Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Sites and Experimental Design
2.2. Burlap Ribbons Laden with Crude Honeydew
2.3. Extract Diffusers
2.4. SLF Whole-Body Extract
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harner, A.D.; Leach, H.L.; Briggs, L.; Centinari, M. Prolonged phloem feeding by the spotted lanternfly, an invasive planthopper, alters resource allocation and inhibits gas exchange in grapevines. Plant Direct 2022, 6, e452. [Google Scholar] [CrossRef]
- Barringer, L.; Ciafré, C.M. Worldwide Feeding Host Plants of Spotted Lanternfly, with Significant Additions from North America. Environ. Entomol. 2020, 49, 999–1011. [Google Scholar] [CrossRef]
- Song, S.; Kim, S.; Kwon, S.W.; Lee, S.-I.; Jablonski, P.G. Defense sequestration associated with narrowing of diet and ontogenetic change to aposematic colours in the spotted lanternfly. Sci. Rep. 2018, 8, 16831. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Murman, K. Responses of adult spotted lanternflies to artificial aggregations composed of all males or females. Front. Insect Sci. 2022, 2, 981832. [Google Scholar] [CrossRef]
- Cooperband, M.; Wickham, J.; Warden, M. Factors guiding the orientation of nymphal spotted lanternfly, Lycorma delicatula. Insects 2023, 14, 279. [Google Scholar] [CrossRef]
- Urban, J.M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 2020, 76, 10–17. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Wickham, J.; Cleary, K.; Spichiger, S.-E.; Zhang, L.; Baker, J.; Canlas, I.; Derstine, N.; Carrillo, D. Discovery of three kairomones in relation to trap and lure development for spotted lanternfly (Hemiptera: Fulgoridae). J. Econ. Entomol. 2019, 112, 671–682. [Google Scholar] [CrossRef]
- Derstine, N.T.; Meier, L.; Canlas, I.; Murman, K.; Cannon, S.; Carrillo, D.; Wallace, M.; Cooperband, M.F. Plant volatiles help mediate host plant selection and attraction of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae): A generalist with a preferred host. Environ. Entomol. 2020, 49, 1049–1062. [Google Scholar] [CrossRef]
- Moon, S.-R.; Cho, S.-R.; Jeong, J.-W.; Shin, Y.-H.; Yang, J.-O.; Ahn, K.-S.; Yoon, C.; Kim, G.-H. Attraction response of spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) to spearment oil. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 558–567. [Google Scholar] [CrossRef]
- Yoon, C.; Moon, S.-R.; Jeong, J.-W.; Shin, Y.-H.; Cho, S.-R.; Ahn, K.-S.; Yang, J.-O.; Kim, G.-H. Repellency of lavender oil and linalool against spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) and their electrophysiological responses. J. Asia-Pac. Entomol. 2011, 14, 411–416. [Google Scholar] [CrossRef]
- Faal, H.; Meier, L.R.; Canlas, I.J.; Murman, K.; Wallace, M.S.; Carrillo, D.; Cooperband, M.F. Volatiles from male honeydew excretions attract conspecific male spotted lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae). Front. Insect Sci. 2022, 2, 982965. [Google Scholar] [CrossRef] [PubMed]
