Characterisation of Tenebrio molitor Reared on Substrates Supplemented with Chestnut Shell
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Growth Performance and Feed Conversion Ratio
2.3. Chemical Characterisation of Rearing Substrate
2.4. Chemical Characterisation and Colour Analysis of Tenebrio molitor Larvae Meal
2.5. In Vitro Digestion of Insect Meals
2.6. Nuclear Magnetic Resonance (NMR) Spectroscopy of Free Amino Acid Profile
2.7. Bacterial Growth Inhibitory Activity of Insect Meal Extracts
2.8. Statistical Analysis
3. Results
3.1. Effect of Growth Substrates on Insect Growth Rate and Feed Conversion Ratio
3.2. Chemical Composition of Rearing Substrates
3.3. Chemical Composition, Digestibility and Colorimetric Analysis of Tenebrio molitor Larvae Meal
3.4. Free Amino Acid Profiles of Insect Meals
3.5. Bacterial Inhibition Activity of Tenebrio molitor Larvae Meal
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Tao, J.; Li, Y.O. Edible Insects as a Means to Address Global Malnutrition and Food Insecurity Issues. Food Qual. Saf. 2018, 2, 17–26. [Google Scholar] [CrossRef]
- Flores, D.R.; Casados, L.E.; Velasco, S.F.; Ramírez, A.C.; Velázquez, G. Comparative Study of Composition, Antioxidant and Antimicrobial Activity of Two Adult Edible Insects from Tenebrionidae Family. BMC Chem. 2020, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F.; Correia, P.; Coelho, C.; Costa, C.A. The Role of Edible Insects to Mitigate Challenges for Sustainability. Open Agric. 2021, 6, 24–36. [Google Scholar] [CrossRef]
- Parodi, A.; Leip, A.; De Boer, I.J.M.; Slegers, P.M.; Ziegler, F.; Temme, E.H.M.; Herrero, M.; Tuomisto, H.; Valin, H.; Van Middelaar, C.E.; et al. The Potential of Future Foods for Sustainable and Healthy Diets. Nat. Sustain. 2018, 1, 782–789. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Osei-Owusu, J.; Yunusa, B.M.; Rahayu, T.; Fernando, I.; Shah, M.A.; Centoducati, G. Prospects of Edible Insects as Sustainable Protein for Food and Feed—A Review. J. Insects Food Feed 2023, 10, 191–217. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J. Bioconversion Potential of Agro-Industrial Byproducts by Tenebrio Molitor—Long-Term Results. Insects 2022, 13, 810. [Google Scholar] [CrossRef] [PubMed]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M. Substrate as Insect Feed for Bio-Mass Production. J. Insects Food Feed 2021, 7, 585–596. [Google Scholar] [CrossRef]
- Zim, J.; Sarehane, M.; Bouharroud, R. The Mealworm Tenebrio Molitor (Coleoptera: Tenebrionidae) as a Potential Candidate to Valorize Crop Residues. In E3S Web Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 337, p. 04007. [Google Scholar] [CrossRef]
- Lu, S.; Chen, S.; Li, H.; Paengkoum, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; et al. Sustainable Valorization of Tomato Pomace (Lycopersicon Esculentum) in Animal Nutrition: A Review. Animals 2022, 12, 3294. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Kim, H.-J.; Choi, S.-H.; Mizuno, M. Glycoalkaloid, Phenolic, and Flavonoid Content and Antioxidative Activities of Conventional Nonorganic and Organic Potato Peel Powders from Commercial Gold, Red, and Russet Potatoes. J. Food Compos. Anal. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Veldkamp, T.; Dong, L.; Paul, A.; Govers, C. Bioactive Properties of Insect Products for Monogastric Animals—A Review. J. Insects Food Feed 2022, 8, 1027–1040. [Google Scholar] [CrossRef]
