Efficacy of Metarhizium anisopliae, Isolate ICIPE 7, against Anopheles arabiensis, Glossina fuscipes, and Rhipicephalus spp.
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Arthropod Source
2.3. Insectary Mosquito Rearing
2.4. Metarhizium anisopliae Isolates
2.5. Fungus Formulation and Arthropod Exposure
2.6. Bioassays to Compare the Efficacy of Isolates ICIPE 7 and ICIPE 30 against Female An. arabiensis
2.7. Bioassays to Assess the Efficacy of ICIPE 7 against G. fuscipes and Rhipicephalus Ticks
2.8. Bioassays to Establish Concentration-Based Efficacy of ICIPE 7 against An. arabiensis
2.9. Bioassays to Assess Exposure Period Influence on Time to Death for An. arabiensis
2.10. Quantification of Spores Attached to the Arthropods on Exposure
2.11. Data Analysis
3. Results
3.1. Comparative Efficacy of ICIPE 7 and ICIPE 30 against An. arabiensis
3.2. Efficacy of ICIPE 7 against wild G. fuscipes and Rhipicephalus Ticks
3.3. Concentration-Dependent Efficacy of Dosages around 109 Spores/mL
3.4. The Exposure Period Influence on Time to Death for An. arabiensis
3.5. Concentration-Dependent Spore Attachment to Mosquitoes upon Exposure to ICIPE 7
3.6. Spores Attached to G. fuscipes and Rhipicephalus Ticks upon Exposure to the Fungus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grace, D.; Mutua, F.; Ochungo, P.; Kruska, R.; Jones, K.; Brierley, L.; Lapar, L.; Said, M.; Herrero, M.; Pham, D.P.; et al. Mapping of Poverty and Likely Zoonoses Hotspots; Department for International Development: London, UK, 2012; pp. 1–119. [Google Scholar]
- Faburay, B. The case for a ‘one health’ approach to combating vector-borne diseases. Infect. Ecol. Epidemiol. 2015, 5, 28132. [Google Scholar] [CrossRef]
- Rocklöv, J.; Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef]
- Rabinowitz, P.; Conti, L. Links among human health, animal health and ecosystem health. Annu. Rev. Public Health 2013, 34, 189–204. [Google Scholar] [CrossRef]
- Richter, K.L. International tourism and its global public health consequences. J. Travel Res. 2003, 41, 340–347. [Google Scholar] [CrossRef]
- Rivero, A.; Vézilier, J.; Weill, M.; Read, A.F.; Gandon, S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathog. 2010, 6, 5–6. [Google Scholar] [CrossRef]
- Hernández-Jover, M.; Phiri, B.J.; Stringer, L.; Avilés, M.M. Developments in animal health surveillance. Front. Vet. Sci. 2021, 7, 637364. [Google Scholar] [CrossRef]
- Nicholson, G.M. Fighting the global pest problem: Preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 2007, 49, 413–422. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- WHO. Global Strategic Framework for Integrated Vector Management; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Mackenzie, J.S.; Jeggo, M. The one health approach—Why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- WHO. World Malaria Report, 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Implications of Insecticide Resistance Consortium. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: Trends in pyrethroid resistance during a WHO-coordinated multi-country prospective study. Parasites Vectors 2018, 11, 550. [Google Scholar] [CrossRef]
- Owuor, K.O.; Machani, M.G.; Mukabana, W.R.; Munga, S.O.; Yan, G.; Ochomo, E.; Afrane, Y.A. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS ONE 2021, 16, e0240771. [Google Scholar] [CrossRef]