- Faal, H.; Canlas, I.; Carrillo, D.; Cooperband, M.F. Evidence of pheromone use in a fulgorid, spotted lanternfly. Forests 2022, 13, 1639. [Google Scholar] [CrossRef]
- Faal, H.; Canlas, I.J.; Cossé, A.; Jones, T.H.; Carrillo, D.; Cooperband, M.F. Investigating photodegredation of spotted lanternfly body volatiles as a potential pheromone synthesis pathway. Insects 2023, 14, 551. [Google Scholar] [CrossRef] [PubMed]
- Faal, H.; Cooperband, M.F. Antennal sensitivity of spotted lanternflies, Lycorma delicatula: Differential electrophysiological responses of males and females to compounds derived from host plants and conspecifics. Insects 2024, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Rohde, B.B.; Cooperband, M.F.; Canlas, I.; Mankin, R.W. Evidence of receptivity to vibroacoustic stimuli in the spotted lanternfly. J. Econ. Entomol. 2022, 115, 2116–2120. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-R.; Liu, J.-J.; Li, X.-Y.; Liang, A.-P.; Bourgoin, T. Relating antennal sensilla diversity and possible species behaviour in the planthopper pest Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae). PLoS ONE 2018, 13, e0194995. [Google Scholar] [CrossRef] [PubMed]
- Dweck, H.K.M.; Rutledge, C.E. The subapical labial sensory organ of spotted lanternfly Lycorma delicatula. Open Biol. 2024, 14, 230438. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Dietrich, C.H.; Dai, W. Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper. PLoS ONE 2016, 11, e0156640. [Google Scholar] [CrossRef] [PubMed]
- Francese, J.A.; Cooperband, M.F.; Murman, K.M.; Cannon, S.L.; Booth, E.G.; Devine, S.M.; Wallace, M.S. Developing traps for the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 2020, 49, 269–276. [Google Scholar] [CrossRef]
- Francese, J.A.; Cooperband, M.F.; Booth, E.G.; Devine, S.M.; Murman, K.M.; Cannon, S.L.; Wallace, M.S. Developing traps for the spotted lanternfly. In Proceedings of the 30th USDA Interagency Research Forum on Invasive Species, Annapolis, MD, USA, 14–17 January 2020; pp. 18–19. [Google Scholar]
- Nixon, L.J.; Leach, H.; Barnes, C.; Urban, J.; Kirkpatrick, D.M.; Ludwick, D.C.; Short, B.; Pfeiffer, D.G.; Leskey, T.C. Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 2020, 49, 1117–1126. [Google Scholar] [CrossRef]
- Siderhurst, M.S.; Murman, K.M.; Kaye, K.T.; Wallace, M.S.; Cooperband, M.F. Radio telemetry and harmonic radar tracking of the spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae). Insects 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213. [Google Scholar]
- Rai, M.; Hassanali, A.; Saini, R.; Odongo, H.; Kahoro, H. Identification of components of the oviposition aggregation pheromone of the gregarious desert locust, Schistocerca gregaria (Forskal). J. Insect Physiol. 1997, 43, 83–87. [Google Scholar] [CrossRef] [PubMed]