- Guan, G.; Azad, M.A.K.; Lin, Y.; Kim, S.W.; Tian, Y.; Liu, G.; Wang, H. Biological Effects and Applications of Chitosan and Chito-Oligosaccharides. Front. Physiol. 2019, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, S.; Enig, M.G.; Preuss, H.G. A Review of Monolaurin and Lauric Acid: Natural Virucidal and Bactericidal Agents. Altern. Complement. Ther. 2006, 12, 310–314. [Google Scholar] [CrossRef]
- Borrelli, L.; Varriale, L.; Dipineto, L.; Pace, A.; Menna, L.F.; Fioretti, A. Insect Derived Lauric Acid as Promising Alternative Strategy to Antibiotics in the Antimicrobial Resistance Scenario. Front. Microbiol. 2021, 12, 620798. [Google Scholar] [CrossRef] [PubMed]
- Patyra, E.; Kwiatek, K. Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production. Pathogens 2023, 12, 854. [Google Scholar] [CrossRef]
- Zacharis, C.; Bonos, E.; Giannenas, I.; Skoufos, I.; Tzora, A.; Voidarou, C. (Chrysa); Tsinas, A.; Fotou, K.; Papadopoulos, G.; Mitsagga, C.; et al. Utilization of Tenebrio Molitor Larvae Reared with Different Substrates as Feed Ingredients in Growing Pigs. Vet. Sci. 2023, 10, 393. [Google Scholar] [CrossRef]
- Santos, M.J.; Pinto, T.; Vilela, A. Sweet Chestnut (Castanea Sativa Mill.) Nutritional and Phenolic Composition Interactions with Chestnut Flavor Physiology. Foods 2022, 11, 4052. [Google Scholar] [CrossRef]
- Hu, M.; Yang, X.; Chang, X. Bioactive Phenolic Components and Potential Health Effects of Chestnut Shell: A Review. J. Food Biochem. 2021, 45, e13696. [Google Scholar] [CrossRef]
- Vázquez, G.; Calvo, M.; Sonia Freire, M.; González-Alvarez, J.; Antorrena, G. Chestnut Shell as Heavy Metal Adsorbent: Optimization Study of Lead, Copper and Zinc Cations Removal. J. Hazard. Mater. 2009, 172, 1402–1414. [Google Scholar] [CrossRef]
- Caprarulo, V.; Giromini, C.; Rossi, L. Review: Chestnut and Quebracho Tannins in Pig Nutrition: The Effects on Performance and Intestinal Health. Animal 2021, 15, 100064. [Google Scholar] [CrossRef] [PubMed]
- Tretola, M.; Silacci, P.; Sousa, R.; Colombo, F.; Panseri, S.; Ottoboni, M.; Pinotti, L.; Bee, G. Chestnut Extracts Decrease the In-Vitro Digestibility and Polyphenol Bioavailability of Soy-Based Nutrients but Protect the Epithelial Barrier Function of Pig Jejunum Segments after Digestion. Anim. Feed Sci. Technol. 2022, 294, 115501. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Self-Selection of Feeding Substrates by Tenebrio Molitor Larvae of Different Ages to Determine Optimal Macronutrient Intake and the Influence on Larval Growth and Protein Content. Insects 2022, 13, 657. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Paolucci, S.; Fratini, F.; Dal Bosco, A.; Tuccinardi, T.; Paci, G. Effect of Cooking Techniques on the in Vitro Protein Digestibility, Fatty Acid Profile, and Oxidative Status of Mealworms (Tenebrio Molitor). Front. Vet. Sci. 2021, 8, 675572. [Google Scholar] [CrossRef] [PubMed]
- Official Methods of Analysis TM, 21st ed.; AOAC International: Rockville, MD, USA, 2019; Available online: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/ (accessed on 5 January 2023).
