1.14 | |||
Pupa | 29.0–45.0 | 5.6–14.0 | 9.7 (±) 0.48 |
Adult beetle | 30.0–34.4 | – | up to 7 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuprin, A.; Baklanova, V.; Khandy, M.; Grinchenko, A.; Kumeiko, V. Newly Woody Artificial Diet Reveals Antibacterial Activity of Hemolymph in Larvae of Zophobas atratus (Fabricius, 1775) (Coleoptera: Tenebrionidae). Insects 2024, 15, 435. https://doi.org/10.3390/insects15060435
Kuprin A, Baklanova V, Khandy M, Grinchenko A, Kumeiko V. Newly Woody Artificial Diet Reveals Antibacterial Activity of Hemolymph in Larvae of Zophobas atratus (Fabricius, 1775) (Coleoptera: Tenebrionidae). Insects. 2024; 15(6):435. https://doi.org/10.3390/insects15060435
Chicago/Turabian StyleKuprin, Alexander, Vladislava Baklanova, Maria Khandy, Andrei Grinchenko, and Vadim Kumeiko. 2024. "Newly Woody Artificial Diet Reveals Antibacterial Activity of Hemolymph in Larvae of Zophobas atratus (Fabricius, 1775) (Coleoptera: Tenebrionidae)" Insects 15, no. 6: 435. https://doi.org/10.3390/insects15060435
APA StyleKuprin, A., Baklanova, V., Khandy, M., Grinchenko, A., & Kumeiko, V. (2024). Newly Woody Artificial Diet Reveals Antibacterial Activity of Hemolymph in Larvae of Zophobas atratus (Fabricius, 1775) (Coleoptera: Tenebrionidae). Insects, 15(6), 435. https://doi.org/10.3390/insects15060435