- McCall, P. Oviposition aggregation pheromone in the Simulium damnosum complex. Med. Vet. Entomol. 1995, 9, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.; Challita, E.; Harrison, J.; Clark, E.; Cooperband, M.; Bhamla, S. Superfast excretion of viscous particle-laden droplets in phloem feeding insects. Bull. Am. Phys. Soc. 2024. [Google Scholar]
- Challita, E.J.; Sehgal, P.; Krugner, R.; Bhamla, M.S. Droplet superpropulsion in an energetically constrained insect. Nat. Commun. 2023, 14, 860. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.V.; Guerrero, A. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 2004, 9, 253–261. [Google Scholar] [CrossRef]
- Lewis, P.; Davila-Flores, A.; Wallis, E. An effective trap for spotted lanternfly egg masses. Front. Insect Sci. 2023, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.Y.; Michailides, T.J.; Millar, J.G.; Wayadande, A.; Gerry, A.C. House fly (Musca domestica L.) attraction to insect honeydew. PLoS ONE 2015, 10, e0124746. [Google Scholar] [CrossRef]
- Peach, D.A.; Gries, R.; Young, N.; Lakes, R.; Galloway, E.; Alamsetti, S.K.; Ko, E.; Ly, A.; Gries, G. Attraction of female Aedes aegypti (L.) to aphid honeydew. Insects 2019, 10, 43. [Google Scholar] [CrossRef]
- Meiners, J.M.; Griswold, T.L.; Harris, D.J.; Ernest, S.M. Bees without flowers: Before peak bloom, diverse native bees find insect-produced honeydew sugars. Am. Nat. 2017, 190, 281–291. [Google Scholar] [CrossRef]
- Brown, R.L.; El-Sayed, A.M.; Unelius, C.R.; Beggs, J.R.; Suckling, D.M. Invasive Vespula wasps utilize kairomones to exploit honeydew produced by sooty scale insects, Ultracoelostoma. J. Chem. Ecol. 2015, 41, 1018–1027. [Google Scholar] [CrossRef]
- Tena, A.; Wäckers, F.L.; Heimpel, G.E.; Urbaneja, A.; Pekas, A. Parasitoid nutritional ecology in a community context: The importance of honeydew and implications for biological control. Curr. Opin. Insect Sci. 2016, 14, 100–104. [Google Scholar] [CrossRef]
- Nelson, A.S.; Mooney, K.A. The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 379–402. [Google Scholar] [CrossRef]
- Peñalver-Cruz, A.; Satour, P.; Jaloux, B.; Lavandero, B. Honeydew Is a Food Source and a Contact Kairomone for Aphelinus mali. Insects 2023, 14, 426. [Google Scholar] [CrossRef]
- Hågvar, E.; Hofsvang, T. Effect of honeydew and hosts on plant colonization by the aphid parasitoid Ephedrus cerasicola. Entomophaga 1989, 34, 495–501. [Google Scholar] [CrossRef]
- Shaltiel, L.; Ayal, Y. The use of kairomones for foraging decisions by an aphid parasitoid in small host aggregations. Ecol. Entomol. 1998, 23, 319–329. [Google Scholar] [CrossRef]
- Choi, M.Y.; Roitberg, B.D.; Shani, A.; Raworth, D.A.; Lee, G.H. Olfactory response by the aphidophagous gall midge, Aphidoletes aphidimyza to honeydew from green peach aphid, Myzus persicae. Entomol. Exp. Appl. 2004, 111, 37–45. [Google Scholar] [CrossRef]
- Baoyu, H.; Chengsong, Z. Rhythm of honeydew excretion by the tea aphid and its attraction to various natural enemies. Acta Ecologica Sinica 2007, 27, 3637–3643. [Google Scholar] [CrossRef]