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia Illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, J.; El Moussawi, L.; Osta, M.A. The Melanization Response in Insect Immunity. Adv. Insect Physiol. 2017, 52, 83–109. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Color Difference Delta E—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Reggi, S.; Giromini, C.; Dell’Anno, M.; Baldi, A.; Rebucci, R.; Rossi, L. In Vitro Digestion of Chestnut and Quebracho Tannin Extracts: Antimicrobial Effect, Antioxidant Capacity and Cytomodulatory Activity in Swine Intestinal IPEC-J2 Cells. Animals 2020, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Spano, M.; Di Matteo, G.; Fernandez Retamozo, C.A.; Lasalvia, A.; Ruggeri, M.; Sandri, G.; Cordeiro, C.; Sousa Silva, M.; Totaro Fila, C.; Garzoli, S.; et al. A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta Domesticus. Foods 2023, 12, 2331. [Google Scholar] [CrossRef]
- Frazzini, S.; Scaglia, E.; Dell’Anno, M.; Reggi, S.; Panseri, S.; Giromini, C.; Lanzoni, D.; Sgoifo Rossi, C.A.; Rossi, L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants 2022, 11, 992. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Sotira, S.; Rebucci, R.; Reggi, S.; Castiglioni, B.; Rossi, L. In Vitro Evaluation of Antimicrobial and Antioxidant Activities of Algal Extracts. Ital. J. Anim. Sci. 2020, 19, 103–113. [Google Scholar] [CrossRef]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and By-Products as Source of Natural Antioxidants in Meat and Meat Products: A Review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Ramzy, R.R.; El-Dakar, M.A.; Wang, D.; Ji, H. Conversion Efficiency of Lignin-Rich Olive Pomace to Produce Nutrient-Rich Insect Biomass by Black Soldier Fly Larvae, Hermetia Illucens. Waste Biomass Valorization 2022, 13, 893–903. [Google Scholar] [CrossRef]
- Cravotto, C.; Grillo, G.; Binello, A.; Gallina, L.; Olivares-Vicente, M.; Herranz-López, M.; Micol, V.; Barrajón-Catalán, E.; Cravotto, G. Bioactive Antioxidant Compounds from Chestnut Peels through Semi-Industrial Subcritical Water Extraction. Antioxidants 2022, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.H.; Lee, J.Y.; Debnath, T.; Kim, Y.M.; Park, J.Y.; Kim, Y.O.; Park, S.J.; Lim, B.O. DNA Protection and Antioxidant Potential of Chestnut Shell Extracts. J. Food Biochem. 2016, 40, 20–30. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Frazzini, S.; Ferri, I.; Tuberti, S.; Bonaldo, E.; Botti, B.; Grossi, S.; Sgoifo Rossi, C.A.; Rossi, L. Effect of Dietary Supplementation of Chestnut and Quebracho Tannin Supplementation on Neonatal Diarrhoea in Preweaning Calves. Antioxidants 2024, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- BARREIRA, J.; FERREIRA, I.; OLIVEIRA, M.; PEREIRA, J. Antioxidant Activities of the Extracts from Chestnut Flower, Leaf, Skins and Fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Ferri, I.; Dell’Anno, M.; Canala, B.; Magnaghi, S.; Petrali, B.; Rossi, L. Evaluation of Hydration with Lactoferrin on Late-Instar Tenebrio Molitor Larvae Performance and Functional Properties of Obtained Meal. Ital. J. Anim. Sci. 2023, 22, 982–994. [Google Scholar] [CrossRef]
- Oonincx*, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A Systematic Review of Nutrient Composition Data Available for Twelve Commercially Available Edible Insects, and Comparison with Reference Values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio Molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef] [PubMed]