- Soma, D.D.; Zogo, B.; Hien, D.F.d.S.; Hien, A.S.; Kaboré, D.A.; Kientega, M.; Ouédraogo, A.G.; Pennetier, C.; Koffi, A.A.; Moiroux, N.; et al. Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of Southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide. Parasites Vectors 2021, 14, 58. [Google Scholar] [CrossRef]
- Mnyone, L.L.; Kirby, M.J.; Mpingwa, M.W.; Lwetoijera, D.W.; Knols, B.G.J.; Takken, W.; Koenraadt, C.J.M.; Russell, T.L. Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: Effect of host age and blood-feeding status. Parasitol. Res. 2011, 108, 317–322. [Google Scholar] [CrossRef]
- Sherrard-Smith, E.; Skarp, J.E.; Beale, A.D.; Fornadel, C.; Norris, L.C.; Moore, S.J.; Mihreteab, S.; Charlwood, J.D.; Bhatt, S.; Winskill, P.; et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc. Natl. Acad. Sci. USA 2019, 116, 15086–15096. [Google Scholar] [CrossRef]
- Sougoufara, S.; Diédhiou, S.M.; Doucouré, S.; Diagne, N.; Sembène, P.M.; Harry, M.; Trape, J.-F.; Sokhna, C.; Ndiath, M.O. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: A new challenge to malaria elimination. Malar. J. 2014, 13, 125. [Google Scholar] [CrossRef]
- Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Organ. 1964, 30, 241–261. [Google Scholar]
- Kiszewski, A.; Mellinger, A.; Spielman, A.; Malaney, P.; Sachs, S.E.; Sachs, J. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 2004, 70, 486–498. [Google Scholar] [CrossRef]
- Reddy, M.R.; Overgaard, H.J.; Abaga, S.; Reddy, V.P.; Caccone, A.; Kiszewski, A.E.; Slotman, M.A. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar. J. 2011, 10, 184. [Google Scholar] [CrossRef]
- Govella, N.J.; Chaki, P.P.; Killeen, G.F. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar. J. 2013, 12, 124. [Google Scholar] [CrossRef]
- Macdonald, G. The Epidemiology and Control of Malaria; Oxford University Press: London, UK, 1957. [Google Scholar]
- Service, M.W. Mosquito Ecology: Field Sampling Methods; Applied Science Publishers: Essex, UK, 1976. [Google Scholar]
- Asale, A.; Duchateau, L.; Devleesschauwer, B.; Huisman, G.; Yewhalaw, D. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): A systematic review. Infect. Dis. Poverty 2017, 6, 160. [Google Scholar] [CrossRef]
- Mattioli, R.C.; Feldmann, U.; Hendrickx, G.; Wint, W.; Jannin, J.; Slingenbergh, J. Tsetse and trypanosomiasis intervention policies supporting sustainable animal-agricultural development. Agric. Environ. 2004, 22, 310–314. [Google Scholar]
- Eshetu, E.; Begejo, B. The current situation and diagnostic approach of nagana in Africa: A review. J. Nat. Sci. Res. 2015, 5, 117–124. [Google Scholar]
- Muriithi, B.W.; Gathogo, N.G.; Diiro, G.M.; Kidoido, M.M.; Okal, M.N.; Masiga, D.K. Farmer perceptions and willingness to pay for novel livestock pest control technologies: A case of tsetse repellent collar in Kwale County in Kenya. PLoS Negl. Trop. Dis. 2021, 15, e0009663. [Google Scholar] [CrossRef]
- Thumbi, S.M.; Njenga, M.K.; Marsh, T.L.; Noh, S.; Otiang, E.; Munyua, P.; Ochieng, L.; Ogola, E.; Yoder, J.; Audi, A.; et al. Linking human health and livestock health: A ‘One-Health’ platform for integrated analysis of human health, livestock health, and economic welfare in livestock-dependent communities. PLoS ONE 2015, 10, e0120761. [Google Scholar] [CrossRef]
- Gubler, D.J. Resurgent vector-borne diseases as a global health problem. Emerg. Infect. Dis. 1998, 4, 442–450. [Google Scholar] [CrossRef]
- Gratz, G.N. Emerging and resurging diseases. Annu. Rev. Entomol. 1999, 44, 51–75. [Google Scholar] [CrossRef]
- Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef]
- Lord, J.S.; Lea, R.S.; Allan, F.K.; Byamungu, M.; Hall, D.R.; Lingley, J.; Mramba, F.; Paxton, E.; Vale, G.A.; Hargrove, J.W.; et al. Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania. PLoS Negl. Trop. Dis. 2020, 14, e0008288. [Google Scholar] [CrossRef]
- Okello, W.O.; MacLeod, E.T.; Muhanguzi, D.; Waiswa, C.; Welburn, S.C. Controlling tsetse flies and ticks using insecticide treatment of cattle in Tororo District, Uganda: Cost benefit analysis. Front. Vet. Sci. 2021, 8, 616865. [Google Scholar] [CrossRef]
- Njoroge, M.M.; Tirados, I.; Lindsay, S.W.; Vale, G.A.; Torr, S.J.; Fillinger, U. Exploring the potential of using cattle for malaria vector surveillance and control: A pilot study in Western Kenya. Parasites Vectors 2017, 10, 18. [Google Scholar] [CrossRef]
- Saul, A. Zooprophylaxis or zoopotentiation: The outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar. J. 2003, 2, 1. [Google Scholar] [CrossRef]
- Mahande, A.M.; Mosha, F.W.; Mahande, J.M.; Kweka, E.J. Role of cattle treated with deltamethrine in areas with a high population of Anopheles arabiensis in Moshi, Northern Tanzania. Malar. J. 2007, 6, 109. [Google Scholar] [CrossRef]
- Mlacha, Y.P.; Chaki, P.P.; Muhili, A.; Massue, D.J.; Tanner, M.; Majambere, S.; Killen, G.F.; Govella, N.J. Reduced human-biting preferences of the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: Controlled, competitive host-preference experiments in Tanzania. Malar. J. 2020, 19, 418. [Google Scholar] [CrossRef]
- Meza, F.C.; Kreppel, K.S.; Maliti, D.F.; Mlwale, A.T.; Mirzai, N.; Killeen, G.F.; Ferguson, H.M.; Govella, N.J. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestus outdoors. Malar. J. 2019, 18, 83. [Google Scholar] [CrossRef]
- McCall, P.J.; Kelly, D.W. Learning and memory in disease vectors. Trends Parasitol. 2002, 18, 429–433. [Google Scholar] [CrossRef]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Entomopathogenic fungi: New insights into host-pathogen interactions. Adv. Genet. 2016, 94, 307–364. [Google Scholar] [CrossRef]
- Bilgo, E.; Lovett, B.; Fang, W.; Bende, N.; King, G.F.; Diabate, A.; Leger, R.J.S. Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria vector mosquitoes. Sci. Rep. 2017, 7, 3433. [Google Scholar] [CrossRef]
- Meyling, N.V.; Eilenberg, J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control 2007, 43, 145–155. [Google Scholar] [CrossRef]
- Maranga, R.O.; Kaaya, G.P.; Mueke, J.M.; Hassanali, A. Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (ixodidae) in relation to seasonal changes. Mycopathologia 2005, 159, 527–532. [Google Scholar] [CrossRef]
- Mnyone, L.L.; Kirby, M.J.; Lwetoijera, D.W.; Mpingwa, M.W.; Knols, B.G.; Takken, W.; Russell, T.L. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: Effects of concentration, co-formulation, exposure time and persistence. Malar. J. 2009, 8, 309. [Google Scholar] [CrossRef]
- Maniania, N.K. A low-cost contamination device for infecting adult tsetse flies, Glossina spp., with an entomopathogenic fungus in the field. Biocontrol Sci. Technol. 2002, 11, 248–254. [Google Scholar] [CrossRef]
- Maniania, N.K. A device for infecting adult tsetse flies, Glossina spp., with the entomopathogenic fungus Metarhizium anisopliae in the field. Biocontrol Sci. Technol. 1997, 12, 59–66. [Google Scholar] [CrossRef]
- RealIPM. TICKOFF. 2020. Available online: https://realipm.com (accessed on 24 February 2023).