- Leroy, P.D.; Heuskin, S.; Sabri, A.; Verheggen, F.J.; Farmakidis, J.; Lognay, G.; Thonart, P.; Wathelet, J.P.; Brostaux, Y.; Haubruge, E. Honeydew volatile emission acts as a kairomonal message for the Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Insect Sci. 2012, 19, 498–506. [Google Scholar] [CrossRef]
- Ide, T.; Suzuki, N.; Katayama, N. The use of honeydew in foraging for aphids by larvae of the ladybird beetle, Coccinella septempunctata L.(Coleoptera: Coccinellidae). Ecol. Entomol. 2007, 32, 455–460. [Google Scholar] [CrossRef]
- Fand, B.B.; Amala, U.; Yadav, D.; Rathi, G.; Mhaske, S.; Upadhyay, A.; Ahammed Shabeer, T.; Kumbhar, D. Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. J. Pest Sci. 2020, 93, 195–206. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, D.; Liu, Y.; Zhan, Y.; Francis, F.; Liu, Y. Chemical cues from honeydew-associated bacteria to enhance parasitism efficacy: From laboratory to field assay. J. Pest Sci. 2024, 97, 873–884. [Google Scholar] [CrossRef]
- Moghbeli Gharaei, A.; Ziaaddini, M.; Jalali, M.; Michaud, J. Sex-specific responses of Asian citrus psyllid to volatiles of conspecific and host-plant origin. J. Appl. Entomol. 2014, 138, 500–509. [Google Scholar] [CrossRef]
- Sevarika, M.; Rondoni, G.; Ganassi, S.; Pistillo, O.M.; Germinara, G.S.; De Cristofaro, A.; Romani, R.; Conti, E. Behavioural and electrophysiological responses of Philaenus spumarius to odours from conspecifics. Sci. Rep. 2022, 12, 8402. [Google Scholar] [CrossRef]
- Chen, X.; Liang, A.-P. Identification of a self-regulatory pheromone system that controls nymph aggregation behavior of rice spittlebug Callitettix versicolor. Front. Zool. 2015, 12, 10. [Google Scholar] [CrossRef]
Week | Trapping Date Range | Stage | Treatment | N | Female SLF Caught | SE | Slope | R2 | F | d.f. | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8/8 to 8/15 | Early-1 | Control | 9 | 0.22 | 0.222 | 0.139 | 0.108 | 0.85 | 1, 7 | 0.388 |
Extract | 9 | 0 | 0 | - | - | - | 1, 7 | - | |||
Extract + Honeydew | 9 | 0.11 | 0.111 | −0.018 | 0.040 | 0.29 | 1, 7 | 0.608 | |||
2 | 8/15 to 8/22 | Early-1 | Control | 9 | 0.33 | 0.167 | 0 | 0 | - | 0, 8 | - |
Extract | 9 | 0 | 0 | 0 | 0 | - | 1, 7 | - | |||
Extract + Honeydew | 9 | 0 | 0 | 0 | - | - | 1, 7 | - | |||
3 | 8/22 to 8/29 | Early-1 | Control | 30 | 0.03 | 0.033 | −0.005 | 0.078 | 2.35 | 1, 28 | 0.136 |
Extract | 30 | 0.03 | 0.033 | 0.005 | 0.053 | 1.56 | 1, 28 | 0.222 | |||
Extract + Honeydew | 30 | 0 | 0 | 0 | - | - | 1, 28 | - | |||
4 | 8/29 to 9/6 | Early-2 | Control | 30 | 0.17 | 0.084 | 0.013 | 0.083 | 2.52 | 1, 28 | 0.124 |
Extract | 30 | 0.10 | 0.056 | −0.004 | 0.022 | 0.64 | 1, 28 | 0.432 | |||
Extract + Honeydew | 30 | 0.13 | 0.063 | 0.003 | 0.006 | 0.17 | 1, 28 | 0.680 | |||
5 | 9/6 to 9/12 | Early-2 | Control | 30 | 0.07 | 0.067 | 0.010 | 0.060 | 1.76 | 1, 28 | 0.196 |