- Riekkinen, K.; Väkeväinen, K.; Korhonen, J. The Effect of Substrate on the Nutrient Content and Fatty Acid Composition of Edible Insects. Insects 2022, 13, 590. [Google Scholar] [CrossRef]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic Response of Yellow Mealworm Larvae to Two Alternative Rearing Substrates. Metabolomics 2019, 15, 113. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Massive Glutamine Cyclization to Pyroglutamic Acid in Human Serum Discovered Using NMR Spectroscopy. Anal. Chem. 2015, 87, 3800–3805. [Google Scholar] [CrossRef]
- Purwaha, P.; Silva, L.P.; Hawke, D.H.; Weinstein, J.N.; Lorenzi, P.L. An Artifact in LC-MS/MS Measurement of Glutamine and Glutamic Acid: In-Source Cyclization to Pyroglutamic Acid. Anal. Chem. 2014, 86, 5633–5637. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, A.; Szadziewski, R.; Stepnowski, P.; Boros-Majewska, J.; Gabriel, I.; Dawgul, M.; Kamysz, W.; Sosnowska, D.; Gołębiowski, M. Composition and Antimicrobial Activity of Fatty Acids Detected in the Hygroscopic Secretion Collected from the Secretory Setae of Larvae of the Biting Midge Forcipomyia Nigra (Diptera: Ceratopogonidae). J. Insect. Physiol. 2012, 58, 1265–1276. [Google Scholar] [CrossRef]
- Lalam, C.; Naidu, P.; Srinivasan, T. Antiproliferative and Antibacterial Effects of Pyroglutamic Acid Isolated from Enterococcus Faecium(Mcc-2729). Ann. Rom. Soc. Cell Biol. 2021, 25, 7624–7628. [Google Scholar]
- Ludwig, D.; Jones, C.R. Changes in the Concentration of Certain Amino Acids in Homogenates of the Yellow Mealworm, Tenebrio Molitor, During Aging1. Ann. Entomol. Soc. Am. 1964, 57, 210–213. [Google Scholar] [CrossRef]
- Garcia-Casado, G.; Sanchez-Monge, R.; Chrispeels, M.J.; Armentia, A.; Salcedo, G.; Gomez, L. Role of Complex Asparagine-Linked Glycans in the Allergenicity of Plant Glycoproteins. Glycobiology 1996, 6, 471–477. [Google Scholar] [CrossRef]
- Remus, A.; Peres, F.M.; Hauschild, L.; Andretta, I.; Kipper, M.; de Paula Gobi, J.; Pomar, C. Exploratory Study on the Utilization of Different Dietary Methionine Sources and Methionine to Lysine Ratio for Growing–Finishing Pigs. Livest. Sci. 2015, 181, 96–102. [Google Scholar] [CrossRef]
- Lee, K.P.; Simpson, S.J.; Wilson, K. Dietary Protein-Quality Influences Melanization and Immune Function in an Insect. Funct. Ecol. 2008, 22, 1052–1061. [Google Scholar] [CrossRef]
- Binggeli, O.; Neyen, C.; Poidevin, M.; Lemaitre, B. Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLoS Pathog. 2014, 10, e1004067. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Ge, C.; Yao, H. Antimicrobial Peptides from Black Soldier Fly (Hermetia Illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals 2021, 11, 1937. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, S.S.; Panteli, N.; Mastoraki, M.; Rizou, E.; Stefanou, V.; Tzentilasvili, S.; Sarrou, E.; Chatzifotis, S.; Krigas, N.; Antonopoulou, E. Towards Functional Insect Feeds: Agri-Food By-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio Molitor (Coleoptera: Tenebrionidae) Breeding. Antioxidants 2021, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Turin, L.; Alborali, G.L.; Demartini, E.; Filipe, J.F.S.; Riva, F.; Riccaboni, P.; Scanziani, E.; Trevisi, P.; Dall’Ara, P.; et al. Translational Approach to Induce and Evaluate Verocytotoxic E. Coli O138 Based Disease in Piglets. Animals 2021, 11, 2415. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.J.; Liu, H.N.; Kong, X.F.; Blachier, F.; Geng, M.M.; Liu, Y.Y.; Yin, Y.L. Use of Insect Powder as a Source of Dietary Protein in Early-Weaned Piglets1. J. Anim. Sci. 2016, 94, 111–116. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Egan, Á.M.; Sweeney, T.; Hayes, M.; O’Doherty, J.V. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model. PLoS ONE 2015, 10, e0144127. [Google Scholar] [CrossRef]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H.; Kwon, G.T.; Shin, D.G.; Kim, Y.Y. Nutrient Ileal Digestibility Evaluation of Dried Mealworm (Tenebrio Molitor) Larvae Compared to Three Animal Protein by-Products in Growing Pigs. Asian-Australas. J. Anim. Sci. 2019, 32, 387–394. [Google Scholar] [CrossRef]
- Fanimo, A.O.; Susenbeth, A.; Südekum, K.-H. Protein Utilisation, Lysine Bioavailability and Nutrient Digestibility of Shrimp Meal in Growing Pigs. Anim. Feed Sci. Technol. 2006, 129, 196–209. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Kikuchi, A.; Masuda, H.; Miyahara, R.; Hiruma, Y.; Wakita, S.; Ohno, M.; Sakaguchi, M.; Sugahara, Y.; et al. Chitin Digestibility Is Dependent on Feeding Behaviors, Which Determine Acidic Chitinase MRNA Levels in Mammalian and Poultry Stomachs. Sci. Rep. 2018, 8, 1461. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Chemical Shift (ppm) |
---|---|
Leucine | 0.97 |
Isoleucine | 1.02 |
Valine | 1.05 |
Threonine | 1.34 |
Alanine | 1.48 |
Arginine | 1.66 |
Proline | 2.02 |
Glutamine | 2.46 |
Methionine | 2.65 |
Aspartate | 2.81 |
Asparagine | 2.88 |
Lysine | 3.01 |
Betaine | 3.27 |
Glycine | 3.57 |
Serine | 3.82 |
Pyroglutamate | 4.19 |
Tyrosine | 6.90 |
Histidine | 7.12 |
Phenylalanine | 7.43 |
Tryptophan | 7.55 |
Item | CTRL | TRT1 | TRT2 | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Trt | Time | TrtxTime | F-Value | DF (n, d) | ||||
Substrate consumed (g) | 0.0119 | 0.5931 | 0.4485 | 0.83 | 2, 21 | |||
d 0–7 | 96.98 ± 0.35 a | 96.75 ± 0.12 b | 96.72 ± 0.23 b | |||||
d 7–14 | 96.87 ± 0.08 | 96.79 ± 0.04 | 96.70 ± 0.04 | |||||
Average weight (g) | 0.1453 | <0.0001 | 0.0030 | 4.74 | 4, 42 | |||
d 0–7 | 104.5 ± 4.07 | 102.4 ± 2.05 | 104.43 ± 2.16 | |||||
d 7–14 | 104.9 ± 7.60 | 109.4 ± 3.37 | 112.3 ± 2.93 | |||||
Growth rate (%) | 0.1658 | 0.0018 | 0.0280 | 4.34 | 2, 19 | |||
d 0–7 | 4.47 ± 4.09 | 2.41 ± 2.50 | 4.33 ± 2.17 | |||||
d 7–14 | 4.10 ± 0.41 a | 6.80 ± 1.48 ab | 7.60 ± 1.54 b | |||||
FCR | 0.5344 | 0.0196 | 0.0015 | 12.48 | 2, 11 | |||
d 0–7 | 7.91 ± 2.22 a | 14.61 ± 3.28 b | 12.58 ± 2.52 b | |||||
d 7–14 | 11.79 ± 1.45 a | 8.11 ± 1.64 ab | 7.89 ± 1.46 b |
Components (%) | CTRL | TRT1 | TRT2 | p-Value | F-Value/ Kruskal–Wallis | DF (n, d) |
---|---|---|---|---|---|---|
Dry matter | 90.62 ± 1.26 | 91.89 ± 1.39 | 91.63 ± 1.35 | 0.5094 | 0.76 | 2, 6 |
Ash | 6.09 ± 1.86 | 7.98 ± 1.65 | 6.55 ± 0.63 | 0.3393 | 2.49 | - |
Ether Extract | 2.93 ± 0.94 | 1.65 ± 0.05 | 1.73 ± 0.20 | 0.0523 | 5.02 | 2, 6 |
Crude Fibre | 11.87 ± 4.30 | 12.26 ± 0.97 | 14.85 ± 0.43 | 0.3647 | 1.20 | 2, 6 |
Crude Protein | 17.00 ± 0.42 a | 14.48 ± 0.20 b | 15.09 ± 0.27 b | 0.0001 | 53.68 | 2, 6 |
Non-Structural Carbohydrates | 62.11 ± 3.77 | 63.62 ± 2.14 | 61.78 ± 0.66 | 0.6572 | 0.45 | 2, 6 |
Components | CTRL | TRT1 | TRT2 | p Value | F-Value/Kruskal–Wallis | DF (n, d) |
---|---|---|---|---|---|---|