- Mnyone, L.L.; Kirby, M.J.; Lwetoijera, D.W.; Mpingwa, M.W.; Simfukwe, E.T.; Knols, B.G.; Takken, W.; Russell, T.L. Tools for delivering entomopathogenic fungi to malaria mosquitoes: Effects of delivery surfaces on fungal efficacy and persistence. Malar. J. 2010, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Farenhorst, M.; Knols, B.G.J. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays. Malar. J. 2010, 9, 27. [Google Scholar] [CrossRef]
- Chepkemoi, J.; Fening, K.O.; Ambele, F.C.; Munywoki, J.; Akutse, K.S. Direct and indirect infection effects of four potent fungal isolates on the survival and performance of fall armyworm larval parasitoid Cotesia icipe. Sustainability 2023, 15, 3250. [Google Scholar] [CrossRef]
- Lynch, P.A.; Grimm, U.; Thomas, M.B.; Read, A.F. Prospective malaria control using entomopathogenic fungi: Comparative evaluation of impact on transmission and selection for resistance. Malar. J. 2012, 11, 383. [Google Scholar] [CrossRef]
- Tuteja, R. Malaria—An overview. FEBS J. 2007, 274, 4670–4679. [Google Scholar] [CrossRef] [PubMed]
- Lovett, B.; Bilgo, E.; Diabate, A.; St. Leger, R. A review of progress toward field application of transgenic mosquitocidal entomopathogenic fungi. Pest Manag. Sci. 2019, 75, 2316–2324. [Google Scholar] [CrossRef]
- St. Leger, R.J.; Wang, C. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl. Microbiol. Biotechnol. 2010, 85, 901–907. [Google Scholar] [CrossRef]
- Ondiaka, S.; Bukhari, T.; Farenhorst, M.; Takken, W.; Knols, B.G.J. Effects of fungal infection on the host-seeking behaviour and fecundity of the malaria mosquito Anopheles gambiae Giles. Proc. Neth. Entomol. Soc. Meet. 2008, 19, 121–128. [Google Scholar]
- Scholte, E.-J.; Njiru, B.; Smallegange, R.; Takken, W.; Knols, B.G. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar. J. 2003, 2, 29. [Google Scholar] [CrossRef]
- Choumet, V.; Attout, T.; Chartier, L.; Khun, H.; Sautereau, J.; Robbe-Vincent, A.; Brey, P.; Huerre, M.; Bain, O. Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice. PLoS ONE 2012, 7, e50464. [Google Scholar] [CrossRef]
- Hedimbi, M.; Kaaya, G.P.; Chinsembu, K.C. Mortalities induced by entomopathogenic fungus Metarhizium anisopliae to different ticks of economic importance using two formulations. Int. J. Microbiol. 2011, 2, 141–145. [Google Scholar]
- Murigu, M.M.; Nana, P.; Waruiru, R.M.; Nga’nga’, C.J.; Ekesi, S.; Maniania, N.K. Laboratory and field evaluation of entomopathogenic fungi for the control of amitraz-resistant and susceptible strains of Rhipicephalus decoloratus. Vet. Parasitol. 2016, 225, 12–18. [Google Scholar] [CrossRef]
- Kirkland, B.H.; Westwood, G.S.; Keyhani, N.O. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J. Med. Entomol. 2004, 41, 705–711. [Google Scholar] [CrossRef]
- Maniania, N.K.; Ekesi, S. The use of entomopathogenic fungi in the control of tsetse flies. J. Invertebr. Pathol. 2013, 112, S83–S88. [Google Scholar] [CrossRef]