Extract | 30 | 0.17 | 0.084 | 0.007 | 0.012 | 0.33 | 1, 28 | 0.568 | |||
Extract + Honeydew | 30 | 0.17 | 0.108 | 0.008 | 0.012 | 0.33 | 1, 28 | 0.568 | |||
6 | 9/12 to 9/19 | Mid | Control | 30 | 0.23 | 0.092 | 0.002 | 0.001 | 0.02 | 1, 28 | 0.895 |
Extract | 30 | 0.20 | 0.088 | −0.011 | 0.014 | 0.39 | 1, 28 | 0.538 | |||
Extract + Honeydew | 30 | 0.40 | 0.141 | 0.020 | 0.021 | 0.60 | 1, 28 | 0.447 | |||
7 | 9/19 to 9/26 | Mid-to-Late-1 | Control | 30 | 0.40 | 0.113 | 0.020 | 0.070 | 2.11 | 1, 28 | 0.157 |
Extract | 30 | 0.37 | 0.131 | −0.040 | 0.111 | 3.52 | 1, 28 | 0.071 | |||
Extract + Honeydew | 30 | 0.23 | 0.079 | 0.001 | 0.015 | 0.43 | 1, 28 | 0.518 | |||
8 | 9/26 to 10/3 | Late-1 | Control | 30 | 0.30 | 0.119 | 0.007 | 0.003 | 0.08 | 1, 28 | 0.778 |
Extract | 30 | 0.40 | 0.132 | −0.009 | 0.004 | 0.11 | 1, 28 | 0.745 | |||
Extract + Honeydew | 30 | 0.57 | 0.141 | 0.011 | 0.007 | 0.19 | 1, 28 | 0.667 | |||
9 | 10/3 to 10/11 | Late-1-to-Late-2 | Control | 30 | 0.70 | 0.145 | −0.051 | 0.065 | 1.96 | 1, 28 | 0.172 |
Extract | 30 | 0.50 | 0.115 | −0.016 | 0.012 | 0.33 | 1, 28 | 0.572 | |||
Extract + Honeydew | 30 | 1.10 | 0.277 | 0.005 | 0.000 | 0.01 | 1, 28 | 0.931 | |||
10 | 10/11 to 10/17 | Late-2 | Control | 30 | 0.63 | 0.282 | 0.097 | 0.093 | 2.88 | 1, 28 | 0.101 |
Extract | 30 | 0.70 | 0.160 | −0.032 | 0.017 | 0.49 | 1, 28 | 0.489 | |||
Extract + Honeydew | 30 | 0.93 | 0.371 | 0.239 | 0.307 | 12.43 | 1, 28 | 0.002 * | |||
11 | 10/17 to 10/24 | Late-2-to-Late-3 | Control | 30 | 0.70 | 0.268 | 0.045 | 0.027 | 0.79 | 1, 28 | 0.382 |
Extract | 30 | 0.80 | 0.246 | 0.006 | 0.001 | 0.04 | 1, 28 | 0.839 | |||
Extract + Honeydew | 30 | 0.70 | 0.232 | 0.066 | 0.180 | 6.15 | 1, 28 | 0.019 * | |||
12 | 10/24 to 10/31 | Late-3 | Control | 30 | 1.77 | 0.660 | 0.280 | 0.063 | 1.89 | 1, 28 | 0.181 |
Extract | 30 | 1.63 | 0.344 | −0.100 | 0.088 | 2.71 | 1, 28 | 0.005 * | |||
Extract + Honeydew | 30 | 0.63 | 0.162 | −0.010 | 0.004 | 0.11 | 1, 28 | 0.749 |
Week | Trapping Date Range | Stage | Treatment | N | Male SLF Caught | SE | Slope | R2 | F | d.f. | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8/8 to 8/15 | Early-1 | Control | 9 | 0.11 | 0.111 | 0.070 | 0.108 | 0.85 | 1, 7 | 0.388 |
Extract | 9 | 0.11 | 0.111 | −0.022 | 0.067 | 0.50 | 1, 7 | 0.502 | |||
Extract + Honeydew | 9 | 0 | 0 | 0 | - | - | 1, 7 | - | |||
2 | 8/15 to 8/22 | Early-1 | Control | 9 | 0 | 0 | 0 | - | - | 0, 8 | - |
Extract | 9 | 0.22 | 0.147 | 0.061 | 0.139 | 1.13 | 1, 7 | 0.324 | |||
Extract + Honeydew | 9 | 0 | 0 | 0 | - | - | 1, 7 | - | |||
3 | 8/22 to 8/29 | Early-1 | Control | 30 | 0.10 | 0.056 | −0.002 | 0.006 | 0.17 | 1, 28 | 0.682 |
Extract | 30 | 0 | 0 | 0 | - | - | 1, 28 | - | |||
Extract + Honeydew | 30 | 0.03 | 0.033 | −0.006 | 0.029 | 0.83 | 1, 28 | 0.369 | |||
4 | 8/29 to 9/6 | Early-2 | Control | 30 | 0.07 | 0.046 | 0.004 | 0.021 | 0.61 | 1, 28 | 0.442 |