Dry matter | 93.3 ± 3.35 a | 81.45 ± 7.64 b | 82.87 ± 2.24 b | 0.0002 | 13.50 | 2, 21 |
Crude protein (%) | 44.52 ± 2.96 a | 51.96 ± 6.89 b | 46.22 ± 6.23 a | 0.0391 | 6.49 | - |
Ether Extract (%) | 31.14 ± 2.79 a | 36.09 ± 4.40 b | 32.51 ± 1.21 ab | 0.0123 | 5.47 | 2, 21 |
Ash (%) | 5.01 ± 0.36 ab | 3.76 ± 0.14 a | 8.01 ± 0.30 b | <0.0001 | 16.80 | - |
Insect Meals | L* | a* | b* | |
---|---|---|---|---|
CTRL | 33.07 ± 1.32 a | 6.19 ± 0.49 | 13.68 ± 0.87 a | |
TRT1 | 27.96 ± 2.87 b | 6.68 ± 0.43 | 11.56 ± 1.27 b | |
TRT2 | 30.20 ± 1.66 ab | 6.64 ± 0.33 | 12.01 ± 0.78 ab | |
p value | 0.0021 | 0.0731 | 0.0072 | |
Kruskal–Wallis | 12.29 | 5.23 | 9.88 |
Amino Acids and Derivatives | Group | |||||
---|---|---|---|---|---|---|
CTRL | TRT1 | TRT2 | p-Value | F-Value/Kruskal–Wallis | DF (n, d) | |
Leu | 56.56 ± 5.48 a | 57.99 ± 8.92 a | 46.62 ± 4.98 b | 0.0007 | 11.59 | - |
Ile | 69.12 ± 4.49 | 65.58 ± 4.93 | 65.67 ± 8.45 | 0.5142 | 0.69 | 2, 18 |
Val | 143.6 ± 8.65 a | 118.0 ± 5.64 b | 121.5 ± 11.22 b | 0.0001 | 15.90 | 2, 18 |
Thr | 36.00 ± 5.80 | 48.26 ± 12.31 | 39.88 ± 8.12 | 0.0972 | 4.621 | - |
Ala | 57.92 ± 6.72 a | 83.45 ± 17.71 b | 62.06 ± 7.87 a | 0.0015 | 9.49 | 2, 18 |
Arg | 399.0 ± 34.25 a | 273.2 ± 23.63 b | 299.7 ± 52.38 b | <0.0001 | 18.46 | - |
Gln | 126.4 ± 40.34 a | 16.04 ± 4.38 b | 25.99 ± 6.85 b | <0.0001 | 16.10 | - |
Pro | 966.8 ± 39.39 a | 880.7 ± 52.54 b | 892.7 ± 77.80 ab | 0.0342 | 4.10 | 2, 18 |
Met | 5.31 ± 1.09 | 5.69 ± 2.18 | 3.51 ± 1.64 | 0.0389 | 6.20 | - |
Asp | 18.76 ± 2.15 a | 27.39 ± 6.35 b | 20.84 ± 2.53 ab | 0.0034 | 9.81 | - |
Asn | 6.31 ± 2.29 | n.d. | n.d. | - | - | - |
Lys | 170.4 ± 16.00 a | 171.9 ± 36.93 a | 124.6 ± 10.46 b | 0.0005 | 12.09 | - |
Gly | 65.81 ± 15.80 a | 142.8 ± 31.07 b | 90.29 ± 17.97 a | <0.0001 | 15.64 | - |
Tyr | 186.9 ± 25.63 a | 161.3 ± 17.94 ab | 152.8 ± 17.27 b | 0.0218 | 7.13 | - |
Phe | 31.83 ± 3.92 a | 30.16 ± 3.42 a | 22.77 ± 3.06 b | 0.0002 | 12.95 | - |
Trp | 61.85 ± 5.62 ab | 84.62 ± 32.38 a | 53.80 ± 3.51 b | 0.0039 | 9.66 | - |
His | 146.6 ± 12.63 a | 95.30 ± 9.24 b | 107.3 ± 12.33 b | <0.0001 | 13.75 | - |
Ser | 56.54 ± 5.48 a | 21.76 ± 4.15 b | 45.50 ± 18.53 a | 0.0018 | 10.59 | - |
PyroGlu | n.d. | 223.5 ± 25.56 | 206.0 ± 39.46 | 0.3665 | 2.38 | 7, 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, I.; Dell’Anno, M.; Spano, M.; Canala, B.; Petrali, B.; Dametti, M.; Magnaghi, S.; Rossi, L. Characterisation of Tenebrio molitor Reared on Substrates Supplemented with Chestnut Shell. Insects 2024, 15, 512. https://doi.org/10.3390/insects15070512
Ferri I, Dell’Anno M, Spano M, Canala B, Petrali B, Dametti M, Magnaghi S, Rossi L. Characterisation of Tenebrio molitor Reared on Substrates Supplemented with Chestnut Shell. Insects. 2024; 15(7):512. https://doi.org/10.3390/insects15070512
Chicago/Turabian StyleFerri, Irene, Matteo Dell’Anno, Mattia Spano, Benedetta Canala, Beatrice Petrali, Matilda Dametti, Stefano Magnaghi, and Luciana Rossi. 2024. "Characterisation of Tenebrio molitor Reared on Substrates Supplemented with Chestnut Shell" Insects 15, no. 7: 512. https://doi.org/10.3390/insects15070512
APA StyleFerri, I., Dell’Anno, M., Spano, M., Canala, B., Petrali, B., Dametti, M., Magnaghi, S., & Rossi, L. (2024). Characterisation of Tenebrio molitor Reared on Substrates Supplemented with Chestnut Shell. Insects, 15(7), 512. https://doi.org/10.3390/insects15070512