- Maniania, N.K.; Okech, M.A.; Adino, J.O.; Opere, J.O.; Ekesi, S. Transfer of inoculum of Metarhizium anisopliae between adult Glossina morsitans morsitans and effects of fungal infection on blood feeding and mating behaviors. J. Pest Sci. 2013, 86, 285–292. [Google Scholar] [CrossRef]
- Wharton, R.H.; Roulston, W.J. Resistance of ticks to chemicals. Annu. Rev. Entomol. 1970, 15, 381–404. [Google Scholar] [CrossRef]
- Scholte, E.J.; Njiru, B.N.; Smallegange, R.C.; Takken, W.; Knols, B.G.J. Pathogenicity of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to Tick Eggs and the Effect of Egg Cuticular Lipids on Conidia Development. J. Med. Entomol. 2009, 46, 531–538. [Google Scholar] [CrossRef]
- Scholte, E.J.; Knols, B.G.J.; Takken, W. Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector Anopheles gambiae s.s. Malar. J. 2004, 3, 45. [Google Scholar] [CrossRef]
- Ment, D.; Gindin, G.; Rot, A.; Soroker, V.; Glazer, I.; Barel, S.; Samish, M. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Appl. Environ. Microbiol. 2010, 76, 3521–3528. [Google Scholar] [CrossRef] [PubMed]
Concentration (Spores/mL) | Pairwise Comparison (p-Value) * | LT50 (95% CI) * in Days | HR (95% CI) ! | |||
---|---|---|---|---|---|---|
Control | 106 | 108 | 109 | |||
106 | <0.001 | 8 (7.5–8.5) | 7.9 (6.4–9.8) a | |||
108 | <0.001 | <0.001 | 7 (6.5–7.4) | 10.3 (8.3–12.3) a | ||
109 | <0.001 | <0.001 | 0.002 | 6 (5.5–6.5) | 12.8 (10.2–15.8) a | |
1010 | <0.001 | <0.001 | <0.001 | 0.004 | 6 (5.6–6.3) | 15.4 (12.3–19.3) a |
Exposure Time (min) | Pairwise Comparison (p-Value) * | LT50 (95% CI) * in Days | HR (95% CI) ! | |||
---|---|---|---|---|---|---|
1 | 3 | 5 | 10 | |||
Control | <0.001 | <0.001 | <0.001 | <0.001 | na | 0.1 (0.85–0.12) a |
1 | - | 0.004 | 0.12 | 0.08 | 6 (5.7–6.3) | 1.1 (0.9–1.3) |
3 | - | - | 0.7 | 0.3 | 7 (6.6–7.4) | 0.9 (0.8–1.1) |
5 | - | - | - | 0.47 | 6 (5.5–6.5) | 0.9 (0.8–1.1) |
10 | - | - | - | - | 6 (5.6–6.4) | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong’wen, F.; Njoroge, M.M.; Fillinger, U.; Lutermann, H.; Bukhari, T. Efficacy of Metarhizium anisopliae, Isolate ICIPE 7, against Anopheles arabiensis, Glossina fuscipes, and Rhipicephalus spp. Insects 2024, 15, 449. https://doi.org/10.3390/insects15060449
Ong’wen F, Njoroge MM, Fillinger U, Lutermann H, Bukhari T. Efficacy of Metarhizium anisopliae, Isolate ICIPE 7, against Anopheles arabiensis, Glossina fuscipes, and Rhipicephalus spp. Insects. 2024; 15(6):449. https://doi.org/10.3390/insects15060449
Chicago/Turabian StyleOng’wen, Fedinand, Margaret Mendi Njoroge, Ulrike Fillinger, Heike Lutermann, and Tullu Bukhari. 2024. "Efficacy of Metarhizium anisopliae, Isolate ICIPE 7, against Anopheles arabiensis, Glossina fuscipes, and Rhipicephalus spp." Insects 15, no. 6: 449. https://doi.org/10.3390/insects15060449
APA StyleOng’wen, F., Njoroge, M. M., Fillinger, U., Lutermann, H., & Bukhari, T. (2024). Efficacy of Metarhizium anisopliae, Isolate ICIPE 7, against Anopheles arabiensis, Glossina fuscipes, and Rhipicephalus spp. Insects, 15(6), 449. https://doi.org/10.3390/insects15060449