Extract | 30 | 0 | 0 | 0 | - | - | 1, 28 | - | |||
Extract + Honeydew | 30 | 0.03 | 0.033 | −0.004 | 0.033 | 0.94 | 1, 28 | 0.340 | |||
5 | 9/6 to 9/12 | Early-2 | Control | 30 | 0.10 | 0.056 | 0.000 | 0.000 | 0.00 | 1, 28 | 0.991 |
Extract | 30 | 0.13 | 0.080 | 0.003 | 0.003 | 0.08 | 1, 28 | 0.786 | |||
Extract + Honeydew | 30 | 0.13 | 0.080 | 0.001 | 0.000 | 0.01 | 1, 28 | 0.917 | |||
6 | 9/12 to 9/19 | Mid | Control | 30 | 0.63 | 0.256 | 0.000 | 0.000 | 0.00 | 1, 28 | 0.952 |
Extract | 30 | 0.13 | 0.079 | 0.002 | 0.000 | 0.01 | 1, 28 | 0.917 | |||
Extract + Honeydew | 30 | 0.46 | 0.150 | 0.054 | 0.131 | 4.23 | 1, 28 | 0.049 * | |||
7 | 9/19 to 9/26 | Mid-to-Late-1 | Control | 30 | 0.87 | 0.234 | 0.015 | 0.010 | 0.27 | 1, 28 | 0.608 |
Extract | 30 | 0.87 | 0.248 | −0.045 | 0.039 | 1.14 | 1, 28 | 0.294 | |||
Extract + Honeydew | 30 | 0.70 | 0.226 | 0.097 | 0.174 | 5.91 | 1, 28 | 0.022 * | |||
8 | 9/26 to 10/3 | Late-1 | Control | 30 | 1.60 | 0.433 | 0.136 | 0.094 | 2.89 | 1, 28 | 0.100 |
Extract | 30 | 1.07 | 0.299 | 0.035 | 0.012 | 0.34 | 1, 28 | 0.565 | |||
Extract + Honeydew | 30 | 2.10 | 0.497 | 0.331 | 0.485 | 26.40 | 1, 28 | <0.001 * | |||
9 | 10/3 to 10/11 | Late-1-to-Late-2 | Control | 30 | 2.30 | 0.484 | −0.087 | 0.017 | 0.49 | 1, 28 | 0.493 |
Extract | 30 | 0.90 | 0.188 | −0.104 | 0.184 | 6.31 | 1, 28 | 0.018 * | |||
Extract + Honeydew | 30 | 2.20 | 0.598 | 0.385 | 0.322 | 13.31 | 1, 28 | 0.001 * | |||
10 | 10/11 to 10/17 | Late-2 | Control | 30 | 0.90 | 0.218 | −0.025 | 0.010 | 0.30 | 1, 28 | 0.591 |
Extract | 30 | 1.80 | 0.390 | 0.174 | 0.087 | 2.67 | 1, 28 | 0.114 | |||
Extract + Honeydew | 30 | 1.70 | 0.500 | 0.349 | 0.365 | 16.09 | 1, 28 | <0.001 * | |||
11 | 10/17 to 10/24 | Late-2-to-Late-3 | Control | 30 | 0.57 | 0.196 | 0.001 | 0.002 | 0.06 | 1, 28 | 0.806 |
Extract | 30 | 0.73 | 0.283 | 0.015 | 0.007 | 0.206 | 1, 28 | 0.654 | |||
Extract + Honeydew | 30 | 0.50 | 0.133 | 0.017 | 0.038 | 1.11 | 1, 28 | 0.301 | |||
12 | 10/24 to 10/31 | Late-3 | Control | 30 | 1.90 | 0.700 | 0.265 | 0.050 | 1.48 | 1, 28 | 0.233 |
Extract | 30 | 1.20 | 0.240 | −0.104 | 0.194 | 6.77 | 1, 28 | 0.015 * | |||
Extract + Honeydew | 30 | 0.83 | 0.235 | 0.017 | 0.005 | 0.13 | 1, 28 | 0.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooperband, M.F.; Murman, K.M. Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition. Insects 2024, 15, 447. https://doi.org/10.3390/insects15060447
Cooperband MF, Murman KM. Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition. Insects. 2024; 15(6):447. https://doi.org/10.3390/insects15060447
Chicago/Turabian StyleCooperband, Miriam F., and Kelly M. Murman. 2024. "Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition" Insects 15, no. 6: 447. https://doi.org/10.3390/insects15060447
APA StyleCooperband, M. F., & Murman, K. M. (2024). Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition. Insects, 15(6), 447. https://doi.org/10.3390/insects15060447